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Abstract: 

Ancient Egyptian surveyors constructed 90-degree angles at the corners of  the Great Pyramid to an 
accuracy of  one part in ten-thousand. This paper proposes that the surveyors achieved this reliably by using 
an approximation technique and measuring rods and extending the resulting perpendicular lines along the 
pyramid’s sides. Computations based on realistic and testable assumptions yield results that are persuasively 
close to those observed archaeologically. Using a 20 by 30 m base/side isosceles survey triangle to construct 
the perpendiculars at the right-angled corners produces a resultant angular deviation of  35.6 arc seconds, 
compared to the measured average of  37 arc seconds. Similarly, the calculated difference in the length of  the 
sides is 3.93 cm compared to the measured differences in the lengths between the northern and western sides 
of  4.4 cm and between the northern and the eastern sides of  4.1 cm. Further discoveries at the pyramid’s 
base dating to the appropriate era and found in the appropriate locations also support the historical use of  
the method. Additional considerations show how sophisticated geometrical intuition was developed during 
the 4th dynasty and that it was fundamental to the construction of  highly symmetrical pyramids.	

Introduction

Although Khufu’s pyramid was aligned to the cardinal points with an accuracy better than 4 arc 
minutes,1 ancient surveyors constructed the 90-degree corner angles with even greater accuracy. 
Surveyed data now indicates that this was achieved to one-ten-thousandth of  90 degrees, or under 
1 arc minute.2 Until now, there has been no satisfactory answer to how they constructed right angles 
with such unbelievably low uncertainty. To date, no calculations have been carried out that confirm 
the viability of  any suggested techniques through a correlation of  predicted values and observed 
archaeologically measured values. On the contrary, some pyramid specialists either doubt that the 
required precision referred to was indeed achieved3 or simply explain it away as “they obviously 
mastered the practice of  exact survey.”4 That the measured deviation of  the corner angles is 5 times 
smaller than the deviation of  the pyramid’s side alignments from the average length indicates that 
a particular angular measuring technique was most likely used. To investigate this, the historical 
context within which the 4th dynasty construction took place and the geometrical fundamentals 
involved in the process were studied.  The conclusions of  these studies are presented here for the 
first time. The paper presents and develops a new concept that avoids all the objections raised 

1	  Dash (2017), p. 1; Lightbody (2020a), p. 31.

2	  0°37” / 90° = 1,1 10-4. Cf. footnote 28.

3	  Stadelmann (1991), p. 220.

4	  Müller-Römer (2011), p. 377. Translated from German by the author.
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regarding previous proposals, such as the low dimensional and directional stability of  the available 
tools, the absence of  a clearly-stated geometric criterion as a final objective, dependency on other 
right-angle constructions, or overly-cumbersome procedures. This paper utilizes a trigonometric 
model and the law of  error propagation to evaluate if  a two-step approximation technique employ-
ing measuring rods (ATMR) and the subsequent extension of  the perpendiculars to the opposite 
side (EP) of  the pyramid yields the expected result. The following wide-ranging discussion outlines 
how useful such a method would have been for the ancient Egyptian people in the absence of  
advanced theoretical knowledge. The analysis concludes that the use of  the technique has a sound 
historical basis. It also investigates how the use of  the method may relate to the later use of  similar 
methods in the context of  the Greek culture. 

Detecting the pyramid’s ground plan

Originally, the Great Pyramid of  Giza was completely covered in smoothed Tura limestone 
casing blocks. Only a few of  the casing stones are still extant along the ground level platform and 
these are weather-worn and often badly damaged. Almost all are located in the middle sections of  
the sides. The original dimensions of  the casing can no longer be established with absolute cer-
tainty, as the corners are gone today, but their positions can be reconstructed by intersecting the 
extrapolated reconstructed baselines out to the corners. For the sake of  reliability, only survey work 
carried out after all four sides were cleared of  rubble and other debris has been considered in this 
paper. Several points along the original edges can be found and fitted lines drawn through them. 
The difference in the azimuths between the two crossing baselines at each corner determines the 
corner angle.5 To obtain the best data set, Lehner identified 84 points along traces of  the original 
baselines left by the edges of  the casing’s footprint on the platform stones, which he discovered 
during a meticulous search.6 He mapped them on the grid of  the Giza Plateau Measuring Project 
(GPMP).7 In 2015, Dash repeated the survey and also mapped them onto the control grid of  the 
GPMP. He further defined the baselines as being the best fit line passing through these points us-
ing the statistical method of  linear regression analysis. By extrapolating and crossing these lines, he 
determined the corner positions within an area of  a few centimeters.8 He subsequently calculated 
the distances between the neighboring corners as well as the lengths of  the diagonals, and most 
importantly for this study, the angles at the crossings of  the sides and diagonals (fig. 1-a.). A similar 
survey had already been completed by Dorner, and of  the eight  angular deviation value ranges 
calculated for the corner right angles measured by Dash and Dorner, seven are under 60 arc sec-
onds, and the overall average is 45 arc seconds. The values of  the side lengths and relevant angles 
are compiled and set out in fig. 1.

5	  Dorner (1981), p. 75.

6	  Dash (2012), p. 13.

7	  Lehner (2020).

8	  Dash (2015), p. 10.
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Existing theories and their shortcomings

The survey data indicates that the eastern or western side9 of  the pyramid was first aligned 
towards the north with a deviation of  2 arc minutes and 47 arc seconds10 and that its length was 
probably determined using measuring rods. The orientation of  the side to the cardinal points will 
not be discussed further here because the process of  constructing of  the 90-degree angles to set 
out the subsequent sides based on this first side is independent of  the procedure used to orient the 
first side to the cardinal points. Several practical techniques have been proposed that the ancient 
surveyors could have used to measure out the right angles. Though theoretically equivalent in in-
tent, the methods differ significantly in practice and in their ability to achieve a given minimum un-
certainty. A specific objection can be put forth arguing against the use of  each method, as follows. 
Unterberger proposed construction using an auxiliary rectangle with diagonals positioned adjacent 
to the pyramid’s ground level edge (fig. 2-a).11 The challenge there is to set out the long diagonals 
accurately. To do this, the midpoint of  the rectangle Pm must first be fixed with as little uncertainty 
as possible. This can be done either by drawing intersecting arcs with centers at the endpoints of  
the side, or by constructing a bisecting perpendicular extending out from the pyramid’s base edge, 
along which the position of  the center point PM can be freely chosen. The half-diagonals running 
from the corners to the point Pm are then completed to form diagonals defining the auxiliary rect-
angle and with it, the 90-degree angles at the pyramid’s corners. This would be a laborious process 

9	  Spence (2000), p. 321.

10	  Dorner (1981), p. 77.

11	  Unterberger (2008), p. 81.

a b

Fig. 1. 
a. Ground plan square defined by the casing baselines according to Dash.  The diagonals connect 
the opposite corners of  the casing (redrawn and modified from Dash). 
b. Ground plan square with sides as measured by Dorner; deviations of  the corner angles from 
90 degrees calculated from the sides’ azimuths.  A perfect square is defined by 4 equal sides and 
4 right angled corners leading to a perfect 90-degree angle of  the crossing diagonals. Thus, the 
accuracy of  the crossing angle is a substitute representing the accuracy of  the corner angles. The 
difference between the average side lengths surveyed and calculated by Dash  and Dorner  was 
only 3 mm over 230.36 m, and this is another indicator of  the accuracy of  the base plan square. 
These values justify the conclusion that the corner angles of  the casing were repeatedly and 
reliably achieved with an uncertainty of  less than 60 arc seconds.
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demanding an additional construction step for creating the right angle at the center of  the base, 
or to locate the point Pm, as well as extended diagonal measurements (over 230 m). The method 
is too complicated and prone to introducing further inaccuracies. Another procedure is to use a 
triangle with sides in the ratio 3-4-5 (fig. 2-b). This method certainly was and is useful for building 
every-day structures such as houses, however, Dorner’s analysis of  the minimum number of  steps 
required to obtain the archaeologically observed right angles12 using this method showed that the 
necessary measuring precision required when using this method was twice as high as required when 
using a method that used intersecting arcs (fig. 2-c). The intersecting arc technique is impressive in 
its simplicity and it can be applied directly at the pyramid’s corners, but unfortunately, intersecting 
arcs must be drawn with cords, the elasticity of  which make the use of  such a method unlikely. 
The fourth possible method employs a wooden building square that is flipped by 90°, as proposed 
by Engelbach.13 When compared to fig. 2-c, it is clear its use in this way produces an upside-down 
and extremely slender version of  the isosceles triangle. In the current author’s opinion, Engelbach’s 
idea was ingenious in that it started with a dimensionally stable tool and eliminated the wooden 
square’s inherent manufacturing error via the method of  application. However, in a practical trial 
Engelbach was not able to achieve results of  better than 1.5 arc minutes. Moreover, the perpen-
dicular was not yet extended over 230 m to the opposite corner. The experimental application of  
the method, therefore, led to results with errors much larger than the archeologically observed 
tolerance of  1 arc minute (fig. 2-d). 

Both wooden rods and cords made of  natural fibers were available to measure distances. The latter 
had a lower resistance to external influences such as humidity change, temperature change, and strain, 
especially longitudinally in the measuring direction. According to Shazad, cords yield longitudinally up 
to 2% against the strain, equating to 104 cm over 100 cubits (52.4 m).14 In a practical trial, Unterberger 
noted a lengthening of  1 m over 60 m and also noted the very arduous handling process.15 To draw 
the arcs of  a circle, the rope must be held tightened above the ground to avoid sagging and to evade 
obstacles. For precision, it must be absolutely taut. Without a high traction force this is impossible. As 
the ancient Egyptians could not accurately determine and maintain this type of  force, they could not 
have used it consistently. This means that identical measurements were not repeatable. The knotting 
of  the cord at regular intervals would have only worsened the situation. In conclusion, the measuring 
cord could not achieve a deviation of  only a few centimeters over 230 m. Even so, it is not useless 
with respect to its directional stability. When held stretched it does not veer sideways and allows the 
marking of  an accurate directional alignment. This means that leaving the measurement of  the length 
to other, more precise longitudinal methods make good sense.

Rods are also subject to changes in temperature and air moisture content levels but they are more 
stable longitudinally. It has been noted that if  they are cut across the wood grain they are ten times 
more stable longitudinally than rods cut along the grain in the measuring direction. When several 
such rods are connected together, long distances can be measured very accurately (fig. 5). 

Despite the many objections, all the existing theories do meet the most elementary precondition. 
They are all able to apply one of  the three possible fundamental geometrical construction meth-
ods yielding a right angle at the corners, namely, Euclid’s definition, the Pythagorean theorem, or 
Thales’ theorem (fig. 2). In practice, however, none of  these theoretical methods can compensate 
for the negative influences encountered in the real physical world on the measuring process, and 

12	  Dorner (1981), p. 109, p. 113.

13	  Clarke, Engelbach (1999), p. 67. 

14	  Shazad (2013), fig. 11.

15	  Unterberger (2008), p. 17.
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none of  them allow for the accurate extension of  the perpendicular along the side. The current 
proposals all focus on the construction of  a perpendicular on the pyramid’s side that is far shorter 
(estimated at 30 m for practical reasons) than the pyramid’s edge length. The constructed perpen-
dicular must still then be extended over 230.36 m. This task cannot be taken for granted. It must 
also be surveyed and further errors will then arise. In most cases the small error of  60 arc seconds 
or less observed in the archaeology of  the site is already accounted for by the deviation due to the 
construction of  the 90-degree angles at the corners, leaving no room for error during the linear 
extension along the sides. A comprehensive workable theory must consider both parts of  the task. 
Even so, there are intelligent concepts behind each existing theory that stimulated the development 
of  the novel method proposed in this paper. The essence of  the new theory is that once a suit-
ably accurate linear measurement protocol had been devised, the bisecting perpendicular method 
shown in fig. 2-c16. enabled the ancient surveyors to execute the procedure with the archaeologically 
observed accuracy.

16	  Robins, Shute (1987), p. 47.

   
 

1 
 

 
Fig. 2. Practical construction techniques for 90-degree angles.  
a. A circle is drawn through the diagonals of an auxiliary rectangle also illustrating the application of Thales’ 
theorem (redrawn and modified from Unterberger).  
b. The ‘Egyptian triangle’ constructed with measuring cords (Pythagorean theorem and triplet).  
c. Unilateral intersecting arcs with measuring cords (based on Euclid’s definition). 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴. 
d. A flipped building square. Engelbach described the one he used in the field. The length of the legs was 
about 7 feet (2.1 m). It was not clear how the segments defined by the square legs of 2.1 m were extended 
to 91 m. In sum, the method cannot replicate the archeologically observed precision of less than 1 arc 
minute deviation over 230 m (redrawn from Clarke and Engelbach 1999, p. 67). 

a b

c d
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The approximation technique with measuring rods 

The ATMR proposed here is based on Euclid’s definition of  a right angle, and proposition 11 
of  Book 1 of  Elements.17 After aligning the first side of  the pyramid and fixing its endpoints, the 
straight line is extended laterally beyond the pyramid’s corner M (the horizontal line on fig. 3). 
Points A and B are then marked at the same distance on either side of  the pyramid’s corner M. 
Point C1 is then placed at an appropriate distance from the corner. After measuring the distances 
between C1 and A as well as C1 and B, point C is shifted toward the longer leg’s side. This measure-
ment process is repeated until equidistance is reached at Cd. The connection between Cd and the 
corner M is thus a perpendicular line whose extension at a right angle to the first side yields the 
second side, at the end of  which the next corner can be fixed. The method is applied again and 
again until the pyramid’s entire perimeter ground plan is established. All linear measurements, from 
C1, C2, and Cd, to A and B, as well as from M to A and B, are performed exclusively using longitudi-
nally stable wooden measuring rods (fig. 3). These are placed alongside stretched-out directionally 
stable cords (fig. 5). All of  the equivalent equal distances must be measured out following the same 
protocol (equal numbers and identical application sequence of  the same individual rods, preferably 
only the same two). This procedural consistency improves the end results. 

Documentary evidence of such knowledge

The use of  the method described above could indicate that the ancient Egyptians were already 
aware of  a principle only described much later by Euclid’s Elements of  Geometry in proposition 11 
of  Book 1 of  his work Elements. That was written around 300 BC, many centuries after the 
construction of  Khufu’s pyramid. No surviving document from the Old Kingdom mentions the 
use of  such methods, however, the Rhind Mathematical Papyrus (RMP – pBM 10057&10058) 
dating from approximately 1,550 BC does include complex geometric algorithms. According to 
the scribe Ahmes, he had copied it from an earlier version dating from 1,850 BC, during the 
reign of  the pharaoh Amenemhet of  the 12th dynasty, only 700 years after the time of  Khufu. 

17	  Euclid, (2007), Elements, Book 1, pp. 6, 16.

Fig. 3. The approximation technique with measuring rods (ATMR). A shift 
parallel to the base is not required.
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RMP problems 56-59 are concerned with pyramid measurement procedures. The examples 
demonstrate how to calculate the slopes of  the pyramid’s sides. The value called the seqed (or 
seked) of  the slope was the reciprocal of  the slope and was given by the run in relation to a 1-cubit 
rise. The illustrating figures of  pyramids lack any lines referring to the height of  the monuments, 
but the accompanying text reads “the seqed is taken to be half  the width of  the base divided by 
the height...”18 Furthermore, in problems 57-59, the seqed quoted is the same as that of  Khafre‘s 
pyramid.19 In these examples the height was undoubtedly used as the bisecting perpendicular of  an 
isosceles triangle that formed the vertical cross section of  the pyramid. When considered together 
with the dimensions in problem 56 that correspond to those of  a large Old Kingdom pyramid, it 
seems most likely that this document reflects knowledge that came down from the Old Kingdom.

The close relationship between the pharaohs, state rituals, and the state’s pharaonic architecture 
is also documented on the Palermo Stone. Several entries reference the building of  temples and the 
laying out of  ground plans using the “stretching of  the cord” ritual.20 A Pyramid Text also includes 
reference to the ‘establishment and encircling’ of  a pyramid, an action that resembles the idea of  
an encircling survey to establish the ground plan of  a monument at the start of  construction."21

Validation of approximation technique with measuring rods and extension of 
perpendicular

The reason that the ATMR procedure together with the EP (extension of  the perpendicular 
described below) can successfully replicate the accuracy observed in the monument’s ground plan 
is the result of  an elementary geometrical relationship. For a scalene triangle, where all the three 
sides are of  different length, but of  similar magnitude, the difference in length between the two 
legs (Δ) and the lateral deviation CD of  the apex from the perpendicular bisecting its base, are 
close to equal. In the special case where the base length will also be equal to the final leg lengths 
(equilateral), this is in fact described by the equation Δ = CD (see equation 5b22 in the appendix 

18	 Robins, Shute (1987), p. 47.

19	 Robins, Shute (1987), p. 47.

20	 Wilkinson (2000), p. 111-112.

21	 Lightbody (2020b), p. 57-59.

22	 To illustrate, the equilateral special case of the intended isosceles triangle was chosen because the length difference and 
apex deviation were equal. This can be seen in more detail in fig. 11. and equations 5b for the equilateral and 5a for the more 
general case.

Fig. 4. Construction of  the bisecting perpendicular through M using the surveying triangle: 
depiction of  the correlation between the angular deviation at the apex and the difference in 
the lengths of  the legs during the procedure. Δ is the leg length difference, CD is the lateral 
deviation from the ideal perpendicular, and M is the pyramid’s corner.
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along with the more complex mathematical demonstrations). Fig. 4. demonstrates the basic 
principles that underpin the survey work. The work begins with the selection of  a provisional apex 
point, roughly chosen at an appropriate distance from the corner M to ensure adequate accuracy. 
When a difference in length between the triangle’s two legs is observed, the surveyor knows that 
the triangle is still scalene. As a result, the apex point is shifted in the appropriate direction, and 
the comparison of  the legs is repeated until they no longer have a difference in length. This is 
the final objective criterion. The bisecting perpendicular is then constructed by joining the apex 
to the bisection point at the base, which was the corner point M defined initially. In reality, the 
resultant form is not an ideal isosceles triangle, but the remaining errors can be evaluated. In fig. 
4, the evolution of  the form and the trigonometric laws behind the procedure can be seen as the 
method unfolds during the implementation of  the ATMR. From the measured angular deviation 
observed at the archaeological site, the level of  uncertainty left behind by the length measurements 
used on the construction site can be appreciated. The measuring techniques used can subsequently 
be guessed at and the viability of  any proposed method checked by an appropriate computation. 

Carrying out measurements on the construction site

The proposed ATMR technique is relatively straightforward, however, establishing exactly how 
it was implemented on the construction site poses some remaining challenges. First, the procedure 
used must have a high degree of  directional and dimensional stability. This must have been dealt 
with by choosing the tools to implement the procedure carefully. Second, the scale of  the pyramid 
means that the measurements could not have been carried out in one operation. The task must 
have been split up into several successive steps. Third, measurements in the real world are physical 
procedures, and as such, they are inevitably subject to errors. Therefore, error analysis of  some 
description would have been necessary. 

With respect to the selection of  tools, it is concluded here that measurement rods were used and 
that the extended distances must have been partitioned up and every subsection measured sepa-
rately. In the measurement of  each subsection, a small error arises. The exact value of  the error is 
unknown but the order of  its magnitude can be estimated through repeated observations (fig. 6). 
Due to the procedure followed during the implementation of  the ATMR, the number and length 
of  subsections in both legs are equal or close to equal. It is reasonable to assume that each error 
was of  the same order of  magnitude, although individually different and of  varying algebraic sign.23 
Each new error was summed and passed along during the implementation of  the procedure up to 
the end of  the measurement. At first glance the more numerous the single measurements were, the 
harder it would be to achieve a certain accuracy. Yet, in some subsections the random errors are 
positive and in others, negative, thus, partially canceling each other out. This works in the survey-
or’s favor and makes the quest for high accuracy more achievable. The law of  error propagation 
is also based on the same principle, and as a result it is possible to estimate the influence of  all the 
errors on the final outcome, starting from the beginning of  the procedure and continuing up to the 
end of  the measurements. It is not necessary to fully understand the abstract mathematics involved, 
but the underlying principle is demonstrated in figs. 5, 6 and 7 below. These describe a measuring 
technique as it was most likely known and used during the 4th dynasty, based on the availability of  
the tools involved and the simplicity of  handling them.

The maximum level of  accuracy or minimum level of  uncertainty is determined by two crucial pa-
rameters, namely, the precision of  the tools used and the law of  error propagation. The precision 

23	 Dorner (2007), p. 50.
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is dependent on material properties such as the flexibility of  cords and wooden rods, physiological 
constraints of  the operator (including of  the human eye), and the measuring protocol used. Finally, 
the different factors must work together to produce a resultant Δ small enough to match or exceed 
the archaeologically observed angular deviation.

The accurate measurement of a distance between two points

Ultimately, the construction of  right-angled corners with such high levels of  accuracy relies on 
accurate linear measurements. The effectiveness of  the rod–cord combination technique is best 
assessed by evaluating the ratio of  the total error compared to the total measured length. This is 
called relative accuracy (RA). The lower the value, the higher the precision. Clearly, the RA of  the 
constituent steps must be lower than that for the eventual outcome. For the corner angles this was 
1 x 10-4 (see footnote 2). In fact, the measurement accuracy achievable with dimensionally stable 
rods is astonishing. With 8-cubit rods (4.2 m), interface clearances of  0.25 mm, a stable tempera-
ture, and relatively dust-free surroundings, for a pyramid’s side of  230.36 m, the achievable error is 
1.85 mm (RA = 8 x 10-6).24 Similarly, for a surveyor’s isosceles triangle with sides of  30 m, the error 
is 0.667 mm (RA = 2.25 x 10-5). This demonstrates that longer distances can be measured with 
higher precision and that with smaller orders of  magnitude of  the RAs, achieving the small angular 
values for deviations observed at the pyramid’s corners is readily achievable.

24	 440 cubits side length gives 55 interfaces between the ends of rods of 8 cubits. If there is a 0.25mm linear error between each 
rod, the resultant error propagates to only 1.85 mm =  0.25mm x 55^0.5.

Fig. 5. Directional stability using measurement with rods aligned alongside a stretched 
rope. The rope is a directional guide that prevents curvature and zigzagging and ensures 
that the shortest line connecting the ends is measured, and thus, that it is a straight line. The 
rope is not used as a linear measurement device.
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The accurate extension of a straight line in segments over a defined distance

This is achieved by setting out and aligning a series of  straight line segments using ranging poles 
positioned at certain intervals and by sighting along them with a given visual acuity.25 With each 
sighting, a small random angular error arises that obeys the law of  error propagation. The angu-
lar errors are perpendicular to the measuring direction (fig. 7), and with a constant visual acuity 
they are directly proportional to the distance between the ranging poles. This leads to a surprising 
consequence. The total angular accuracy can be enhanced by shortening the pole intervals. This is 
very significant, as the side length is 230 m and the intervals can easily be as short as 10 m. With 
shorter intervals, the large linear extension causes only a limited increase in the final error outcome 
(equations 11 and 12). 

Surveying the ground plan on the construction site

A corner point on the north side is chosen through which a segment of  a straight line is drawn 
oriented to the north. This segment can be extended south from the corner point to determine the 
position the southern neighboring corner point. This is achieved by sighting along ranging poles set 
out in sequence and measuring the distance between them with rods aligned along cords stretched 
between them (fig. 5). The remaining corners are then surveyed and positioned by applying ATMR 
and EP.

25	  The best possible visual acuity of the human eye is 0.4 arc minutes or 24 arc seconds.

Fig. 6. The types of  random errors that can occur when using dimensionally stable rods. Not 
to scale. The resulting uncertainties are positive in some cases and negative in others, therefore, 
they partially cancel each other out in cases of  successive measurements. a. The intended true 
value, b. Joint gaps due to incongruent end cuts and unequal pressure applied when joined to-
gether, c. Inadvertent backward shifting of  the initial position, d. Fine sand grain contamination, 
e. Thermal expansion and extension, and f. Thermal shrinking and shortening. The total error 
does not increase in direct proportion to the number “n” of  subsections, but with the square 
root √n. With increasing n, the relative accuracy (RA) becomes more precise. Simply put, with 
100 subsections, the distance grows 100 times but the total error only 10 times.
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Error analysis of the closed setting-out survey

The first surveyed side is an extension of  a segment of  a straight line aligned to the Northern 
Celestial Pole (NCP). The setting out of  the three remaining perpendiculars with their extensions 
can start at either of  its end points. Thus, both end points of  this cardinally aligned side are at the 
same time starting and end points depending on whether the survey is carried out in a clockwise 
or anti-clockwise direction. By employing this closed survey strategy any ‘misclosure’ at these end-
points due to error propagation can be detected and the survey repeated until the ground plan’s 
perimeter is closed up. Furthermore, procedures used during the setting-out can also be improved 
iteratively and the changes evaluated by employing this closed survey strategy.

Fig. 7. Increasing the sighting precision by shortening the pole intervals. 
a. With a given visual acuity (visual angle v) a single sighting results in an error of  σ. 
b. Double visual acuity (angle v/2) results in half  the error (σ/2). 
c. The same half  error (σ/2) can be attained with visual acuity v by 4 successive sightings using 
1/4 length intervals. The error of  a single sighting is σ/4 as it is proportional to the interval size, 
and this is multiplied by the square root of  the number of  sightings to obtain the total error 
value, which is σ/4∙√4 = σ/2
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Discussion

Based on these principles outlined above, an estimate of  the real error values can be made in 
the following section. The angular and length measures are calculated according to the equations 
in the appendix and based on the precision measuring methods outlined in figs. 5, 6 and 7. For an 
estimate of  the total random error, I assumed a 0.25 mm abutting joint clearance (fig. 6-b), a 0.13 
mm layer of  fine sand due to the proximity of  the dusty desert (grain size 0.063-0.2 mm DIN 4200) 
(fig. 6-d), 0.2 mm error due to temperature changes of  up to 10°C under sun exposure (Euro-
code 1, European Standards 1991-1-5, 8-cubit rod = 4.2 m) (fig. 6-e), and 0.0025 mm shortening 
through deviation from the direction (1 cm horizontally and 1 cm vertically for 8 cubits). Summed 
up, the segment error  is 0.58 mm for 8-cubit long rods or 0.48 mm for 4-cubit long rods. 

   
 

1 
 

 

Fig. 8. Deviation produced at the pyramid’s corners. This procedure provides an elegant solution 
that circumvents the rocky outcrop under the center of Khufu’s pyramid, but it does introduce a 
degree of error. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  is the deviation produced by projecting an initial line segment constructed as 
a perpendicular at the corner running through point M and extended until it intersects with the 
straight line formed by the extension of the opposite side. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the additional deviation arising 
from the extension of the constructed perpendicular, which carried an initial error. The total effect 
of the deviation on the length of the pyramid’s side 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻 (𝜑𝜑𝜑𝜑) arises from superposition during 
surveying of angular errors 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (ξ) and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ( 𝜓𝜓𝜓𝜓) (equation 12). The survey triangle and deviations 
ξ, 𝜓𝜓𝜓𝜓, and 𝜑𝜑𝜑𝜑 are not to scale. 
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The choice of  measuring tool, either a rod or cord, is of  paramount importance. Dorner analyzed 
the effects of  temperature, air moisture, and traction on a weighted hemp cord 8 mm in diameter 
and about 1 m in length. The values he found extrapolated over 100 cubits (52.4 m) amount to 
50 cm for both temperature and air moisture effects and as much as 100 cm under traction. He not-
ed that during the 10-day test, the cord extended by 1 cm, although it had been strained before over 
several weeks26 adding another 50 cm over 100 cubits (52.4 m). This level of  variation means that 
it is unlikely that cord-based methods were used for measuring during the pyramid’s construction. 
He considered possible special manufacturing processes for cords and he also considered rods as a 
long-distance measuring tool27 but he did not research the latter approach in detail.

Unlike for the dimensionally unstable cords, more detailed computations can be carried out based 
on wooden rods. As a basis for the computations, I take 8-cubit rods (4.2 m), an error in length 
for each rod of  0.58 mm, and the surveyor’s visual acuity to be 1 arc minute. The calculation of  
the error produced by the corner survey triangle (fig. 11) and its extension over the pyramid’s side 
(fig. 8) yields, for 40/30 m and 20/30 m base/side triangles respectively, deviations of  3.4 cm 
(= 30.3 arc seconds) and 4 cm (= 35.6 arc seconds). The latter is an astonishingly close match to 
the measured mean angular error value of  37 arc seconds.28 To be practically viable, ATMR had to 
fulfill 3 more preconditions, namely, allow the free choice of  base length, allow different shapes for 
the isosceles triangles, allow a wide choice of  possible apex positions on the ground for point C, 
and result in a total uncertainty of  60 arc seconds or less. Fig. 9 depicts the huge extent of  available 
triangle sizes and shapes that can be used with 8-cubit (4.2 m) and 4-cubit (2.1 m) rods that meet 
the requirements and could achieve success.

26	  Dorner (1981), pp. 98–99.

27	  Dorner (1981), p. 99. Summarized and translated from German by the author.

28	  Dorner (1981), p. 76. Arithmetical mean of 16”, 19”, 55”, and 58”.
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Fig. 9. Viable range of possibilities giving an angular deviation of less than 60 arc seconds. The 
contribution of the perpendicular’s extension to the total error is included. Here, c = base of the 
isosceles triangle, 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀 = height of the isosceles triangle, and side length = 230.36 m (pyramid’s 
side).  
a. With 8-cubit rods (1 cubit = 52.44 cm) and an error for each rod of 0.58 mm,  
b. With 4-cubit rods and an error for each rod of 0.48 mm. 

a b
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Conclusion

The striking discrepancy between the archaeologically observed values of  construction accuracy 
achieved on the monuments and the lack of  evidence of  measuring tools or procedures (fig. 6) remains 
difficult to explain. Based on modern standing-building surveys the ancient surveyors could obtain 
a deviation due to length measurement error of  only 4.3 mm over 230.36 m. In a practical test with 
measuring sticks, Unterberger was able to reproduce an uncertainty of  less than 10 mm over 240 m.29 
In contrast, the differences in the lengths between the northern and western sides as well as between 
the northern and the eastern sides are 4.4 and 4.1 cm.30 Spence compared this with the variation in the 
alignments of  the different sides in earlier pyramids.31 For the Great Pyramid of  Giza, the difference 
in alignment between the western and eastern sides varies by 39 arc seconds,32 generating a length 
difference of  4.35 cm. With a 20/30 m base/side survey triangle the ATMR produces 2.6 cm of  
variation and the EP produces 2.94 cm, which combine to produce a value of  3.93 cm (equation 12 
in Appendix). This supports Dorner’s proposal33 and Spence’s conjecture that the differences are the 
result of  the construction of  right angles at the corners while laying out the ground plan;34 and it also 
supports the proposition that the sides were set out and aligned using a 2-step procedure.

After the technical suitability assessment, the historical plausibility of  its use must be evaluated in 
the analysis. What motivated the pharaonic surveyors to develop such an elaborate method, which 
modern specialists have only now considered and find difficult to replicate? The main technical driv-
er seems to be the disparity between the high accuracy requirement and the low linear dimensional 
stability of  cords. Experiments in field survey have found that rods are far more reliable than cords 
for producing repeated and accurate measurements. The adoption of  methods requiring several se-
quential steps, however, may have been a derivative of  the ancient Egyptians’ experience with cut 
stone construction. In those projects stone blocks of  a certain dimension had to be carved to size in 
many stages, and this sort of  iterative approach may have led them to use the ATMR. They could not 
differentiate between true and approximate values, but the archaeological record represented by the 
pyramid’s base, including the levelled pavement created before the structure’s erection is fascinating. 
“It clearly shows that the survey was executed at least 3 times with increasing accuracy”.35 The dif-
ference in height above sea level at the bottom of  the corner sockets is 47 cm, while the surface of  
the leveled bedrock around them varies by 19 cm. The platform on which the pyramid was placed, 
however, varies only by 2.1 cm.36 This accuracy is the best confirmation that a succession of  approx-
imating procedures were carried out at the appropriate places and at the appropriate times in order 
to produce the 4 sides and corner angles that can be observed today. When interpreted logically, the 
available evidence can support a compelling argument that such a technique was used. 

Although a small deviation from a true right-angle seems to be a petty detail of  ancient Egyptian 
architecture, the achievement contains more information than is visible at first glance. It allows us 
a glimpse into the intellectual life of  the specialized scribes and architects. It is likely that the Old 
Kingdom Egyptians used the seqed or seked system to measure slopes, but they did not understand 
angles in terms of  the arc and radius of  a circle. The seked system, however, could not measure 

29	  Unterberger (2008), p. 17.

30	  Dorner (1981), p. 77.

31	  Spence (2000), p. 321.

32	  Dorner (1981), p. 77.

33	  Dorner (1981), p. 95.

34	  Spence (2000), p. 321.

35	  Dorner (1981), p. 151. Translated from German by the author.

36	  Borchardt (1937), Heft 1, p. 6. 



JAEA 4, 2020
The accurate construction of the right angles  of the Great Pyramid’s ground plan

111

right angles, as it had to express a rise and a run. The solution they used to produce right angles 
used the idea of  equidistance outlined above. It was simple and could be implemented precisely 
using only measurement rods and cords. The surveyors would first have chosen a point C1 fairly 
close to point Cd (figs. 3 and 4), and by repeating the procedure they would have reached their goal 
with minor effort. Afterward, they had only to extend the perpendicular along the pyramid’s side. 

Analysis of  the ATMR, with RA values of  0.6 x 10-4 and 0.52 x 10-4 for 4-cubit and 8-cubit rods 
respectively, shows that the surveyors could have met or exceeded an accuracy of  60 arc seconds. 
It is even possible that a surveyor with the very best visual acuity of  0.4 arc minutes could have 
achieved a value of  as little as 25.5 arc seconds of  error, and in favorable atmospheric conditions, 
even down to 14.5 arc seconds. Similarly, the 8 possible arrangements of  survey triangles at each 
corner (fig. 10) would have given the surveyors the freedom to choose the best layout to deal with 
any variations in the local topography (fig. 8). Stadelmann noted that the precision of  the observed 
measurements can indeed be replicated, but hardly improved upon.37 The current error analysis 
shows that the ancient Egyptians had pushed their technology close to its limits.

The most remarkable conclusion is that the use of  the ATMR indicates that the ancient Egyptian 
specialists made use of  two concepts formulated in writing only thousands of  years later. These 
concepts are Euclid’s definitions of  the right angle,38 and equidistance. Proposition 11, Book 1 39 
reflects the ATMR closely. Equidistance is represented in Definition 1, Book 10 as “summetria” 
(symmetry). It’s originally meaning was “in measure with” or “sharing a common measure.”40 “The 
term quickly acquired a further, more general meaning, that of  a proportion relation.”41 This con-
cept was what facilitated the accurate   and symmetrical construction of  the 4th dynasty pyramids. 
Its application at the pyramid’s corners gives an insight into the state of  geometrical knowledge at 
the time the Great Pyramid’s construction began, around 2,554 BC42 (2,480 BC).43

In conclusion, a procedure that combined the ATMR and the EP could well have been the method 
used to set out the ground plan of  Khufu’s pyramid tomb. Future research may reveal more argu-
ments for its historicity.

37	  Stadelmann (1991), p. 220.

38	  Euclid (2007), Elements, Book 1, Definition 10.

39	  Euclid (2007), Elements, Book 1, p. 16. 

40	  Hon, Goldstein (2008), p. 71.

41	  Stanford Encyclopedia (Date accessed: 27 February 2020).

42	  Von Beckerath (1997), p. 159.

43	  Spence (2000), p. 320.

Fig. 10. The 8 possibilities for setting out a survey triangle.
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Appendix

Length uncertainty and angular deviation
   
 

 

 
Fig. 11. Uncertainty of the isosceles survey triangle. 

 

 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 − 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀  (1) 

 since 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 𝑏𝑏𝑏𝑏 ∙ cos𝛼𝛼𝛼𝛼 and  𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 𝑐𝑐𝑐𝑐
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𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 = 𝑏𝑏𝑏𝑏 ∙ cos𝛼𝛼𝛼𝛼 − 𝑐𝑐𝑐𝑐
2
  (2) 

as cos𝛼𝛼𝛼𝛼 = 𝑏𝑏𝑏𝑏2+𝑐𝑐𝑐𝑐2−𝑎𝑎𝑎𝑎2

2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐
              law of cosines  

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 = 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏2+𝑐𝑐𝑐𝑐2−𝑎𝑎𝑎𝑎2

2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐
− 𝑐𝑐𝑐𝑐

2
  (3) 

 𝛥𝛥𝛥𝛥 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    and    𝑏𝑏𝑏𝑏 = 𝑎𝑎𝑎𝑎 + ∆      by definition 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 = (𝑎𝑎𝑎𝑎 + Δ) (𝑎𝑎𝑎𝑎+Δ)2+𝑐𝑐𝑐𝑐2−𝑎𝑎𝑎𝑎2

2(𝑎𝑎𝑎𝑎+Δ)𝑐𝑐𝑐𝑐
− 𝑐𝑐𝑐𝑐

2
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 rearranged 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷  =  Δ 𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐

+ Δ2

2𝑐𝑐𝑐𝑐
           (5) 

Δ2

2𝑐𝑐𝑐𝑐
             insignificant as Δ ≪ c 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷  = Δ 𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐
     isosceles triangle        (5a) 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷  = Δ     equilateral triangle as a = c       (5b) 

 

Measuring on the construction site  

Symbols used in the following equations 

𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅  = length of measuring rod 

𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃  = distance (interval) between ranging poles 
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Fig. 11. Uncertainty of the isosceles survey triangle. 
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𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷  = Δ     equilateral triangle as a = c       (5b) 

 

Measuring on the construction site  

Symbols used in the following equations 

𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅  = length of measuring rod 

𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃  = distance (interval) between ranging poles 
   
 

𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅  = error of single measurement with rods 

Σ𝑅𝑅𝑅𝑅  = total error with measuring rods 

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃 = error of single measurement with ranging poles 

The error for the whole distance of a leg a with 𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅

 measurements can be expressed as follows: 

Σ𝑅𝑅𝑅𝑅  = 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅 �
𝑎𝑎𝑎𝑎
𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅
� 1 2�           (6) 

To obtain the deviation 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷 on the construction site, the difference Δ between the 2 legs of the 
isosceles triangle must be calculated. The length of each leg comprises 2 real components, the sum 
(number) of measuring rods and the accumulated single measuring errors. The rods can simply be 
counted (measured). In contrast, the normally distributed random errors of unknown magnitude 
and algebraic sign can only be estimated. Due to the final criterion and the same measuring 
procedure on both legs, the 2 total errors ΣR must be assumed to have the same order of magnitude. 
The difference in the rod components on each leg is 0. To calculate the difference between the 
normally distributed total errors, the variances (squared deviations) of the variates are taken instead 
and added up. This is 2 ΣR

2. i The resulting deviation √2 ΣR is, therefore, the square root and when 
plugged into equation 5a, it leads to 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷�����  = √2 Σ𝑅𝑅𝑅𝑅  𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐
          (7) 

after projecting point M in the direction of the constructed perpendicular 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 onto the opposite 
side, with 

 𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀  =  𝑐𝑐𝑐𝑐
2
 as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 << 𝐵𝐵𝐵𝐵𝑀𝑀𝑀𝑀 and 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀 = �𝑎𝑎𝑎𝑎2 −  𝑐𝑐𝑐𝑐
4

2
 �
1
2�
          (8) 

 

Symbols pertaining to deviations at the pyramid corner (Fig. 8). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = deviation at corner contributed through the projection of M in the direction of the 
constructed perpendicular onto the straight line of the opposite side. 
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To determine the neighboring corner, the constructed perpendicular must be extended over the 
pyramid’s side. This is done by extending the constructed perpendicular by setting out a series of 
straight lines with ranging poles (Fig. 7.) at intervals of 45 m, for instance. With a surveyor’s visual 
acuity of 1 arc minute (Snellen 20/20), an error 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃  of 1.3 cm arises at each measurement leading 
to the following: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃 �
𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻
𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃
�
1
2�
            (11) 

The sum of the deviations is calculated according to a normal sum distribution by taking the square 
root of the sum of the variances (= squared deviations).  

𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻 =  � 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
2

+  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
2
�
1
2�

ii         (12) 

                                                           
ii  Weisstein (2000), see footnote i. In the present case, the angular means are both 0. The constructed perpendicular deviates 

only by random errors from the true 90-degree angle and the extension is in the same direction as the constructed 
perpendicular.  
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