A GENERALIZATION OF KANTOROVICH OPERATORS FOR
CONVEX COMPACT SETS AND APPLICATIONS

VITA LEONESSA

Abstract

Let K be a convex compact subset of some locally convex Hausdorff space X. Starting from a Markov operator $T : C(K) \to C(K)$, a real number $a \geq 0$, and a sequence $(\mu_n)_{n \geq 1}$ of probability Borel measures on K, we shall construct a sequence of positive linear operators $(C_n)_{n \geq 1}$ acting on certain function spaces on K.

The class of such operators contains some well-known operators as the Kantorovich ones on the unit interval, on the multidimensional hypercube or on the simplex or \mathbb{R}^d, together with several of their wide-ranging generalizations scattered in the literature.

We are interested on approximation as well as shape preserving properties of the operators C_n. Moreover, we also show that the operators C_n can be used for approximating the solutions to certain initial-boundary value differential problems.

Even if X can be also infinite dimensional, for the sake of simplicity in this talk we limit ourselves to the case $K \subset \mathbb{R}^d$, $(d \geq 1)$.

The talk is based on some joint works with Francesco Altomare, Mirella Cappelletti Montano, and Ioan Raşa (see [1, 2, 3].

Keywords: positive operators, shape preserving approximation, asymptotic formula, approximation of semigroups.

AMS Classification: 41A36, 47B65, 47D07.

Bibliography

Vita Leonessa,
Dipartimento di Matematica, Informatica ed Economia,
Università degli Studi della Basilicata, Campus di Macchia Romana,
Viale dell’Ateneo Lucano n. 10,
85100 Potenza, Italy.
vita.leonessa@unibas.it