On Bernstein and Chebyshev type problems for \(k \)-monotone polynomials\(^\dagger\)

András Kroó and József Szabados

Abstract

In a recent paper [4], we initiated the study of Markov type inequalities for the so called \(k \)-monotone polynomials of degree at most \(n \), whose first \(k \) derivatives are nonnegative in the interval considered. The exact constant of Markov type inequality was found in case of first derivative when the underlying norm is uniform or \(L_1 \). Moreover it was shown that in general for derivatives of order \(j \) the sharp order of magnitude of Markov constants is \(\left(\frac{n^2}{k} \right)^j \).

In the present paper we continue the study of this subject by establishing asymptotically sharp Bernstein type inequalities for derivatives of \(k \)-monotone polynomials. We shall show that the order of magnitude of Bernstein factors is \(\left(\varphi \left(\frac{k}{n^2} \right) \frac{n^2}{k} \right)^j \), with the size of the derivatives on \([-1, 1]\) being measured in weighted norms with weight \(\varphi(1 - x) \), where \(\varphi \) is such that \(\varphi(x) \) is increasing and \(\varphi(x)/x \) is decreasing.

In addition we also give an exact solution to the Chebyshev type problem of finding monic \(k \)-monotone polynomials of minimal \(L_1 \) norm. It turns out that just as in the case of Markov type inequalities for \(k \)-monotone polynomials, these extremal polynomials are related to certain Jacobi polynomials. The result for \(L_\infty \) norm of Bernstein will also be recovered.

Keywords: Bernstein inequality, Chebyshev problem, \(k \)-convex polynomial.

MSC: 41A17.

\(^\dagger\)Supported by the OTKA Grant No. T77812.