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Abstract

In the analysis of data stored in databases, a very interesting issue is the detection of possible existing relations
between attribute values and, at an upper level, relations between attributes themselves. In case uncertainty is present
in data, or it is introduced in a pre-processing step, specific data mining and knowledge discovery techniques and
methodologies must be provided. The theory of fuzzy subsets is a helpful tool to reach this goal. In this paper we
introduce a new definition and an algorithm for computing fuzzy approximate dependencies, a type of relations that
can be found between attributes in a fuzzy database, on the basis of a previous definition of fuzzy association rule.
We will discuss about possible applications of this new tool.
© 2004 Published by Elsevier B.V.
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1. Introduction

Knowledge discovery in databases (KDD) is concerned with finding previously unknown and po-
tentially useful knowledge from databases. Roughly, it consists of three main steps: data preprocessing
(preparing data), datamining (finding interesting patterns in data) and interpretation of datamining results
to provide the final knowledge.
There are several ways in which fuzzy set technology is useful in KDD, see[43]. First, participation of

users in all the steps of the KDD process is crucial, and in particular the ultimate objective of KDD is to
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provide users withunderstandableinformation. Fuzzy set technology is a suitable tool for this purpose,
specially in those cases where we want to express summaries or relations between numerical data by
means of linguistic terms. Also, linguistic assessments of patterns are helpful in order to judge them in
the last step of KDD.
However, there is another important fact that links KDDand fuzzy sets: inmany cases data is inherently

imprecise or uncertain, and several fuzzy relational, deductive and object-oriented database models have
been developed in order to cope with this. A more usual case, that provides a similar scenario, is that of
fuzzy data obtained from crisp data in the preprocessing step by aggregation, summarization or change
of granularity level. The analysis of such information requires the development of specific tools as fuzzy
extensions of existing ones.
To illustrate these claims, let us use a simple example. LetCatandSalbe two attributes storing the job

category and salary of a set of employees. Suppose the category takes values in a set of labels indicating
the kind of work, for example{Manager, Commercial ...} and the salary is a number. It is usual to find a
relation between category and salary (the higher the category, the higher the salary). However, if we want
to describe this relation, rules like “If Cat=Manager then Sal=123455” are not the best solution, since
there are many different numerical values for the salary of a Manager, and the accuracy and semantic
content of this kind of rules will be very poor. What we could prefer are rules like “If Cat=Manager then
Sal=High”, whereHigh is a linguistic label that can be represented by a fuzzy set on the domain of the
salary. To discover and to assess this kind of rules requires the development of specific tools.
The objective of our work is to provide a definition offuzzy approximate dependencies(FAD for

short), an extension of the concept ofapproximate dependenciesto the fuzzy case. Roughly speaking,
approximatedependencies (AD for short) are functional dependencieswith exceptions.AD’s canbeuseful
to represent relations between attributes for several purposes, as we shall see later. Our approach is based
on previous results on association rule assessment and existing definitions of crispAD’s[23,10]and fuzzy
association rules[26]. The definition generalizes several existing relaxations, by means of fuzzy sets, of
the concept of functional dependencies. In addition, we shall provide amethodology to obtain algorithms
to discover FADs by adapting existing algorithms to discover association rules. A valuable feature of
the methodology is that it does not increase time and space complexity, though both are multiplied by a
constant.
The paper is organized as follows. Section2 introduces related work, in particular some concepts we

employ in the definition of FADs. Section3 is devoted to our definition of FAD and applications. We
describe how to adapt association rulemining algorithms to the task of finding FADs in Section4, together
with algorithms. In Section5, a real problem where fuzzy approximate dependencies could be suitable
is faced and discussed. Finally, Section6 contains some concluding remarks and future tasks.

2. Related works

A very common issue in database analysis is the study of existing relations between data stored in a
database. Mainly, we can distinguish two basic types of relations. On the one hand, there can be implicit
or hidden relations between attribute values, not clear at a first moment. These can be obtained by means
of a database analysis. One of the most known examples of this are association rules, defined in[2].
Association rules are “implications” that relate the presence of itemsets (set of items) in a given set of
transactions (a T-set). A classical example consider that items are things we can buy in a market, and
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transactions are market baskets containing several items. These rules take the form of, for example, “80%
of people that buy milk, also buy flour”.
On the other hand, we can find explicit relations between data, where implications between attributes

can be easily detected (i.e., we can affirm that a job class determines a salary class, or that a given postal
code determines the city). This kind of relations are usually integrity constraints or restrictions, imposed
during the design phase of a database, according to themodel of a real problem. In these cases, we can say
that there exists a functional dependency between attributes. Formally, letR = {At1, . . . , Atm} be a set
of attributes and letr be a table with attributes inRsuch that|r| = n. Also, letX, Y ⊂ R withX∩Y = ∅,
and letdom(X) = {x1, . . . , xK} anddom(Y ) = {y1, . . . , yM} be the values ofX andYappearing inr. A
functional dependencyX → Y holds inR if and only if for every instancer of R

∀t, s ∈ r if t[X] = s[X] thent[Y ] = s[Y ]. (1)

Mining for functional dependencies in relational databases have been an object of interest in the field
of data mining, because they are very informative about the structure of data. However, it is difficult
to discover perfect functional dependencies in a database because one single exception to rule1 turns
the dependency not to hold. But indeed, if the number of exceptions is not very high, such “functional
dependencies with exceptions” are showing us interesting regularities that hold in data. Moreover, usual
problems such as the presence of noisy data can hide functional dependencies by introducing false
exceptions. The proposed solution to these problems is the relaxation of the rule that defines a dependency,
in order to accept some exceptions.

2.1. Extensions to the classical model of functional dependencies

We can distinguish two main approaches for extending the concept of functional dependencies, fuzzy
functional dependencies and approximate dependencies (also known as partial determinations). The
former typically introduces somedegree of imprecision in the definition by changing either the granularity
level of the attribute domains to a higher level, or the equality into a fuzzy resemblance relation, or the
quantifier and implication into fuzzy ones, or several at a time. See[11] for a review, and[16,17,19]for
further approaches.Another interesting issue is the search for functional dependencies in fuzzy relational
databases (as seen in[60]). The latter will be discussed in the next section.

2.2. Approximate dependencies

Approximate dependencies[13,37,46]can be roughly defined as functional dependencies with excep-
tions. The definition of approximate dependencies is then a matter of how to define exceptions, and how
to measure the accuracy (that is; the proportion of tuples in a relation where the dependency holds) of the
dependency (see[11]).We shall follow the approach introduced in[10,23,47], where we applied the same
methodology employed in mining for association rules to the discovery of approximate dependencies.
The idea is that it is interesting to measure not only the accuracy of the dependency (as other existing
approaches do[32,37,46]) but also its support (that is, the proportion of tuples in a relation where the
dependency appears), in order to see the empirical evidence associated to the dependency in data. This
way, we can avoid to obtain trivial dependencies.
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To assess the dependencies, we apply the samemeasures of interest and accuracy introduced in[1], that
is support (the joint probabilityp(X∪Y ), notedS(X → Y )) and confidence (the conditional probability
p(Y |X), notedConf (X → Y )).
Some authors have shown that confidence can yield misleading results in some cases. Basically, the

problem with confidence is that it does not take into account the support ofY, hence it is unable to detect
statistical independence or negative dependence, i.e., a high value of confidence can be obtained in those
cases. This problem is specially important when there are some items with very high support. In the worst
case, given an itemsetYsuch thatS(Y ) = 1, every rule of the formX ⇒ Y will be strong provided that
S(X) > minsupp. It has been shown that in practice, a large amount of rules with high confidence are
misleading because of the aforementioned problems.
A summary of papers discussing this problem and the alternative measures proposed is in[7]. There,

confidence is used in order to compute an accuracy measure based on certainty factors (see[54] for the
definition, and[6,7] for the explanation). Formally, we obtain the certainty factor of a rule as follows,

CF(X ⇒ Y ) =




(Conf (X⇒Y ))−S(Y )
1−S(Y ) if Conf (X ⇒ Y ) > S(Y ),

(Conf (X⇒Y ))−S(Y )
S(Y )

if Conf (X ⇒ Y ) < S(Y ),

0 otherwise.

(2)

Certainty factors take values in[−1,1], indicating the extent to which our belief that the consequent is
true varies when the antecedent is also true. It ranges from 1, meaning maximum increment (i.e., when
X is true thenY is true) to−1, meaning maximum decrement.
Notice that the two possible extreme cases occur whenS(Y ) = 0 orS(Y ) = 1. Both cases result onto

trivial rules, since no new information can be obtained from them. So, it seems reasonable to give these
rules a value of CF = 0.
Returning to our definition ofAD, the idea is that, since a functional dependency “X → Y ” can be seen

as a rule that relates the equality of attribute values in pairs of tuples (see Eq. (1)), and association rules
relate the presence of items in transactions, we can represent approximate dependencies as association
rules by using the following interpretations of the concepts of item and transaction:
• An item is an object associated to an attribute ofR. For every attributeAtk ∈ R we noteitAtk the
associated item.

• We introduce an itemsetIX to be

IX = {itAtk | Atk ∈ X}.
• Tr is a T-set that, for each pair of tuples〈t, s〉 ∈ r × r contains a transactionts ∈ Tr verifying

itAtk ∈ ts ⇔ t[Atk] = s[Atk].
It is obvious that|Tr | = |r × r| = n2.
For example, let us consider the relationr shown in Table1. By means of our definition, the resulting

T-setTr would be the one shown in Table2.
Then, an approximate dependencyX → Y in the relationr is an association ruleIX ⇒ IY in Tr

(see[10,23]). The support and certainty factor ofIX ⇒ IY measure the interest and accuracy of the
dependencyX → Y . In particular, the following property holds:
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Table 1
A relation,r

A B C

t1 a1 b1 c1
t2 a2 b1 c2
t3 a1 b1 c3
t4 a3 b2 c3

Table 2
T-setTr obtained fromr

itA itB itC
t1t1 1 1 1
t1t2 0 1 0
t1t3 1 1 0
t1t4 0 0 0
t2t1 0 1 0
t2t2 1 1 1
t2t3 0 1 0
t2t4 0 0 0
t3t1 1 1 0
t3t2 0 1 0
t3t3 1 1 1
t3t4 0 0 1
t4t1 0 0 0
t4t2 0 0 0
t4t3 0 0 1
t4t4 1 1 1

Proposition 2.1(Blanco et al.[10] ). If CF(X → Y ) = 1 (it also implies thatConf (X → Y ) = 1)
thenX → Y is a functional dependency.

The support and accuracy of an approximate dependencyX → Y can be interpreted as an aggregation
of the support and accuracy of the association rules that relate values ofX to values ofY. Therefore,
approximate dependencies can be seen as a summary of the information provided by those associations.

2.3. Fuzzy association rules

Several authors have proposed fuzzy association rules as a generalization of association rules when
data is fuzzy or has been previously fuzzyfied ([5,26,31,38,39]). Though most of these approaches have
been introduced in the setting of relational databases, we think that most of the measures and algorithms
proposed can be employed in a more general framework. A somewhat complete review, including refer-
ences to papers on extensions to the case of quantitative attributes and hierarchies of items, can be found
in [27].
Additional approaches to this problem can be found in[12,14,15,20,30,33,36,40,61]. In [28], several

fuzzy data mining measures are discussed. Ref.[62] also relates fuzzy functional dependencies with
clustering problems in data bases by means of fuzzy association rules, although this approach is different
from ours.



110 F. Berzal et al. / Fuzzy Sets and Systems 149 (2005) 105 – 129

In this paper we shall employ the model proposed in[26]. This model considers a general framework
where data is in the form of fuzzy transactions, i.e., fuzzy subsets of items. A (crisp) set of fuzzy
transactions is called an FT-set, and fuzzy association rules are defined as those rules extracted from an
FT-set.
Let I = {i1, . . . , im} be a set of items andTbe a set of fuzzy transactions, where each fuzzy transaction

is a fuzzy subset ofI. Let �̃ ∈ T be a fuzzy transaction, we note�̃(ik) the membership degree ofik in �̃. A
fuzzy association rule is an implication of the formA ⇒ C such thatA,C ⊂ R andA ∩ C = ∅. A and
C are called antecedent and consequent, respectively.
It is immediate that the set of transactions where a given item appears is a fuzzy set. We call it

representationof the item. For itemik in Twe have the following fuzzy subset ofT:

�̃ik =
∑
�̃∈T

�̃(ik)/�̃. (3)

This representation can be extended to itemsets as follows: letI0 ∈ R be an itemset, its representation is
the following subset ofT:

�̃I0 =
⋂
i∈I0

�̃i = min
i∈I0

�̃i . (4)

In order to measure the interest and accuracy of a fuzzy association rule, we must use approximate
reasoning tools, because of the imprecision that affects fuzzy transactions and, consequently, the repre-
sentation of itemsets. A semantic approach based on the evaluation of quantified sentences (see[64]) is
proposed in[26]. LetQbe a fuzzy coherent quantifier. As defined in[18],Q is a fuzzy coherent quantifier
when it verifies the following properties,
• Q(0) = 0 andQ(1) = 1
• Monotonicity: If x < y,Q(x)�Q(y).

Definition 2.1. (Delgado et al.[26]) The support of an itemset is equal to the result of evaluating the
quantified sentenceQ of T are�̃I0.

Definition 2.2. (Delgado et al.[26]) The support of the fuzzy association ruleA ⇒ C in the FT-setT,
Supp(A ⇒ C), is the evaluation of the quantified sentenceQ of T are�̃A∪C = Q of T are (̃�A ∩ �̃C).

Definition 2.3. (Delgado et al.[26]) The confidence of the fuzzy association ruleA ⇒ C in the FT-set
T, Supp(A ⇒ C), is the evaluation of the quantified sentenceQ of �̃A are�̃C .

The sentences can be evaluated for instance by means of methodGD, defined in[22] as

GDQ(G/F) =
∑

�i∈�(G/F)
(�i − �i+1)Q

( |(G ∩ F)�i |
|F�i |

)
, (5)

where�(G/F) = ∧(G∩F)∪ ∧(F ),∧(F ) being the set of levels inF, and�(G/F) = {�1, ..., �p}with
�i > �i+1 for everyi ∈ {1, ..., p}. The setF is assumed to be normalized. If not,F is normalized and the
normalization factor is applied toG ∩ F (see Algorithm2).
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We choose the quantifierQM , defined byQM(x) = x, since it verifies the conditions we request for a
quantifier (that is, to be a coherent quantifier) and it has a valuable property: the values obtained by using
it in definitions2.1, 2.2and2.3in the case of crisp transactions, are the ordinary measures of support and
confidence in the crisp case. This way, the proposedmethod is a generalization of the ordinary association
rule assessment framework in the crisp case. However, we shall see in Section3.5that it can be useful to
consider other quantifiers when assessing FADs in order to generalize existing approaches.
Fuzzy relational databases could be seen as a particular case of FT-set. For example, letR =

{At1, . . . , Atm} be a set of attributes, and letLab(Atk) = {ak1, . . . , akn} be a set of linguistic labels
defined ondom(Atk) ∀Atk ∈ R. Let r be a relation with attributes inR. Then, a fuzzy transaction could
be obtained from eacht ∈ R as the following fuzzy set:

�̃t =
∑

k∈{1,...,m}
aki (t[Atk])/aki ,

whereeach item is apair(Atk, aki ) representing ‘Atk isaki ’. In the following, and for the sakeof simplicity,
we have reduced to the particular case of considering only one label at a time. As a future task, we will
study the general case of fuzzy partitions over the attribute domain, that is, a fuzzy value as intersection
of several adjacent labels.

3. A new definition: fuzzy approximate dependencies

As discussed in Section2.1, it is possible to extend the concept of functional dependencies in several
ways by smoothing some of the elements of the rule in Eq. (1).
As far as we know, the proposed methodology in this paper is relatively new and original, as we could

not find any analogous work in the existing bibliography. Anyway, some approaches can be found that
must be mentioned. Fuzzifying the definition of approximate dependencies proposed by[32], based on
partitioning the set of tuples in a relation, we must mention the works discussed in[58–60].

3.1. Wang et al. approach

Wang et al. introduce a new data mining technique for extracting approximate dependencies in fuzzy
databases inwhich a set of resemblance relations is defined. In followingworks, this relations are extended
to similarity relations.
According to[53], databases based on resemblance or similarity relations are specially suitable for

describing and managing categorical information over discrete domains. Opposing to that, fuzzy set-
based models are more appropriate for applying over numeric domains (Table3).
The definition proposed by the authors is the following. An approximate dependency over a relational

schemeRcan be expressed asX → A, whereX ⊆ R andA ∈ R. Informally, an approximate dependency
X → A holds if all tuples that agree onX approximately also agree onA approximately.
Formally, the dependency holds or is valid in a given fuzzy relationr overR if for all pair of tuplesti

andtl ∈ r we have:
If [ti]�jDj = [tl]�jDj for all Dj ∈ X, then[ti]�jA = [tl]�jA , (6)
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Table 3
Fuzzy database relation
Emp# Job Exp. Salary
1 Salesman 3 37K
2 Design engineer 10 40K
3 System engineer 5 45K
4 Software engineer 5 45K
5 Accountant 12 47K
6 Accountant 5 50K
7 Secretary 10 53K
8 Secretary 15 55K

where[ti]�jDj represents the equivalence class of tupleti with respect to an attributeDj with level value
�j . The notation is explained as follows.
Two tuplesti andtl are equivalent with respect to an attributeDj for a given level value�j if tij and

tlj belong to the same equivalence class ofDj . The equivalence classes ofDj are determined by the
level value�j and defined by the similarity relation. In general, an attributeDj partitions the tuples of a
relation into a set of equivalence classes. The authors denote the equivalence class of a tupleti ∈ r with
respect to an attributeDj with level value�j by [ti]�jDj , i.e.,

[ti]�jDj = {tl ∈ r|tlj ≈�j tij }. (7)

The set�
�j
Dj

= {[ti]�jDj |ti ∈ r} of equivalence classes is a partition ofr underDj with level value�j .

That is,�
�j
Dj
is a collection of disjoint sets (equivalence classes) of tuples, such that each set has values

belonging to an equivalence class inDj , and the union of the sets equals the relationr. The rank|�| of a
partition is the number of equivalence classes in� (Table4).
Authors start from the concept of partition refinement to obtain approximate dependencies. A partition

� is a refinement of another partition�′ if every equivalence class in� is a subset of some equivalence
class of�′. According to[32], an approximate dependencyX → A holds if and only if�X refines�{A}.
There is an even simpler test for determining the approximate dependencyX → A. If �X refines�{A},

then addingA to X does not increase any equivalence classes of�X, thus�X∪{A} = �X. Consequently,
we can find in[32] that an approximate dependencyX → A holds if and only if|�X| = |�X∪{A}|.
The main improvement introduced by Wang et al. works is the application of resemblance and sim-

ilarity relations when working on fuzzy relational databases, following the proposed idea in[32], and
implementing an extended version of the algorithm proposed in the cited work.
Against that, themain disadvantage found in these works is that of there is no definition of anymeasure

of the interest or certainty of the obtained results.

3.2. Our definition

Wewant to consider as much cases as we can, integrating both approximate dependencies (exceptions)
and fuzzy dependencies. For that purpose, in addition to allowing exceptions, we have considered the
relaxation of several elements of the definition of functional dependencies, that allows us to take into
account several of the approaches described in[11]. In particular we consider membership degrees
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Table 4
Similarity relations over attribute domains in Table3
Job Sw.eng Acct Sys.eng Sales Dn.eng

Secr 0.6 0.7 0.6 0.5 0.6
Sw.eng 0.6 0.8 0.5 0.8
Acct 0.6 0.5 0.6
Sys.eng 0.5 0.8
Sales 0.5

Exp. 5 10 12 15

3 0.9 0.7 0.7 0.5
5 0.7 0.7 0.5
10 0.9 0.7
12 0.7

Sal. 40 45 47 50 53 55

37 0.9 0.7 0.7 0.5 0.5 0.5
40 0.7 0.7 0.5 0.5 0.5
45 0.9 0.5 0.5 0.5
47 0.5 0.5 0.5
50 0.9 0.9
53 0.9

Table 5
Fuzzy relationr

A B C

t̃1 a1,0.46 b1,0.76 c1,0.53
t̃2 a1,0.73 b2,0.06 c1,0.31
t̃3 a1,0.4 b2,0.28 c1,0.66
t̃4 a2,0.41 b1,0.49 c1,0.34

associated to pairs (attribute, value) as in the case of fuzzy association rules, and also fuzzy similarity
relations to smooth the equality of the rule in Eq. (1).
Formally, letR = {At1, . . . , Atm} be a relational scheme, andr a fuzzy relation overR in the following

terms: the intersection between an attributeAtk and a fuzzy tuplẽt is a pair〈t̃ (Atk), �t̃ (Atk)〉, beingt̃ (Atk)
the value ofAtk en t̃ , and�t̃ (Atk) the related membership degree. Table5 shows an example of a fuzzy
relation,r, defined over a relational schemeR = {A,B,C}.
We considerSAti a fuzzy similarity relation overdom(Ati). Let SR = {SAtk |Atk ∈ R}. To be more

precise, relations inSR are assumed to be max–min transitive, i.e.

SAtk (xi, xj )�
n∨
l=1

min(SAtk (xi, xl), SAtk (xl, xj )),∀xi, xj ∈ dom(Atk). (8)

We shall define fuzzy approximate dependencies in a relation as fuzzy association rules on a special FT-
set obtained from that relation, in the same way that approximate dependencies are defined as association
rules on a special T-set.
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Let IR = {itAtk |Atk ∈ R} be the set of items associated to the set of attributesR. We define a FT-setT ′
r

associated to tabler with attributes inRas follows: for each pair of rows〈t̃ , s̃〉 in r × r we have a fuzzy
transactioñts in T ′

r defined as

t̃ s(itAtk ) = min(�t̃ (Atk), �s̃ (Atk), SAtk (t̃(Atk), s̃(Atk))) ∀itAtk ∈ T ′
r (9)

This way, the membership degree of a certain itemitAtk in the transaction associated to tuplest̃ and s̃
takes into account the membership degree of the value ofAtk in each tuple and the similarity between
these values. This value represents the degree to which tuplest̃ ands̃ agree inAtk, i.e., the kind of items
that are related by the rule in Eq. (1). On this basis, we define fuzzy approximate dependencies as follows:

Definition 3.1. Let X, Y ⊆ R with X ∩ Y = ∅ andX, Y �= ∅. The fuzzy approximate dependency
X → Y in r is defined as the fuzzy association ruleIX ⇒ IY in T ′

r .

The support and certainty factor ofIX ⇒ IY are calculated fromT ′
r as explained in Section2.3, and

they are employed to measure the interest and accuracy ofX → Y .

Definition 3.2. The support of the fuzzy approximate dependencyX → Y ( IX ⇒ IY in T ′
r ),Supp(X →

Y ), equals to the evaluation of the quantified sentenceQ of T ′
r are�̃IX∪IY = Q of T ′

r are (̃�IX ∩ �̃IY ).

Definition 3.3. The confidence of the fuzzy approximate dependencyX → Y ( IX ⇒ IY in T ′
r ),

Conf (X → Y ), corresponds to the result of evaluating the quantified sentenceQ of �̃IX are�̃IY .

Finally, computing the certainty factor is very simple and, as seen before in the case of fuzzy association
rules, we can still compute it in the same way we did for the crisp case, applying Eq. (2).
From Eq. (9) it is obvious thatn′ = |T ′

r | = n2 beingn = |r|. However, we shall see later that it is
possible to calculate the support of an itemsetIX in time O(n) with respect to the number of tuples.
Following [26], the FADX → Y holds with total accuracy (certainty factorCF(X → Y ) = 1) in

a relationr iff t̃ s(IX)� t̃ s(IY ) ∀t̃ s ∈ T ′
r (let us remember that̃ts(IX) = minAtk∈X t̃s(itAtk ) ∀X ⊆ R).

Moreover, since fuzzy association rules generalize crisp association rules, FADs generalize ADs.

3.3. Examples

The following subsection is devoted to show an example to see how our definition works in practice.
Table5 shows a toy fuzzy relationr with attributes inR = {A,B,C}. Each cell contains both a value
and the corresponding membership degree. For every attribute, a fuzzy similarity relation is defined for
all possible values. These relations are showed in Table6. Finally, Table7A shows the obtained FT-set
T ′
r . OnT

′
r , it is possible to apply a fuzzy association rule extraction algorithm.

According to our definition, FARs inT ′
r are FADs inr. Table7B lists some fuzzy approximate de-

pendencies that can be obtained fromr, with their respective support (expressed in %) and certainty
factor.
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Table 6
Fuzzy similarity relations forA, B, andC

a2 0.3
a3 0.30.5

a1 a2

b2 0.8
b3 0.50.5

b1 b2

c2 0.4
c3 0 0

c1 c2

Table 7
(A) The FT-setT ′

r obtained fromr (B) FADs in r (fuzzy association rules inT ′
r )

itA itB itC

t̃1t1 0.46 0.76 0.53
t̃1t2 0.46 0.06 0.31
t̃1t3 0.4 0.28 0.53
t̃1t4 0.3 0.49 0.34
t̃2t1 0.46 0.06 0.31
t̃2t2 0.73 0.06 0.31
t̃2t3 0.4 0.06 0.31
t̃2t4 0.3 0.06 0.31
t̃3t1 0.4 0.28 0.53
t̃3t2 0.4 0.06 0.31
t̃3t3 0.4 0.28 0.66
t̃3t4 0.3 0.28 0.34
t̃4t1 0.3 0.49 0.34
t̃4t2 0.3 0.06 0.31
t̃4t3 0.3 0.28 0.34
t̃4t4 0.41 0.49 0.34

A

[B] → [A], supp 20.56%, conf 48.35%, CF 0.35
[A] → [B], supp 20.56%, conf 30.86%, CF 0.13
[C] → [A], supp 33.44%, conf 60.29%, CF 0.40
[A] → [C], supp 33.44%, conf 49.79%, CF 0.24
[C] → [B], supp 21.0%, conf 37.82%, CF 0.21
[B] → [C], supp 21.0%, conf 53.62%, CF 0.41
[B,C] → [A], supp 20.12%, conf 84.61%, CF 0.81
[C] → [A,B], supp 20.12%, conf 34.34%, CF 0.18
[B] → [A,C], supp 20.12%, conf 46.05%, CF 0.32
[A,C] → [B], supp 20.12%, conf 60.38%, CF 0.50
[A] → [B,C], supp 20.12%, conf 29.76%, CF 0.12
[A,B] → [C], supp 20.12%, conf 92.39%, CF 0.90

B

3.4. Comparison with Wang et al. approach

As an additional example, let us take the same set of objects described in[59]. Table3 shows us a
fuzzy relation in which the job category, experience and salary of eight employees are represented. The
defined similarity relations over attributes domains are shown in Table4. Finally, in order to maintain the
same notation used in our definition, let us suppose a membership degree of one for every pair (attribute,
value) in the relation.
Applying our proposed methodology over the set of objects shown in Table3, and taking into consid-

eration the existing similarity relation between attributes values (Table4), we obtained the set of fuzzy
approximate dependencies that can be found in Table8.
We shall use this example to show a first difference between our methodology and the one proposed in

[59]. In this work, as nomeasure is defined to inform us about the goodness of the obtained dependencies,
the example just concludes that the dependency[Job,Exp] → [Sal] holds for this particular set of
employees. In this sense, we believe that our methodology brings more richness to the obtained results.
In Table8, we must remark that not only the dependency[Job,Exp] → [Sal] is obtained, looking at its
certainty factor of 0.82. Moreover, another approximate dependency to be considered is found (Table7).
[Job, Sal] → [Exp] has a certainty factor CF = 0.86. In particular, by means of our methodology it is
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Table 8
Fuzzy approximate dependencies obtained from Table3

[Exp] → [Job], supp 64.69%, conf 74.07%, CF 0.26
[Job] → [Exp], supp 64.69%, conf 86.92%, CF 0.63
[Sal] → [Job], supp 61.87%, conf 81.53%, CF 0.51
[Job] → [Sal], supp 61.87%, conf 84.56%, CF 0.59
[Sal] → [Exp], supp 64.69%, conf 87.91%, CF 0.66
[Exp] → [Sal], supp 64.69%, conf 75.37%, CF 0.30
[Exp, Sal] → [Job], supp 60.62%, conf 89.12%, CF 0.72
[Sal] → [Job,Exp], supp 60.62%, conf 78.53%, CF 0.45
[Exp] → [Job, Sal], supp 60.62%, conf 69.42%, CF 0.22
[Job, Sal] → [Exp], supp 60.62%, conf 94.56%, CF 0.86
[Job] → [Exp, Sal], supp 60.62%, conf 80.61%, CF 0.51
[Job,Exp] → [Sal], supp 60.62%, conf 92.95%, CF 0.82

possible to extract all existing fuzzy approximate dependencies for this example. This set of dependencies
can be later ordered and reduced, according to the user’s necessities, and to the certainty factor.

3.5. Some particular cases

There are several possible scenarios where the concept of FAD can be useful. In each case, specific
instantiations of the concept are possible depending on the similarity relations we employ, the presence
or not of fuzzy degrees, and even the quantifier employed to calculate the support and confidence (and
hence the certainty factor) of the FAD. Some examples are:
• Let us suppose we are interested in looking for ordinary functional dependencies. In this case, letSAtk
be the ordinary equality∀Atk ∈ R, and letr be a crisp relation. In addition, let us employ in expression
2.3 (confidence) the fuzzy quantifier∀ defined as∀(x) = 1 iff x = 1 and 0 otherwise. Then we will
be looking for ordinary functional dependencies, and the certainty factor ofX → Y will be 1 iff the
functional dependencyX → Y holds inr, and 0 otherwise.

• Let r be a crisp relation, letSAtk be the ordinary equality∀Atk ∈ R and let us employQM in expression
2.3(confidence). Then we will be looking for ADs as introduced in[23,10].

• Let us suppose that the cardinality ofdom(Atk) is very high compared to the number of tuples inr (a
typical case isdom(Atk) ⊆ R such as the attributeSal(salary) in the example in the introduction). One
usual way to analyze relations betweenAtk and other attributes is to employ a set of linguistic labels
Lab(Atk) to replace the domain, or to diminish the granularity of the description ofAtk in general
(again, consider the example in the introduction whereLab(Sal) = {High,Medium, . . .}). In this
point, we must remark that our intention is not to define a fuzzy partition (i.e., a Ruspini partition)
sensu strictu, but to establish a set of linguistic labels (according to experts’ aid) in order to decrease
granularity in data as well as to increase data semantics. Usually, in order to look for dependencies
involving Atk, similarity relations can be provided by domain experts in a coherent way with the
following resemblance relation

RAtk (L1, L2) = max
x∈dom(Atk)

min{L1(x), L2(x)} (10)

A similarity relation can be obtained by computing the convex hull ofRAtk (see Section4 for details)
if necessary. This is similar to perform a fuzzy clustering ondom(Atk) and then to relate the obtained
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clusterswith values of other attributes.Thisway,we canobtain FADs involvingAtk thatwill summarize
the information given by all the fuzzy association rules that relate clusters in the domain ofAtk to values
(or clusters) of other attributes.

• Similarity relations can be useful when the domain of an attribute takes values whose semantics
overlaps. For example, consider the attributeHair color and suppose we find in the database values
such as blonde, yellow, light, red, orange, etc. (a possible cause is that different users have introduced
data in the database without agreeing a set of values for the attribute). If we want to relate hair color to
other attributes, we could be interested in taking into account that “blonde” and “yellow” are similar to
some extent, among other similarities. This can be accomplished by using a suitable similarity relation
in the domain of the attribute. This way, dependencies involving this attribute should reflect better the
possible relations involving hair color.
The aforementioned examples consider we are working with crisp data, that is the most usual case.

In the case of fuzzy databases containing fuzzy data (fuzzy degrees and similarity relations), the utility
(and even necessity) of a definition of FAD is more clear. Some other possibilities are described in
[22,26].
Regarding the final application and utility of FADs, they can provide information about relations

(smoothed functional dependencies in general) between attributes in the database. This kind of relations
can be seen as the result of an exploratory analysis, and they provide very useful information since when
an FADX → Y holds with high accuracy we know that there is a set of association rules relating values
ofXandY that hold with high accuracy, i.e., we obtain a summary of the accuracy and support of relations
betweenXandY. Therefore, the process of finding interesting links between attributes in a database could
start by looking for FADs and after that looking for association rules, either to obtain a description of a
FAD that hold, or to look for possible local associations between values of attributes if the FAD does not
hold. This methodology has been employed (using crispADs) by experts in the analysis of real databases
containing information about soils in[48].
A specific application for FADs is the analysis of correspondences between different fuzzy partitions

of the same set of objects. In[48] we have described this application in the case of crisp partitions using
ADs to analyze correspondences, and some results in real databases containing data about soils in an
agricultural environment have been provided. The extension to the case of FADs and the analysis of
existing fuzzy databases will be dealt with in the future.

4. Algorithms

If we want FAD to be a useful concept in practice, we must provide efficient algorithms able to obtain
them from real databases. This is not an easy task since we are dealing with a set of transactions of size
n2 with n being the number of tuples in the relation. Sincen is usually large in real databases,n2 can
be a too large number, so trying to compute the FT-setT ′

r from r and then to search in this set of fuzzy
transactions is too expensive. In addition, we must deal with fuzzy degrees, fuzzy similarity relations and
computation of quantified sentences, that increase the complexity of the task.
In the field of data mining and knowledge discovery, several algorithms to discover association rules

have been presented.We follow the steps of the early algorithmApriori, introduced in[2], for the sake of
simplicity, though the modifications we propose can be applied to more recent and efficient algorithms.
Since we extract fuzzy approximate dependencies in terms of association rules, this algorithm remains
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the same as the one in[10], with the added complexity of managing fuzzy transactions. In order to achieve
this, we must perform similar changes to those in[26].
Usually, an algorithm for association rule extraction comprises two phases. The first one computes

the set of frequent itemsets, that is, interesting itemsets with a support greater than a certain threshold,
calledminsupp. The process runs iteratively, computing all the 1-itemsets (itemsets containing 1 item),
2-itemsets, and so on. Each iteration requires a pass over the set of transactions, and because of this, this
phase is the most expensive in time.
After all interesting itemsets are extracted, the analysis of them reveals all the association rules with

accuracy greater than a certain threshold, calledminconf(mincf in our case). This step usually remains
the same in all extraction algorithms and will not be discussed in this paper.
In this section we provide a methodology to adapt existing algorithms to discover association rules,

specifically the first step, to the task of discovering FADs. The methodology concerns how to calculate
efficiently the support of attributes (our items) by taking into account fuzzy values and similarity relations.
A summary of themain aspects of thismethodology are the following (we shall describe algorithms later):
• Let us consider first a crisp case. In order to calculate the support of an attribute X (itemsetIX) in T ′

r ,
we store the support inr of each valuex ∈ dom(X), that can be obtained inO (n). This is the usual
information stored by any algorithm looking for association rules inr (items are pairs (attribute,value)
in that case, while items are attributes when looking for ADs). From these values, and assuming we
employ equality asSX, the support ofIX in T ′

r can be obtained easily as

S(IX) = 1

n2

∑
x∈dom(X)

x2. (11)

Specifically, once the support for each value ofX is obtained, we only must obtain the addition of the
square of those values to obtain the support ofIX. We shall discuss the case of fuzzy similarity relations
later. Let us remark that, since in the worst caseK = n, the whole process takes up toO (n).
In the crisp case, it is even possible to obtain the support of everyx and the support ofIX at exactly

the same time by using the following result and algorithm1:

Proposition 4.1(Blanco et al.[10] ). The support of a crisp itemsetIX is

S(IX) = 1

n2

K∑
i=1

nxi∑
p=1

(2p − 1). (12)

• If fuzzy degrees are associated with values ofX in tuples, we employ a fixed set of equidistributed
�-cuts for eachx ∈ dom(X). This depends on the precision level we require (a constant), but we chose
to employk = 100�-cuts, that we consider to be sufficient. To do that, we must round or truncate the
fuzzy degrees. During the scanning of the tuples inr, what we store is the number of times that a given
valuexappears with a certain degree.We use a vector we nameN(X, x) for that purpose. Calculating
N(X, x) takes timeO (n). FromN(X, x) it is possible to obtain a similar vector forIX as seen before,
we nameVX. Each position in this vector stores the number of transactions inT ′

r whereIX appears
with a given degree.
The support of eachx andIX can be obtained (as the evaluation of the corresponding quantified

sentences) from those vectors in timeO (1) by using algorithm2. Again, the final time complexity is
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O (n). The required storage (a long integer for eachx ∈ dom(X) in any association rule discovery
algorithm) is multiplied by a constant (the number ofalpha-cuts considered).

• Finally, we introduce similarity relations.Alpha-cuts of fuzzy similarity relations (max–min transitive)
provide crisp equivalence relations indom(X). This information can be taken into account during the
calculation ofVX from the set of vectorsN(X, x) with x ∈ dom(X). The idea is that the vectors
N(X, x) of those valuesx ∈ dom(X) that are equal at a certain level accordingSX are added to form
a single vector at that level. That means that if two valuesx1, x2 ∈ dom(X) are similar with degree
� (i.e. SX(x1, x2) = �) then for those levels��� we treat them as the same value. This way, Eq.
(11) is applied at each level on the equivalence classes induced bySX at that level. This information
can be incorporated to the process of calculatingVX, from which the supportIX is obtained, without
increasing time complexity, see algorithm5. In fact, it can be calculated before the mining process
start, see algorithm4.
Fuzzy similarity relations impose a strong restriction as it is the max–min transitivity, that cannot

be accomplished by all fuzzy relations defined over a certain domain. Nevertheless, in order to grant
this requirement, it is possible to compute the transitive closure of a resemblance relation, in order
to obtain the fuzzy similarity relation that we need. In[8], three possible algorithms to obtain the
transitive closure of the symmetric matrix of a given fuzzy relation are discussed:

◦ By means of the iterative composition (∨,∧), as is described in works like[63] and[56].
◦ A column-row exploration algorithm, as the one that can be found in[35].
◦ The Prim minimum expansion tree procedure, described in[29].
According to the followed representation for our similarity relations, the algorithm proposed in[35]

seems to be the simplest to take into practice. Algorithm3 describes the procedure.
• As it was initially expressed, a cell in our fuzzy relation has the following structure,〈t̃ (Atk), �t̃ (Atk)〉,
showing that the degree in which attributeAtk takes valuẽt(Atk) is �t̃ (Atk). But an usual case in real
problemsaffectedby imprecision is that of anattribute takingmore thanone value simultaneously, each
one with a certain degree (for example, attributeHair color could take values (0.8/blond, 0.3/brown)
for the same person).
A first solution to face this problem could be the consideration of every pair(value, degree) as

belonging to distinct attributes (columns), and then apply the data mining algorithm. Nevertheless, it
must be taken into account the restriction of no appearance of a given attribute (even having distinct
values) more than one time (for example, simultaneously in the antecedent and in the consequent) in
the final rules. The basic procedure of rule (or dependencies) generation could be modified in order to
consider this restriction. Nevertheless, the problem appears to bemore complex when fuzzy similarity
relations are considered over linguistic labels, and not only over attribute values. This particular aspect
would be studied in detail as a future task.
Algorithm 6 is the adaptation, following our proposed methodology, of a simple algorithm to find

frequent itemsets to the specific case of finding FADs (in particular, Aprori algorithm[2]). In summary,
the previous modifications do not increase the complexity of any association rule mining algorithm,
though space and time can be increased by a constant that depends mainly on the number of�-cuts
considered.
InAlgorithm6 the function�(z, k)maps the real valuezto the nearest value in the fixed set of levels we

are using for the fuzzy degrees. Itemsets are computed ordered by size. Variablel shows the actual size,
and acts as a counter of the current stage. The setLl stores del-itemsets that are being analyzed and, at
the end, it stores the frequentl-itemsets. The procedureCreateLevel(i, L) generates a set ofi-itemsets
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such that every proper subset withi − 1 items is frequent (i.e., is inLi−1), and the associated counters.
Since every proper subset of a frequent itemset is also a frequent itemset, with this procedure we avoid
analyzing itemsets that do not verify this property, hence saving space and time. This valuable property
holds also in the fuzzy case, since we compute support by means ofGDmethod (see Section2.3). The
following property holds,

Proposition 4.2. Let X be a set of objects(i.e., items), andA,A′ ⊂ X. Then, if A ⊆ A′,GDQ(A/X)�
GDQ(A

′/X).

Proof. Trivial, sinceQ is a coherent quantifier, that is, monotonic and non-decreasing.�

4.1. Efficiency study

For our particular case of searching for fuzzy approximate dependencies,Apriori algorithm (introduced
in [2] for association rules extraction) is used and properly extended. We chose this algorithm because
of its simplicity and because it is one of the most well-known algorithms in this area. Originally, beingn
the number of transactions (or tuples) andm the number of items, a total number of 2m itemsets must be
considered, in the worst case. As we must compute the support of every considered itemset, that is, count
each appearance in the set of transactions, the algorithm total efficiency order can be up toO (n · 2m).
Nevertheless, if the order is only expressed according to the number of tuples, the previous expression
can be reduced toO (n). In the following, it must be noticed that the order is expressed according to the
number of tuples.
In order to extract fuzzy association rules, Apriori algorithm can be extended (as shown in[26]),

multiplying the efficiency order by a constant valuek, corresponding to the number of considered�-cuts
for the storage of fuzzy degrees.
Our definition starts from the one proposed in[10], where in order to obtain approximate dependencies

from a relational table, it is possible to apply the corresponding transformation over the original table,
and extract association rules that can be viewed as approximate dependencies. The main disadvantage
appeared as a number ofn2 transactions (fromn tuples) must be considered. Nevertheless, the paper
shows how it is possible to maintain the algorithm efficiency order ofO (n).
The proposed algorithm (Algorithm6) extends Apriori algorithm in the same terms discussed in the

previous paragraph, adding the�-cuts factor (for the fuzzy degrees consideration). This way, in a normal
case, we can affirm that an acceptable efficiency order for our algorithm could beO (k ·n). As the number
of �-cuts,k, is constant, the algorithm order remains basicallyO (n).
Nevertheless, we must include an additional factor, that of considering fuzzy similarity relations be-

tween attribute values. According to our algorithm, we use these relations when computing the total
support of a set of attributes. This process is achieved by Algorithm5. Beingm the number of attributes,
andn the number of tuples in the relational table, a total number ofm · (n2) possible pairs of related values
must be considered, in the worst case, that is, whenn is the maximum size of every attribute domain.
As we must perform this step in every iteration, the resulting order, for the worst case, can be up to

O (n ·m · (
n
2

)
) (considering also the multiplier factork). This order can be very expensive for databases

large enough.
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As seen before, our algorithm bottle-neck appears in the management of fuzzy similarity relations. In
future works, our efforts will be specially devoted to this aspect, in order to study the convenience and
necessity of this type of relations, and how to improve the relations computation and, in particular, the
efficiency order.

5. Experiments on real data

The following is an example of fuzzy approximate dependencies extraction over real data.As discussed
in the introduction, fuzzy sets can be applied in knowledge discovery tasks in several ways and with
interesting results. In many cases data is inherently imprecise or uncertain. A more usual case is that of
fuzzy data obtained from crisp data in the preprocessing step by aggregation, summarization or change
of granularity level.
An example of both cases is soil data, and more concretely, soil color information. On the one hand,

some similarities can be established between attribute values according to semantic relations. On the
other hand, the definition of sets of linguistic labels over numeric domains can help us in the reduction
of granularity information. Color is a very remarked characteristic of soils. It can be easily determined
with little expert aid, and it lets us to qualitatively estimate the sets of materials conforming soil horizons
and soil-forming processes[9].
Several authors have studied the existing relations between soil color and soil components ([57,51,52]).

In [50], a deeper study of the so called “Mediterranean red soils”, typical of Mediterranean climate, can
be found. Here, statistic tools are applied to suggest and contrast a certain number of hypothesis, relating
some soil components with soil color. Unfortunately, most statistical techniques can not be applied over
data modelled by means of fuzzy sets. Our intention here is to extend these previous studies by means of
fuzzy data mining techniques.

5.1. Bibliographic sources and databases

The studied database consists of information about threemesoenvironments from the South and South-
east of the Iberian Peninsula under Mediterranean climate: Sierra Nevada, Sierra of Gádor and Southeast
(involving part of the provinces of Murcia andAlmería).We used two Ph.D. Thesis and five cartographic
sheets from LUCDEME, scale 1:100000.
Data from Sierra of Gádor was extracted from[42] and consists of 70 soil profiles and 176 horizons.

Altitude fluctuates from 100 to 2200m, and rainfall from 213mm/year (semiarid climate) to 813mm/year
(wet climate), with a mean annual rainfall of 562mm/year. Lower annual mean temperature is 6.4◦C
and higher is 21.0◦C, with a mean of 12.7◦C. Original material of soils are of carbonated type, mainly
limestones and dolomites. Data from Southeast was extracted from LUCDEME soil maps, specifically
from sheets 1041 fromVera, Almería[21], 911 from Cehegin, Murcia[4], 1030 from Tabernas, Almería
[44], 912 from Mula, Murcia[3] and 1031 from Sorbas, Almería[45]. There is a total of 89 soil profiles
and 262 horizons. Altitude fluctuate from 65 to 1120m, and rainfall from 183mm/year (arid climate)
to 359mm/year (semiarid climate), with a mean annual rainfall of 300 mm/year. Lower annual mean
temperature is 13.2◦Cand higher is 19.0◦C,with amean of 17.0◦C.Geological environment and original
materials of soils are extremely different, we can find carbonated, acids and volcanic rocks.
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Data from Sierra Nevada was extracted from[49]. There is a total of 35 soil profiles and 103 hori-
zons. Altitude fluctuates from 1320 to 3020m, and rainfall from 748mm/year (semihumid climate) to
1287mm/year (hyperhumid climate), with a mean annual rainfall of 953mm/year. Lower annual mean
temperature is 0.0◦C and higher is 12.1◦C. Geological environment and original materials of soils are
mainly acids, but it is not strange to find basic rocks.
Soil colors can be quantified by means of several color systems. The most extended of these systems

is the Munsell Color System[41,55]. It is based on three parameters:Hue, ChromaandValue. Hue is
related with the dominant length wave in reflected radiation,Value(or lightness) expresses the proportion
of reflected light, and finally,Chromameans the chromatic intensity or relative purity on color.
Starting from thecorrelationmatrix appeared in[49],weselected thosesoil componentsmorecorrelated

(positive or negatively) withHue, ValueandChroma. The studied components were:Clay percentage,
Sand percentage, andOrganic Carbon percentage. Database values had to be preprocessed before the
analysis. In order to reduce the granularity degree, attributes with numeric domains were discretized,
following the discussed techniques in[34], under supervision of domain experts.A set of linguistic labels
{Low,Medium,High} was defined for every numeric attribute. Later, these labelswere associated to fuzzy
sets. Attributes with categorical domains were fuzzified considering fuzzy similarity relations according
to semantics between values.

5.2. Results and interpretation

In this section, we apply the domain experts aid in order to give an interpretation of the obtained
results. First, as a previous exploratory step, we applied a crisp approximate dependencies (Section2.2)
extraction algorithm.We reduced to the case of one antecedent and one consequent, and fixed aminimum
threshold of 0.7 for CF measure. According to this value and to the experts’ opinion, the “best” obtained
approximate dependencies were the following,

[Dry Hue] → [Wet Hue], supp 17.35%, CF 0.91
[Wet Hue] → [Dry Hue], supp 17.35%, CF 0.88
[Altitude] → [Mean Annual Rainf all], supp 35.51%, CF 0.80
[Mean Annual T emp.] → [Mean Annual Rainf all], supp 31.87%, CF 0.78
[Free iron percentage] → [Mesoenvironment], supp 28.62%, CF 0.76
[Mean Annual Rainf all] → [Altitude], supp 35.51%, CF 0.75
[Mesoenvironment] → [Mean Annual Rainf all], supp 31.16%, CF 0.71

From these dependencies, the first one is trivial, from an expert’s point of view, since it just relates
the two existing moisture states (wet and dry) for theHuecolor parameter. This property, as seen before,
gives us information about the reflected radiation wave length by the soil sample.Hue, opposing to other
properties asValueandChroma, is hardly modifiable by moisture changes. In this way, the relation is
logical forHue, but not forValueof Chroma.
The second dependency shows the narrow relation between three climatic properties. Following the

regional climatic pattern, a higher rainfall corresponds to a higher altitude, and viceversa, as shown by
the results. Another revealed relation is the one between temperature and rainfall. In the geographical
zone studied, the higher the temperature, the lower the rainfall, almost invariably.
Another result reveals a relation between rainfall and mesoenviroment. This is very reasonable, from

the experts’ point of view. Looking at the previous dependencies and knowing the existing altitude
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gradient in Southeast-Sierra of Gádor-Sierra Nevada, a relation like this was expected. Moreover,Free
iron percentageseems to be related to soil evolution, that is, the obtained dependency shows that a general
evolutive relation between mesoenvironments exists.
For all, it must be remarked that, by means of crisp techniques, it is not possible to obtain dependencies

involving color properties (Hue,Chroma,Value) and any other soil attribute, as it was our first objective.
Nevertheless, applying fuzzy approximate dependencies, a higher number of results (up to six times,

maintaining the same CF threshold of 0.7) is obtained. This fact, in particular, means a higher possibility
of discovering potentially useful information in a database.Within the obtained results, we have selected
those dependencies involving soil color properties and other attributes,

[%Organic Carbon] → [Wet V alue], supp 27.6%, CF 0.75
[CEC] → [Wet V alue], supp 26.31%, CF 0.7
[% Clay] → [Dry Chroma], supp 28.9%, CF 0.99
[%Organic Carbon] → [Dry Chroma], supp 31.4%, CF 0.91
[% Calcic Carbonate] → [Dry Chroma], supp 27.12%, CF 0.8
[CEC] → [Dry Chroma], supp 27.11%, CF 0.71
[% Usef ul water] → [Dry Chroma], supp 29.12%, CF 0.97

Organic carbon percentage, Cation exchange capacity (CEC), Clay percentage, Calcic Carbonate
percentage and Useful water in soil conform the most relevant properties group in soil analysis. Because
of this, these obtained dependencies have a very high interest, according to experts’ opinion.
Relations betweenCECandOrganic carbonare well-known in the studied knowledge area. A higher

Organic carbon percentage(humus content in soil), implies a higherValue (lower luminosity, darker
soils). This fact is always present in studied soils, as experts verify. This effect is clearly more remarkable
in wet soils (attributeWet Value) than in dry soils (obtained dependencies involvingDry Valuegave only
CF under 0.54). For this particular case, organic matter shows a higherCEC(about 300 cmol(+)/kg) than
the remaining soil components (i.e., clay has a value of 30 cmol(+)/kg), so a narrow relation appears
between these attributes. For that reason, the fuzzy approximate dependency[CEC] → [Wet V alue] is
easily explainable, although with a lower CF.
In other order of things, the dependency betweenClay percentageandDry Chromais almost perfect. In

every soil in theworld, a higher value forClay percentageimplies a higherChroma, since this is invariably
related to iron oxide fine particle releasing (clay-scale particles), acting as pigments and intensifying soil
color. This effect is even more remarkable on dry soils, since sample humidification reduces reflection.
The meaning of variation ofDry ChromawithOrganic carbonis not so clear, even though they appear to
be very related. A higher quantity of humus generates an intensity loss in soil color, but a local study by
means of association rules between attribute values would be desirable, in order to verify this hypothesis.
Then, experts could confirm the direction of the dependencies involvingDry Chromawith CEC and
Useful water, as both are very dependent ofClay andOrganic carbon percentages. Nevertheless, the
dependencies seems to be reasonable in some measure.
Finally, the fuzzy approximate dependency betweenCalcic carbonate percentageandDry Chroma

seems to be very interesting, according to experts. A priori, it could be argued that a high carbonate
percentage should lead to a low intense and whitish soil color.
For this particular case, asked experts were highly satisfied as knowledge extracted by means of fuzzy

data mining was more suitable to “fusion” or comparison with expert knowledge that crisp. Moreover,
fuzzy data mining was sensitive to low support dependencies, that were discarded in crisp data mining.
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Agricultural information, and in particular, soil data, is inherently affected by imprecision of uncertain
factors and can be modelled very efficiently in fuzzy databases.

6. Concluding remarks and future tasks

Datamining canbenefit from fuzzy set technology, since the latter allows to obtainmore understandable
relations in data. In this paper we have proposed a methodology to obtain what we call fuzzy approxi-
mate dependencies (FAD) from databases. FADs generalize several existing ways to smooth functional
dependencies, and provide information about relations at the attribute level. We have enumerated several
scenarios where the concepts introduced can be useful, both for analyzing crisp and, obviously, fuzzy
data. The proposed methodology can be implemented by modifying existing algorithms to discover as-
sociation rules without increasing the theoretical complexity, though time and space are increased by a
constant related to the number of�-cuts we consider.
We have employed this methodology to adapt A priori in order to discover FADs. Moreover, we have

discussed a real problem where our methodology can be suitable. Our preliminary experiments suggests
that both time and space employed in the mining process are acceptable, though more detailed reports
will be provided as the result of currently ongoing experiments. As a future work we plan to adapt recent
and more efficient algorithms to discover association rules for the purpose of mining FADs.
Additional future tasks will be to study different kinds of fuzzy relations that can be necessary in

order to apply FADs in the analysis of fuzzy databases, in particular when different ways to represent
uncertainty and imprecision are employed in the databasemodel.We also plan to employ FADs to analyze
correspondences between fuzzy partitions of the same set of objects in real databases, as suggested
in [48].
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Appendix Algorithms

Algorithm 1 (Blanco et al.[10]) Algorithm to obtain the support of a crisp itemsetIX
1: S(IV ) ← 0
2: for all i ∈ {1, .., K} do
3: N(V, vi) ← 0
4: end for
5: for all t ∈ r do
6: N(V, t[V ]) ← N(V, t[V ])+ 1
7: S(IV ) ← S(IV )+ 2N(V, t[V ])− 1
8: end for
9: Exit: S(IV )/n2 is the support of the itemsetIV
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Algorithm 2 (Delgado et al.[24]) Algorithm to obtainGDQ(C/A) from VA andVA∪C
1: j ← k;GD ← 0; nf (A)∗ ← k; acumA ← 0; acumA∪D ← 0
{Calculatenf (A)∗ = nf (A)∗ × k}
{This is the normalization factor}

2: while nf (A)∗ > 0 y VA(nf (A)∗) = 0 do
3: nf (A)∗ ← nf (A)∗ − 1
4: end while
5: if nf (A)∗ = 0 then
6: return (“Error”); End
7: end if
8: while j > 0 do
9: acumA∪D ← acumA∪D + VA∪D(j)
10: acumA ← acumA + VA(j)
11: if j�nf (A)∗ then
12: GD ← GD +Q(acumA∪D

acumA
)

13: end if
14: j ← j − 1
15: end while

{Normalization}
16: GD ← GD

nf (A)∗
17: Return(GD); End

Algorithm 3 (Kandal andYelowtiz[35]). Computes the transitive closure in a fuzzy relation matrix
1: Label all possible values in 1, . . . , N
2: Build the resemblances primitive matrix�, where entryij represents the resemblance degree between

i andj values
3: for K = 1 toN do
4: for I = 1 toN do
5: if �(I,K) �= 0 then
6: for J = 1 toN do
7: �(I, J ) = max(�(I, J ),min(�(I,K), �(K, J )))
8: end for
9: end if
10: end for
11: end for

Algorithm 4 Algorithm to obtain the set of equivalence classes for a given fuzzy itemsetIX

Require: IX a fuzzy itemset of attributes,SX a fuzzy similarity relation,degX, an�-cut.
Ensure: Υ , a set of equivalence classes.
1: for all x ∈ dom(X) do
2: x ← {x′|x′ ∈ dom(X) and SX(x, x′)�degX}
3: Υ ← Υ ∪ {x}
4: end for
5: Exit: returnΥ , the set of equivalence classes for itemsetIX at�-cutdegX.
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Algorithm 5 Algorithm to compute the support of a given fuzzy itemsetIX of attributes
1: j ← k
2: while j > 0 do
3: Υ ← ComputeEquivClasses(IX, SX, j) (see Algorithm4)
4: for all x ∈ Υ do
5: acumx ← 0
6: end for
7: for all x ∈ dom(X) do
8: acumx ← acumx +N(X,x)[j ]
9: end for
10: V(IX)[j ] ← V(IX)[j ] + ∑

x∈Υ acum2x
11: j ← j − 1
12: end while
13: ReturnV(IX); End.

Algorithm 6 Algorithm to obtain frequent itemsets fromT ′
r , i.e., first step when looking for FADs

Require: R, a set of attributes (our items);r a fuzzy relation inR; SR, a set of similarity relations for
each attribute inR.

Ensure: F, the set of all frequent fuzzy itemsets.
1: F ← ∅; l ← 1;L1 ← ∅
2: for all attributeAt ∈ R do
3: Allocate memory forV({itAt }), an array ofk + 1 positions initialized to 0
4: L1 ← L1 ∪ {{itAt }}
5: for all a ∈ dom(At) do
6: Allocate memory forN(At,a), an array ofk + 1 positions initialized to 0
7: end for
8: end for
9: while l�m y Ll �= ∅ do
10: for all tuple t̃ ∈ r do
11: for all itemsetIX ∈ Ll do
12: N(X,t̃(x))[�(�t̃ (X), k)] ← N(X,t̃(x))[�(�t̃ (X), k)] + 1
13: end for
14: end for
15: for all itemsetIX ∈ Ll do
16: ComputeV(IX) (see Algorithm5)
17: Free memory of everyN(X,x),∀x ∈ dom(X)
18: ComputeGDQ(�̃IX , T

′
r ) (see Algorithm2)

19: if GDQ(�̃IX , T
′
r ) < minsupp then

20: Ll ← Ll\{IX}
21: Free memory ofV(IX)
22: end if
23: end for
24: F ← F ∪ Ll ; Ll+1 ← CreateLevel(l + 1, Ll); l ← l + 1
25: end while
26: ReturnF, the set of all frequent fuzzy itemsets.
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