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Abstract

In the analysis of data stored in databases, a very interesting issue is the detection of possible existing relations
between attribute values and, at an upper level, relations between attributes themselves. In case uncertainty is preser
in data, or it is introduced in a pre-processing step, specific data mining and knowledge discovery techniques and
methodologies must be provided. The theory of fuzzy subsets is a helpful tool to reach this goal. In this paper we
introduce a new definition and an algorithm for computing fuzzy approximate dependencies, a type of relations that
can be found between attributes in a fuzzy database, on the basis of a previous definition of fuzzy association rule.
We will discuss about possible applications of this new tool.
© 2004 Published by Elsevier B.V.
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1. Introduction

Knowledge discovery in databases (KDD) is concerned with finding previously unknown and po-
tentially useful knowledge from databases. Roughly, it consists of three main steps: data preprocessing
(preparing data), data mining (finding interesting patterns in data) and interpretation of data mining results
to provide the final knowledge.

There are several ways in which fuzzy set technology is useful in KDOJ4&dirst, participation of
users in all the steps of the KDD process is crucial, and in particular the ultimate objective of KDD is to
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provide users witlunderstandablénformation. Fuzzy set technology is a suitable tool for this purpose,
specially in those cases where we want to express summaries or relations between numerical data by
means of linguistic terms. Also, linguistic assessments of patterns are helpful in order to judge them in
the last step of KDD.

However, there is another important fact that links KDD and fuzzy sets: in many cases data is inherently
imprecise or uncertain, and several fuzzy relational, deductive and object-oriented database models have
been developed in order to cope with this. A more usual case, that provides a similar scenario, is that of
fuzzy data obtained from crisp data in the preprocessing step by aggregation, summarization or change
of granularity level. The analysis of such information requires the development of specific tools as fuzzy
extensions of existing ones.

To illustrate these claims, let us use a simple exampleCatandSalbe two attributes storing the job
category and salary of a set of employees. Suppose the category takes values in a set of labels indicating
the kind of work, for exampléManager, Commercial }.and the salary is a number. It is usual to find a
relation between category and salary (the higher the category, the higher the salary). However, if we want
to describe this relation, rules like “If Cat=Manager then Sal=123455" are not the best solution, since
there are many different numerical values for the salary of a Manager, and the accuracy and semantic
content of this kind of rules will be very poor. What we could prefer are rules like “If Cat=Manager then
Sal=High”, whereHigh is a linguistic label that can be represented by a fuzzy set on the domain of the
salary. To discover and to assess this kind of rules requires the development of specific tools.

The objective of our work is to provide a definition fifzzy approximate dependenci@D for
short), an extension of the conceptagproximate dependenci&s the fuzzy case. Roughly speaking,
approximate dependencies (AD for short) are functional dependencies with exceptions. AD’s can be useful
to represent relations between attributes for several purposes, as we shall see later. Our approach is base
on previous results on association rule assessment and existing definitions of crigpADBand fuzzy
association rulef26]. The definition generalizes several existing relaxations, by means of fuzzy sets, of
the concept of functional dependencies. In addition, we shall provide a methodology to obtain algorithms
to discover FADs by adapting existing algorithms to discover association rules. A valuable feature of
the methodology is that it does not increase time and space complexity, though both are multiplied by a
constant.

The paper is organized as follows. Sectimtroduces related work, in particular some concepts we
employ in the definition of FADs. Sectio®is devoted to our definition of FAD and applications. We
describe how to adapt association rule mining algorithms to the task of finding FADs in S&¢tgather
with algorithms. In Sectio®, a real problem where fuzzy approximate dependencies could be suitable
is faced and discussed. Finally, Secttboontains some concluding remarks and future tasks.

2. Related works

A very common issue in database analysis is the study of existing relations between data stored in a
database. Mainly, we can distinguish two basic types of relations. On the one hand, there can be implicit
or hidden relations between attribute values, not clear at a first moment. These can be obtained by means
of a database analysis. One of the most known examples of this are association rules, d¢fhed in
Association rules are “implications” that relate the presence of itemsets (set of items) in a given set of
transactions (a T-set). A classical example consider that items are things we can buy in a market, and
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transactions are market baskets containing several items. These rules take the form of, for example, “80%
of people that buy milk, also buy flour”.

On the other hand, we can find explicit relations between data, where implications between attributes
can be easily detected (i.e., we can affirm that a job class determines a salary class, or that a given posta
code determines the city). This kind of relations are usually integrity constraints or restrictions, imposed
during the design phase of a database, according to the model of a real problem. In these cases, we can sz
that there exists a functional dependency between attributes. FormaRy=etAr1, ..., At,} be a set
of attributes and lat be a table with attributes iRsuch thatr| = n. Also, letX,Y C Rwith XNY = {,
and letdom(X) = {x1, ..., xg} anddom(Y) = {y1, ..., yu} be the values oK andY appearing irr. A
functional dependenc¥ — Y holds inRif and only if for every instance of R

Vt,s e r if t[X] = s[X]thens[Y] = s[Y]. Q)

Mining for functional dependencies in relational databases have been an object of interest in the field
of data mining, because they are very informative about the structure of data. However, it is difficult
to discover perfect functional dependencies in a database because one single exceptioh tiormsle
the dependency not to hold. But indeed, if the number of exceptions is not very high, such “functional
dependencies with exceptions” are showing us interesting regularities that hold in data. Moreover, usual
problems such as the presence of noisy data can hide functional dependencies by introducing false
exceptions. The proposed solution to these problems is the relaxation of the rule that defines a dependency
in order to accept some exceptions.

2.1. Extensions to the classical model of functional dependencies

We can distinguish two main approaches for extending the concept of functional dependencies, fuzzy
functional dependencies and approximate dependencies (also known as partial determinations). The
former typically introduces some degree of imprecision in the definition by changing either the granularity
level of the attribute domains to a higher level, or the equality into a fuzzy resemblance relation, or the
quantifier and implication into fuzzy ones, or several at a time.[BEdor a review, and16,17,19]for
further approaches. Another interesting issue is the search for functional dependencies in fuzzy relational
databases (as seen[@0]). The latter will be discussed in the next section.

2.2. Approximate dependencies

Approximate dependenci§¢k3,37,46]can be roughly defined as functional dependencies with excep-
tions. The definition of approximate dependencies is then a matter of how to define exceptions, and how
to measure the accuracy (that is; the proportion of tuples in a relation where the dependency holds) of the
dependency (sd&1]). We shall follow the approach introducedi0,23,47] where we applied the same
methodology employed in mining for association rules to the discovery of approximate dependencies.
The idea is that it is interesting to measure not only the accuracy of the dependency (as other existing
approaches df82,37,46) but also its support (that is, the proportion of tuples in a relation where the
dependency appears), in order to see the empirical evidence associated to the dependency in data. Thi
way, we can avoid to obtain trivial dependencies.
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To assess the dependencies, we apply the same measures of interest and accuracy intfagitbad in
is support (the joint probability (X U Y), notedS(X — Y)) and confidence (the conditional probability
p(Y|X), notedConf (X — Y)).

Some authors have shown that confidence can yield misleading results in some cases. Basically, the
problem with confidence is that it does not take into account the suppgrhefce it is unable to detect
statistical independence or negative dependence, i.e., a high value of confidence can be obtained in thos
cases. This problem is specially important when there are some items with very high support. In the worst
case, given an items¥tsuch thatS(Y) = 1, every rule of the fornk = Y will be strong provided that
S(X) > minsupp. It has been shown that in practice, a large amount of rules with high confidence are
misleading because of the aforementioned problems.

A summary of papers discussing this problem and the alternative measures propog@{l iBhare,
confidence is used in order to compute an accuracy measure based on certainty facfp4d {sethe
definition, and6,7] for the explanation). Formally, we obtain the certainty factor of a rule as follows,

(ConfEEIN=S0) it Conf (X = ¥) > S(Y),
CF(X=7Y)= <Conf<XS:(>YY)>)*S<Y ) if Conf(X = Y) < S(Y), (2)
otherwise

Certainty factors take values|fir-1, 1], indicating the extent to which our belief that the consequent is
true varies when the antecedent is also true. It ranges from 1, meaning maximum increment (i.e., when
Xis true ther¥ is true) to—1, meaning maximum decrement.

Notice that the two possible extreme cases occur wiién = 0 or S(Y) = 1. Both cases result onto
trivial rules, since no new information can be obtained from them. So, it seems reasonable to give these
rules a value of CF = 0.

Returning to our definition of AD, the idea is that, since a functional dependeney“Y” can be seen
as a rule that relates the equality of attribute values in pairs of tuples (se®)Ea@and association rules
relate the presence of items in transactions, we can represent approximate dependencies as associatic
rules by using the following interpretations of the concepts of item and transaction:

e An item is an object associated to an attributeRofFor every attributeAsy € R we noteizy,, the
associated item.
e We introduce an itemsdi to be

Ix = {”Atk | At € X}.
e T, is a T-set that, for each pair of tupléss) € r x r contains a transactian e 7, verifying
itay €ts & t[ALR] = s[A].

It is obvious thal7}| = |r x r| = n?.

For example, let us consider the relatioshown in Tablel. By means of our definition, the resulting
T-setT, would be the one shown in Table

Then, an approximate dependen€y— Y in the relationr is an association ruléxy = Iy in T,
(see[10,23). The support and certainty factor 8f = Iy measure the interest and accuracy of the
dependency — Y. In particular, the following property holds:
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Table 1
A relation,r

A B C
2 al b1 c1
to as b1 c2
13 ay by c3
t4 as bo c3
Table 2
T-setT, obtained fronr

(29N 1253 276}
1111 1 1 1
t1t2 0 1 0
1113 1 1 0
t1t4 0 0 0
ot 0 1 0
ot 1 1 1
tot3 0 1 0
toty 0 0 0
1311 1 1 0
3t 0 1 0
1313 1 1 1
134 0 0 1
t4t1 0 0 0
tato 0 0 0
1413 0 0 1
taty 1 1 1

Proposition 2.1(Blanco et al[10]). If CF(X — Y) = 1 (it also implies thatConf(X — Y) = 1)
thenX — Y is a functional dependency

The support and accuracy of an approximate dependgney Y can be interpreted as an aggregation
of the support and accuracy of the association rules that relate valoesoofalues ofY. Therefore,
approximate dependencies can be seen as a summary of the information provided by those associations

2.3. Fuzzy association rules

Several authors have proposed fuzzy association rules as a generalization of association rules wher
data is fuzzy or has been previously fuzzyfigsl 26,31,38,39} Though most of these approaches have
been introduced in the setting of relational databases, we think that most of the measures and algorithms
proposed can be employed in a more general framework. A somewhat complete review, including refer-
ences to papers on extensions to the case of quantitative attributes and hierarchies of items, can be fount
in [27].

Additional approaches to this problem can be founfiliz14,15,20,30,33,36,40,61h [28], several
fuzzy data mining measures are discussed. . also relates fuzzy functional dependencies with
clustering problems in data bases by means of fuzzy association rules, although this approach is different
from ours.
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In this paper we shall employ the model proposef2®i. This model considers a general framework
where data is in the form of fuzzy transactions, i.e., fuzzy subsets of items. A (crisp) set of fuzzy
transactions is called an FT-set, and fuzzy association rules are defined as those rules extracted from ar
FT-set.

Letl = {i1,..., i} beasetofitems arfibe a set of fuzzy transactions, where each fuzzy transaction
is a fuzzy subset df Lett € T be a fuzzy transaction, we noi€;) the membership degree @fin 7. A
fuzzy association rule is an implication of the foun= C such thatA, C ¢ RandANC = @. Aand
C are called antecedent and consequent, respectively.

It is immediate that the set of transactions where a given item appears is a fuzzy set. We call it
representatiorof the item. For iteniy in T we have the following fuzzy subset of

Ly =Y 7/A. (3)
eT
This representation can be extended to itemsets as follow: &k be an itemset, its representation is
the following subset of:
'y = Ii=minT;. 4
Io m i iclo i ( )
ielp
In order to measure the interest and accuracy of a fuzzy association rule, we must use approximate
reasoning tools, because of the imprecision that affects fuzzy transactions and, consequently, the repre-
sentation of itemsets. A semantic approach based on the evaluation of quantified senterj6d}) (see
proposed if26]. LetQ be a fuzzy coherent quantifier. As definediB], Qis a fuzzy coherent quantifier
when it verifies the following properties,
e Q(0)=0andQ(1) =1
e Monotonicity: Ifx < y, Q(x)< O(y).

Definition 2.1. (Delgado et al[26]) The support of an itemset is equal to the result of evaluating the
quantified senteno® of T arel'y,.

Definition 2.2. (Delgado et al[26]) The support of the fuzzy association rule= C in the FT-sefT,
Supp(A = C), is the evaluation of the quantified sentezef T arel'yuc = Qof Tare (4 N I'¢).

Definition 2.3. (Delgado et al[26]) The confidence of the fuzzy association rdle= C in the FT-set
T, Supp(A = (), is the evaluation of the quantified sentexgef I'4 arel’c.

The sentences can be evaluated for instance by means of nigihatefined in[22] as

|(GmF)c<,~|>

| Fo | ©)

GDo(G/F)= > (4 —%11)0Q (
% €A(G/F)
whereA(G/F) = A(GNF)UA(F), A(F) being the set of levels iR, andA(G/F) = {«a, ..., ap} With
o; > o; 41 foreveryi € {1, ..., p}. The sef is assumed to be normalized. If nBtis normalized and the
normalization factor is applied t6 N F (see Algorithm2).
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We choose the quantifig? ,, defined byQ s (x) = x, since it verifies the conditions we request for a
quantifier (that is, to be a coherent quantifier) and it has a valuable property: the values obtained by using
itin definitions2.1, 2.2and2.3in the case of crisp transactions, are the ordinary measures of support and
confidence in the crisp case. This way, the proposed method is a generalization of the ordinary association
rule assessment framework in the crisp case. However, we shall see in Sebtioat it can be useful to
consider other quantifiers when assessing FADs in order to generalize existing approaches.

Fuzzy relational databases could be seen as a particular case of FT-set. For exan®ler let
{At1, ..., At,} be a set of attributes, and |&ub(Aty) = {ax,, ..., ar,} be a set of linguistic labels
defined ordom (A1) VAt € R. Letr be a relation with attributes iR. Then, a fuzzy transaction could
be obtained from eache R as the following fuzzy set:

= Y autlAn))/a.

where eachitemis a paiaz, ax,) representingAz isay,’. Inthe following, and for the sake of simplicity,

we have reduced to the particular case of considering only one label at a time. As a future task, we will
study the general case of fuzzy partitions over the attribute domain, that is, a fuzzy value as intersection
of several adjacent labels.

3. A new definition: fuzzy approximate dependencies

As discussed in Sectidhl, it is possible to extend the concept of functional dependencies in several
ways by smoothing some of the elements of the rule in Eqg. (

As far as we know, the proposed methodology in this paper is relatively new and original, as we could
not find any analogous work in the existing bibliography. Anyway, some approaches can be found that
must be mentioned. Fuzzifying the definition of approximate dependencies propogit],yased on
partitioning the set of tuples in a relation, we must mention the works discus§&8Ha0]

3.1. Wang et al. approach

Wang et al. introduce a new data mining technique for extracting approximate dependencies in fuzzy
databases in which a set of resemblance relations is defined. In following works, this relations are extended
to similarity relations.

According to[53], databases based on resemblance or similarity relations are specially suitable for
describing and managing categorical information over discrete domains. Opposing to that, fuzzy set-
based models are more appropriate for applying over numeric domains 8jable

The definition proposed by the authors is the following. An approximate dependency over a relational
schemdrkcan be expressed &s— A, whereX C RandA € R. Informally, an approximate dependency
X — A holds if all tuples that agree ofapproximately also agree @énapproximately.

Formally, the dependency holds or is valid in a given fuzzy relatiower R if for all pair of tuplest;
andy; € r we have:

If [61, = [u]p, forall D; € X, then[s ] = [u1}, (6)
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Table 3

Fuzzy database relation

Emp# Job Exp. Salary
1 Salesman 3 X
2 Design engineer 10 40
3 System engineer 5 £
4 Software engineer 5 45
5 Accountant 12 1R
6 Accountant 5 5K
7 Secretary 10 33
8 Secretary 15 35

where[t,-]cg. represents the equivalence class of tupleith respect to an attribut®; with level value
xj. The notation is explained as follows.

Two tuplest; andy; are equivalent with respect to an attribude for a given level value; if 1;; and
1;; belong to the same equivalence clasgyt The equivalence classes Df; are determined by the
level valuex; and defined by the similarity relation. In general, an attridDtepartitions the tuples of a
relation into a set of equivalence classes. The authors denote the equivalence class af & tuplih
respect to an attribut® ; with level valuex; by [ti]gj, i.e.,

L
ltilp, = {u € rluj =, i} (7)

The setr Vo= {4] D ' |1; € r} of equivalence classes is a partitionrainderD; with level valuex;.

That is, an |s a collectlon of disjoint sets (equivalence classes) of tuples, such that each set has values
belonging to an equivalence classlin, and the union of the sets equals the relatiohhe rank|z| of a
partition is the number of equivalence classes (ifable4).

Authors start from the concept of partition refinement to obtain approximate dependencies. A partition
 is a refinement of another partition if every equivalence class inis a subset of some equivalence
class ofr’. According to[32], an approximate dependen&y— A holds if and only ifzy refinesra;.

There is an even simpler test for determining the approximate depensleneyA. If nx refinesny,,,
then addingA to X does not increase any equivalence classescothusnyya) = nx. Consequently,
we can find in32] that an approximate dependenty— A holds if and only ifirx| = |nxuiayl-

The main improvement introduced by Wang et al. works is the application of resemblance and sim-
ilarity relations when working on fuzzy relational databases, following the proposed idaa]jrand
implementing an extended version of the algorithm proposed in the cited work.

Against that, the main disadvantage found in these works is that of there is no definition of any measure
of the interest or certainty of the obtained results.

3.2. Our definition

We want to consider as much cases as we can, integrating both approximate dependencies (exceptions
and fuzzy dependencies. For that purpose, in addition to allowing exceptions, we have considered the
relaxation of several elements of the definition of functional dependencies, that allows us to take into
account several of the approaches describefL1f. In particular we consider membership degrees
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Table 4
Similarity relations over attribute domains in Tal3le
Job Sw.eng Acct Sys.eng Sales Dn.eng
Secr 0.6 0.7 0.6 0.5 0.6
Sw.eng 0.6 0.8 0.5 0.8
Acct 0.6 0.5 0.6
Sys.eng 0.5 0.8
Sales 0.5
Exp. 5 10 12 15

3 0.9 0.7 0.7 0.5

5 0.7 0.7 0.5
10 0.9 0.7
12 0.7
Sal. 40 45 47 50 53 55
37 0.9 0.7 0.7 0.5 0.5 0.5
40 0.7 0.7 0.5 0.5 0.5
45 0.9 0.5 0.5 0.5
47 0.5 0.5 0.5
50 0.9 0.9
53 0.9
Table 5
Fuzzy relatiorr

A B c

i ay, 0.46 b1,0.76 c1,0.53
fo a1,0.73 by, 0.06 c1,0.31
13 a1,04 by, 0.28 c1,0.66
ia az, 0.41 b1,0.49 c1,0.34

associated to pairs (attribute, value) as in the case of fuzzy association rules, and also fuzzy similarity
relations to smooth the equality of the rule in Eb). (

Formally, letR = {An, ..., At,} be arelational scheme, and fuzzy relation oveRin the following
terms: the intersection between an attribtiteand a fuzzy tupleis a pair(f (Az), p;(Af)), beingr (Ary)
the value ofAr, ent, andy;(Az) the related membership degree. Tabkhows an example of a fuzzy
relation,r, defined over a relational schemRe= {A, B, C}.

We considerS,,, a fuzzy similarity relation ovedom(At;). Let Sg = {Sa, |Atx € R}. To be more
precise, relations ifg are assumed to be max—min transitive, i.e.

n
San (xXi, xj) > \/ min(Say (xi, x1), San (X1, X)), Vx;, xj € dom(Aty). (8)
=1
We shall define fuzzy approximate dependencies in a relation as fuzzy association rules on a special FT-
set obtained from that relation, in the same way that approximate dependencies are defined as associatiol
rules on a special T-set.
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Let Ir = {ita; |Atx € R} be the set of items associated to the set of attribRtéde define a FT-seft’
associated to tablewith attributes inR as follows: for each pair of rows, §) in r x r we have a fuzzy
transactiorts in 7/ defined as

15(itar) = min(uz(At), us(An), Say, (F((At), 5(AR))) ity € T 9)

This way, the membership degree of a certain iieiy in the transaction associated to tupfesnds
takes into account the membership degree of the valug;,oin each tuple and the similarity between
these values. This value represents the degree to which tughels agree inAzy, i.e., the kind of items

that are related by the rule in EQ)(On this basis, we define fuzzy approximate dependencies as follows:

Definition 3.1. Let X, Y € Rwith X NY = JandX,Y # @. The fuzzy approximate dependency
X — Y inr is defined as the fuzzy association riije= Iy in T,.

The support and certainty factor 6f = Iy are calculated fronT, as explained in Sectio?.3, and
they are employed to measure the interest and accuraxy-efY.

Definition 3.2. The support of the fuzzy approximate dependeXicy> ¥ (Ix = Iy inT)), Supp(X —
Y), equals to the evaluation of the quantified sente€poé 7/ areF,XUIY Qof T/ are (I“IX N F,Y)

Definition 3.3. The confidence of the fuzzy approximate dependekicy> Y ( Ix = Iy in T)),
Conf (X — Y), corresponds to the result of evaluating the quantified sent@de™;, arel’s,.

Finally, computing the certainty factor is very simple and, as seen before in the case of fuzzy association
rules, we can still compute it in the same way we did for the crisp case, applyin@)Eq. (

From Eq. ) it is obvious that:’ = |T/| = n? beingn = |r|. However, we shall see later that it is
possible to calculate the support of an itemietn time O(n) with respect to the number of tuples.

Following [26], the FAD X — Y holds with total accuracy (certainty fact6rF(X — Y) = 1) in
a relationr iff zs(Ix)<fs(ly) V¢s € T, (let us remember thak(Iy) = Mina,cx 75(ita;) ¥X C R).
Moreover, since fuzzy association rules generalize crisp association rules, FADs generalize ADs.

3.3. Examples

The following subsection is devoted to show an example to see how our definition works in practice.
Table5 shows a toy fuzzy relation with attributes inR = {A, B, C}. Each cell contains both a value
and the corresponding membership degree. For every attribute, a fuzzy similarity relation is defined for
all possible values. These relations are showed in Tadnally, Table7A shows the obtained FT-set
T!.OnT/, itis possible to apply a fuzzy association rule extraction algorithm.

According to our definition, FARs iff are FADs inr. Table 7B lists some fuzzy approximate de-
pendencies that can be obtained fronwith their respective support (expressed in %) and certainty
factor.
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Table 6

Fuzzy similarity relations foA, B, andC

azm b,[0.8 c2(0.4

a3‘0.3 0.5] b3 0.50.5‘ c3 LE
aj az by by €1 €2

Table 7

(A) The FT-setZ obtained fronr (B) FADs inr (fuzzy association rules ifi/)

it itp itc

111 0.46 0.76 0.53

112 0.46 0.06 0.31

113 0.4 0.28 0.53

1114 0.3 0.49 0.34

ity 0.46 0.06 0.31 B] — [A], supp 20.56% conf 48.35% CF 0.35
fol 0.73 0.06 0.31 A] — [B], supp 20.56% conf 30.86% CF 0.13
iof3 0.4 0.06 0.31 Cl — [Al supp 33.44% conf 60.29% CF 0.40
iola 03 0.06 0.31 Al — [C], supp 33.44% conf 49.79% CF 0.24
faf 0.4 0.28 0.53 Cl — [B], supp 21.0%, conf 37.82% CF 0.21
faln 0.4 0.06 0.31 B] — [C], supp 21.0%, conf 53.62%, CF 0.41

[
[
[
[
[
[
faf3 0.4 0.28 0.66 [B, C] — [A], supp 20.12%, conf 84.61% CF 0.81
iz [
[
[
[
[

fata 0.3 0.28 0.34 Cl— [A, B], supp 20.12% conf 34.34% CF 0.18

M”‘t“l 0.3 0.49 0.34 B] — [A, C], supp 20.12%, conf 46.05% CF 0.32

fato 0.3 0.06 0.31 A, C] — [B], supp 20.12% conf 60.38% CF 0.50

falz 0.3 0.28 0.34 Al — [B, C], supp 20.12% conf 29.76% CF 0.12

tZtZ 0.41 0.49 0.34 A, B] — [C], supp 20.12%, conf 92.39% CF 0.90
A B

3.4. Comparison with Wang et al. approach

As an additional example, let us take the same set of objects descriffg@].iTable3 shows us a
fuzzy relation in which the job category, experience and salary of eight employees are represented. The
defined similarity relations over attributes domains are shown in Falbimally, in order to maintain the
same notation used in our definition, let us suppose a membership degree of one for evatyripaite(
valué in the relation.

Applying our proposed methodology over the set of objects shown in Babled taking into consid-
eration the existing similarity relation between attributes values (T@bMe obtained the set of fuzzy
approximate dependencies that can be found in Téible

We shall use this example to show a first difference between our methodology and the one proposed in
[59]. In this work, as no measure is defined to inform us about the goodness of the obtained dependencies,
the example just concludes that the dependddey, Exp] — [Sal] holds for this particular set of
employees. In this sense, we believe that our methodology brings more richness to the obtained results.
In Table8, we must remark that not only the dependehtyb, Exp] — [Sal] is obtained, looking at its
certainty factor of 0.82. Moreover, another approximate dependency to be considered is found)(Table
[Job, Sal]l — [Exp] has a certainty factor CF = 0.86. In particular, by means of our methodology it is
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Table 8
Fuzzy approximate dependencies obtained from Table

[Exp] — [Job], supp 64.69% conf 74.07% CF 0.26
[Job] — [Exp], supp 64.69% conf 86.92% C F 0.63
[Sal] — [Job], supp 61.87% conf 81.53% CF 0.51
[Job] — [Sall, supp 61.87% conf 84.56% C F 0.59
[Sal]l — [Exp], supp 64.69%, conf 87.91% CF 0.66
[Exp] — [Sall, supp 64.69% conf 75.37% CF 0.30
[Exp, Sal]l — [Job], supp 60.62% conf 89.12% CF 0.72
[Sall — [Job, Exp], supp 60.62%, conf 7853% CF 0.45
[Exp] — [Job, Sall, supp 60.62% conf 69.42% CF 0.22
[Job, Sal]l — [Exp], supp 60.62% conf 94.56% C F 0.86
[Job] — [Exp, Sal], supp 60.62%, conf 80.61% CF 0.51
[Job, Exp] — [Sall, supp 60.62% conf 92.95% CF 0.82

possible to extract all existing fuzzy approximate dependencies for this example. This set of dependencies
can be later ordered and reduced, according to the user’s necessities, and to the certainty factor.

3.5. Some particular cases

There are several possible scenarios where the concept of FAD can be useful. In each case, specific
instantiations of the concept are possible depending on the similarity relations we employ, the presence
or not of fuzzy degrees, and even the quantifier employed to calculate the support and confidence (and
hence the certainty factor) of the FAD. Some examples are:

e Letus suppose we are interested in looking for ordinary functional dependencies. In this caigg, let

be the ordinary equalityAr, € R, and letr be a crisp relation. In addition, let us employ in expression

2.3 (confidence) the fuzzy quantifisrdefined a%/(x) = 1 iff x = 1 and 0 otherwise. Then we wiill

be looking for ordinary functional dependencies, and the certainty fact&r-ef Y will be 1 iff the

functional dependenc¥ — Y holds inr, and 0 otherwise.

e Letr be acrisp relation, lef4,, be the ordinary equalityA7; € R and let us employ) s in expression
2.3(confidence). Then we will be looking for ADs as introduced28,10]
e Let us suppose that the cardinalitydafm (At ) is very high compared to the number of tuples if&

typical case iglom (At;) € R such as the attribut®al(salary) in the example in the introduction). One

usual way to analyze relations betweén and other attributes is to employ a set of linguistic labels

Lab(Ar,) to replace the domain, or to diminish the granularity of the descriptioarpfin general

(again, consider the example in the introduction whiea® (Sal) = {High, Medium, ...}). In this

point, we must remark that our intention is not to define a fuzzy partition (i.e., a Ruspini partition)

sensu strictubut to establish a set of linguistic labels (according to experts’ aid) in order to decrease

granularity in data as well as to increase data semantics. Usually, in order to look for dependencies
involving Az, similarity relations can be provided by domain experts in a coherent way with the
following resemblance relation
Ray (L1, L) = max min{Li(x), La(x)} (10)
xedom(Aty)
A similarity relation can be obtained by computing the convex hukgf, (see Sectiod for details)
if necessary. This is similar to perform a fuzzy clusteringlom (At;) and then to relate the obtained
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clusters with values of other attributes. This way, we can obtain FADs involpthat will summarize

the information given by all the fuzzy association rules that relate clusters in the domgjrtofvalues

(or clusters) of other attributes.

e Similarity relations can be useful when the domain of an attribute takes values whose semantics
overlaps. For example, consider the attribdir color and suppose we find in the database values
such as blonde, yellow, light, red, orange, etc. (a possible cause is that different users have introduced
data in the database without agreeing a set of values for the attribute). If we want to relate hair color to
other attributes, we could be interested in taking into account bhantl€ and “yellow’ are similar to
some extent, among other similarities. This can be accomplished by using a suitable similarity relation
in the domain of the attribute. This way, dependencies involving this attribute should reflect better the
possible relations involving hair color.

The aforementioned examples consider we are working with crisp data, that is the most usual case.
In the case of fuzzy databases containing fuzzy data (fuzzy degrees and similarity relations), the utility
(and even necessity) of a definition of FAD is more clear. Some other possibilities are described in
[22,26]

Regarding the final application and utility of FADs, they can provide information about relations
(smoothed functional dependencies in general) between attributes in the database. This kind of relations
can be seen as the result of an exploratory analysis, and they provide very useful information since when
an FAD X — Y holds with high accuracy we know that there is a set of association rules relating values
of XandY that hold with high accuracy, i.e., we obtain a summary of the accuracy and support of relations
betweerX andY. Therefore, the process of finding interesting links between attributes in a database could
start by looking for FADs and after that looking for association rules, either to obtain a description of a
FAD that hold, or to look for possible local associations between values of attributes if the FAD does not
hold. This methodology has been employed (using crisp ADS) by experts in the analysis of real databases
containing information about soils [A8].

A specific application for FADs is the analysis of correspondences between different fuzzy partitions
of the same set of objects. 48] we have described this application in the case of crisp partitions using
ADs to analyze correspondences, and some results in real databases containing data about soils in al
agricultural environment have been provided. The extension to the case of FADs and the analysis of
existing fuzzy databases will be dealt with in the future.

4. Algorithms

If we want FAD to be a useful concept in practice, we must provide efficient algorithms able to obtain
them from real databases. This is not an easy task since we are dealing with a set of transactions of size
n? with n being the number of tuples in the relation. Simcis usually large in real database$, can
be a too large number, so trying to compute the FTEdtom r and then to search in this set of fuzzy
transactions is too expensive. In addition, we must deal with fuzzy degrees, fuzzy similarity relations and
computation of quantified sentences, that increase the complexity of the task.

In the field of data mining and knowledge discovery, several algorithms to discover association rules
have been presented. We follow the steps of the early algorithm Apriori, introduf®d fior the sake of
simplicity, though the modifications we propose can be applied to more recent and efficient algorithms.
Since we extract fuzzy approximate dependencies in terms of association rules, this algorithm remains
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the same as the one[it0], with the added complexity of managing fuzzy transactions. In order to achieve
this, we must perform similar changes to thosgigy.

Usually, an algorithm for association rule extraction comprises two phases. The first one computes
the set of frequent itemsets, that is, interesting itemsets with a support greater than a certain threshold,
calledminsupp The process runs iteratively, computing all the 1-itemsets (itemsets containing 1 item),
2-itemsets, and so on. Each iteration requires a pass over the set of transactions, and because of this, thi
phase is the most expensive in time.

After all interesting itemsets are extracted, the analysis of them reveals all the association rules with
accuracy greater than a certain threshold, caidaconf(mincfin our case). This step usually remains
the same in all extraction algorithms and will not be discussed in this paper.

In this section we provide a methodology to adapt existing algorithms to discover association rules,
specifically the first step, to the task of discovering FADs. The methodology concerns how to calculate
efficiently the support of attributes (our items) by taking into account fuzzy values and similarity relations.

A summary of the main aspects of this methodology are the following (we shall describe algorithms later):
e Let us consider first a crisp case. In order to calculate the support of an attribute X (ifemser,,

we store the support inof each valuex € dom(X), that can be obtained i@ (n). This is the usual

information stored by any algorithm looking for association rules(items are pairs (attribute,value)

in that case, while items are attributes when looking for ADs). From these values, and assuming we

employ equality asy, the support of x in 7,/ can be obtained easily as

1
SUx) = = > XA (11)

xedom(X)

Specifically, once the support for each value<a$ obtained, we only must obtain the addition of the
square of those values to obtain the suppomtyofWe shall discuss the case of fuzzy similarity relations
later. Let us remark that, since in the worst c&se- n, the whole process takes up@(n).

In the crisp case, it is even possible to obtain the support of evand the support ofy at exactly
the same time by using the following result and algorittim

Proposition 4.1(Blanco et al[10]). The support of a crisp itemséf; is
ny;

1 K
SUx)==3 > @p—1. (12)

i=1 p=1

o If fuzzy degrees are associated with valuesXah tuples, we employ a fixed set of equidistributed
a-cuts for eachr € dom(X). This depends on the precision level we require (a constant), but we chose
to employk = 100«-cuts, that we consider to be sufficient. To do that, we must round or truncate the
fuzzy degrees. During the scanning of the tuples imhat we store is the number of times that a given
valuex appears with a certain degree. We use a vector we mafie x) for that purpose. Calculating
N (X, x) takes timeD (n). FromN (X, x) itis possible to obtain a similar vector fdg as seen before,
we nameVy. Each position in this vector stores the number of transactio$ wherelx appears
with a given degree.

The support of eack andIx can be obtained (as the evaluation of the corresponding quantified
sentences) from those vectors in tideg1) by using algorithn®. Again, the final time complexity is
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O (n). The required storage (a long integer for each dom(X) in any association rule discovery
algorithm) is multiplied by a constant (the numberagfha-cuts considered).

Finally, we introduce similarity relations. Alpha-cuts of fuzzy similarity relations (max—min transitive)
provide crisp equivalence relationsdam (X). This information can be taken into account during the
calculation ofVy from the set of vector®V (X, x) with x € dom(X). The idea is that the vectors
N(X, x) of those values € dom(X) that are equal at a certain level accordfgare added to form

a single vector at that level. That means that if two valuges, € dom(X) are similar with degree

p (i.e. Sx(x1, x2) = p) then for those levela < we treat them as the same value. This way, Eq.
(11) is applied at each level on the equivalence classes inducég by that level. This information
can be incorporated to the process of calculaiirgfrom which the supporiy is obtained, without
increasing time complexity, see algorittBnin fact, it can be calculated before the mining process
start, see algorithm.

Fuzzy similarity relations impose a strong restriction as it is the max—min transitivity, that cannot
be accomplished by all fuzzy relations defined over a certain domain. Nevertheless, in order to grant
this requirement, it is possible to compute the transitive closure of a resemblance relation, in order
to obtain the fuzzy similarity relation that we need.[8), three possible algorithms to obtain the
transitive closure of the symmetric matrix of a given fuzzy relation are discussed:

o By means of the iterative composition,(A), as is described in works liK€3] and[56].
o A column-row exploration algorithm, as the one that can be fourj@5h
o The Prim minimum expansion tree procedure, describg¢adh

According to the followed representation for our similarity relations, the algorithm propo§&%s]in
seems to be the simplest to take into practice. Algorighaescribes the procedure.
¢ Asitwas initially expressed, a cell in our fuzzy relation has the following structotéyy), u:(At)),

showing that the degree in which attribute, takes value (A ) is u-(Az). But an usual case in real
problems affected by imprecision is that of an attribute taking more than one value simultaneously, each
one with a certain degree (for example, attribidsgr color could take values (0.Bfond, 0.3brown)

for the same person).

A first solution to face this problem could be the consideration of every(palice, degree) as
belonging to distinct attributes (columns), and then apply the data mining algorithm. Nevertheless, it
must be taken into account the restriction of no appearance of a given attribute (even having distinct
values) more than one time (for example, simultaneously in the antecedent and in the consequent) in
the final rules. The basic procedure of rule (or dependencies) generation could be modified in order to
consider this restriction. Nevertheless, the problem appears to be more complex when fuzzy similarity
relations are considered over linguistic labels, and not only over attribute values. This particular aspect
would be studied in detail as a future task.

Algorithm 6 is the adaptation, following our proposed methodology, of a simple algorithm to find

frequent itemsets to the specific case of finding FADs (in particular, Aprori algof2hmin summary,
the previous modifications do not increase the complexity of any association rule mining algorithm,
though space and time can be increased by a constant that depends mainly on the nunrtds of
considered.

In Algorithm 6 the functionp(z, k) maps the real valueto the nearest value in the fixed set of levels we
are using for the fuzzy degrees. ltemsets are computed ordered by size. Vlasiadles the actual size,
and acts as a counter of the current stage. Thé sstiores dd-itemsets that are being analyzed and, at
the end, it stores the frequdritemsets. The procedur@reateLevel (i, L) generates a set ofitemsets
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such that every proper subset with- 1 items is frequent (i.e., is ih;_1), and the associated counters.
Since every proper subset of a frequent itemset is also a frequent itemset, with this procedure we avoid
analyzing itemsets that do not verify this property, hence saving space and time. This valuable property
holds also in the fuzzy case, since we compute support by medsb afethod (see Sectiah3). The
following property holds,

Proposition 4.2. Let X be a set of objec{ge., itemg, andA, A’ C X. Thenif A € A’, GDp(A/X)>
GDg(A'/X).

Proof. Trivial, sinceQ is a coherent quantifier, that is, monotonic and non-decreasing.

4.1. Efficiency study

For our particular case of searching for fuzzy approximate dependencies, Apriori algorithm (introduced
in [2] for association rules extraction) is used and properly extended. We chose this algorithm because
of its simplicity and because it is one of the most well-known algorithms in this area. Originally, tbeing
the number of transactions (or tuples) anthe number of items, a total number df #emsets must be
considered, in the worst case. As we must compute the support of every considered itemset, that is, count
each appearance in the set of transactions, the algorithm total efficiency order can ki@ Gp- ™).
Nevertheless, if the order is only expressed according to the number of tuples, the previous expression
can be reduced t© (n). In the following, it must be noticed that the order is expressed according to the
number of tuples.

In order to extract fuzzy association rules, Apriori algorithm can be extended (as shq@&@i)in
multiplying the efficiency order by a constant vakjeorresponding to the number of consideseclits
for the storage of fuzzy degrees.

Our definition starts from the one proposedlfl], where in order to obtain approximate dependencies
from a relational table, it is possible to apply the corresponding transformation over the original table,
and extract association rules that can be viewed as approximate dependencies. The main disadvantag
appeared as a number of transactions (frorm tuples) must be considered. Nevertheless, the paper
shows how it is possible to maintain the algorithm efficiency orde? o).

The proposed algorithm (Algorithi®) extends Apriori algorithm in the same terms discussed in the
previous paragraph, adding tleuts factor (for the fuzzy degrees consideration). This way, in a normal
case, we can affirm that an acceptable efficiency order for our algorithm codldber). As the number
of a-cuts,k, is constant, the algorithm order remains basicéllg:).

Nevertheless, we must include an additional factor, that of considering fuzzy similarity relations be-
tween attribute values. According to our algorithm, we use these relations when computing the total
support of a set of attributes. This process is achieved by AlgofitHBeingm the number of attributes,
andn the number of tuples in the relational table, a total number o(r”é) possible pairs of related values
must be considered, in the worst case, that is, whisrthe maximum size of every attribute domain.

As we must perform this step in every iteration, the resulting order, for the worst case, can be up to
Om-m- (’;)) (considering also the multiplier fact&}. This order can be very expensive for databases
large enough.
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As seen before, our algorithm bottle-neck appears in the management of fuzzy similarity relations. In
future works, our efforts will be specially devoted to this aspect, in order to study the convenience and
necessity of this type of relations, and how to improve the relations computation and, in particular, the
efficiency order.

5. Experiments on real data

The following is an example of fuzzy approximate dependencies extraction over real data. As discussed
in the introduction, fuzzy sets can be applied in knowledge discovery tasks in several ways and with
interesting results. In many cases data is inherently imprecise or uncertain. A more usual case is that of
fuzzy data obtained from crisp data in the preprocessing step by aggregation, summarization or change
of granularity level.

An example of both cases is soil data, and more concretely, soil color information. On the one hand,
some similarities can be established between attribute values according to semantic relations. On the
other hand, the definition of sets of linguistic labels over numeric domains can help us in the reduction
of granularity information. Color is a very remarked characteristic of soils. It can be easily determined
with little expert aid, and it lets us to qualitatively estimate the sets of materials conforming soil horizons
and soil-forming process¢3].

Several authors have studied the existing relations between soil color and soil compl&Tebhis{2).

In [50], a deeper study of the so calledléditerranean red soifstypical of Mediterranean climate, can

be found. Here, statistic tools are applied to suggest and contrast a certain number of hypothesis, relating
some soil components with soil color. Unfortunately, most statistical techniques can not be applied over
data modelled by means of fuzzy sets. Our intention here is to extend these previous studies by means of
fuzzy data mining techniques.

5.1. Bibliographic sources and databases

The studied database consists of information about three mesoenvironments from the South and South-
east of the Iberian Peninsula under Mediterranean climate: Sierra Nevada, Sierra of Gador and Southeas
(involving part of the provinces of Murcia and Almeria). We used two Ph.D. Thesis and five cartographic
sheets from LUCDEME, scale 1:100000.

Data from Sierra of Gador was extracted fr42] and consists of 70 soil profiles and 176 horizons.
Altitude fluctuates from 100 to 2200 m, and rainfall from 213 mm/year (semiarid climate) to 813 mm/year
(wet climate), with a mean annual rainfall of 562 mm/year. Lower annual mean temperaturé@s 6.4
and higher is 21.0C, with a mean of 12.7C. Original material of soils are of carbonated type, mainly
limestones and dolomites. Data from Southeast was extracted from LUCDEME soil maps, specifically
from sheets 1041 from Vera, Almerial], 911 from Cehegin, Murcipd], 1030 from Tabernas, Almeria
[44], 912 from Mula, Murcigd3] and 1031 from Sorbas, Almerjd5]. There is a total of 89 soil profiles
and 262 horizons. Altitude fluctuate from 65 to 1120 m, and rainfall from 183 mm/year (arid climate)
to 359 mm/year (semiarid climate), with a mean annual rainfall of 300 mm/year. Lower annual mean
temperature is 13.2C and higher is 19.0C, with a mean of 17.0C. Geological environment and original
materials of soils are extremely different, we can find carbonated, acids and volcanic rocks.
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Data from Sierra Nevada was extracted frpt8]. There is a total of 35 soil profiles and 103 hori-
zons. Altitude fluctuates from 1320 to 3020 m, and rainfall from 748 mm/year (semihumid climate) to
1287 mml/year (hyperhumid climate), with a mean annual rainfall of 953 mm/year. Lower annual mean
temperature is 0.9C and higher is 12.9C. Geological environment and original materials of soils are
mainly acids, but it is not strange to find basic rocks.

Soil colors can be quantified by means of several color systems. The most extended of these systems
is the Munsell Color Systerf#1,55] It is based on three parametertue, ChromaandValue Hueis
related with the dominant length wave in reflected radiad@iye(or lightness) expresses the proportion
of reflected light, and finallyChromameans the chromatic intensity or relative purity on color.

Starting from the correlation matrix appeare{fl], we selected those soil components more correlated
(positive or negatively) witiHue, ValueandChroma The studied components weretay percentage
Sand percentageand Organic Carbon percentagdatabase values had to be preprocessed before the
analysis. In order to reduce the granularity degree, attributes with numeric domains were discretized,
following the discussed techniqued84#], under supervision of domain experts. A set of linguistic labels
{Low, Medium High} was defined for every numeric attribute. Later, these labels were associated to fuzzy
sets. Attributes with categorical domains were fuzzified considering fuzzy similarity relations according
to semantics between values.

5.2. Results and interpretation

In this section, we apply the domain experts aid in order to give an interpretation of the obtained
results. First, as a previous exploratory step, we applied a crisp approximate dependenciesZection
extraction algorithm. We reduced to the case of one antecedent and one consequent, and fixed a minimurr
threshold of 0.7 for CF measure. According to this value and to the experts’ opiniomebidbtained
approximate dependencies were the following,

[Dry Hue]l — [Wet Hue], supp 17.35% CF 0.91

[Wet Hue]l — [Dry Hue]l, supp 17.35% CF 0.88

[Altitude]l — [Mean Annual Rainfall], supp 35.51% CF 0.80

[Mean Annual Temp.] — [Mean Annual Rainfall], supp 31.87% CF 0.78
[Freeiron percentage]l — [Mesoenvironment], supp 28.62% CF 0.76
[Mean Annual Rainfall]l — [Altitude], supp 35.51% CF 0.75
[Mesoenvironment] — [Mean Annual Rainfall], supp 31.16% CF 0.71

From these dependencies, the first one is trivial, from an expert’s point of view, since it just relates
the two existing moisture states (wet and dry) forthes color parameter. This property, as seen before,
gives us information about the reflected radiation wave length by the soil safy@eopposing to other
properties a¥alueand Chroma is hardly modifiable by moisture changes. In this way, the relation is
logical for Hue, but not forValueof Chroma

The second dependency shows the narrow relation between three climatic properties. Following the
regional climatic pattern, a higher rainfall corresponds to a higher altitude, and viceversa, as shown by
the results. Another revealed relation is the one between temperature and rainfall. In the geographical
zone studied, the higher the temperature, the lower the rainfall, almost invariably.

Another result reveals a relation between rainfall and mesoenviroment. This is very reasonable, from
the experts’ point of view. Looking at the previous dependencies and knowing the existing altitude
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gradient in Southeast-Sierra of Gador-Sierra Nevada, a relation like this was expected. Méieever,
iron percentageseems to be related to soil evolution, that is, the obtained dependency shows that a general
evolutive relation between mesoenvironments exists.
For all, it must be remarked that, by means of crisp techniques, it is not possible to obtain dependencies
involving color propertiesue, Chroma Value and any other soil attribute, as it was our first objective.
Nevertheless, applying fuzzy approximate dependencies, a higher number of results (up to six times,
maintaining the same CF threshold of 0.7) is obtained. This fact, in particular, means a higher possibility
of discovering potentially useful information in a database. Within the obtained results, we have selected
those dependencies involving soil color properties and other attributes,

[% Organic Carbon] — [Wet Value], supp 27.6%, CF 0.75
[CEC] — [Wet Valuel, supp 26.31% CF 0.7

[% Clay] — [Dry Chromal, supp 28.9%, CF 0.99

[% Organic Carbon] — [Dry Chromal, supp 31.4%, CF 0.91
[% Calcic Carbonate] — [Dry Chromal, supp 27.12% CF 0.8
[CEC) — [Dry Chroma), supp 27.11% CF 0.71

[% Useful water] — [Dry Chromal, supp 29.12% CF 0.97

Organic carbon percentage, Cation exchange capacity (CEC), Clay percentage, Calcic Carbonate
percentage and Useful water in soil conform the most relevant properties group in soil analysis. Because
of this, these obtained dependencies have a very high interest, according to experts’ opinion.

Relations betwee@EC andOrganic carbonare well-known in the studied knowledge area. A higher
Organic carbon percentagéhumus content in sail), implies a high®alue (lower luminosity, darker
soils). This fact is always present in studied soils, as experts verify. This effect is clearly more remarkable
in wet soils (attributéVet Valug than in dry soils (obtained dependencies involMiry Valuegave only
CF under 0.54). For this particular case, organic matter shows a t@gt@¢about 300 cmol(+)/kg) than
the remaining soil components (i.e., clay has a value of 30 cmol(+)/kg), so a narrow relation appears
between these attributes. For that reason, the fuzzy approximate depefld&dcly— [Wet Value]is
easily explainable, although with a lower CF.

In other order of things, the dependency betw€&y percentagandDry Chromais almost perfect. In
every soilinthe world, a higher value fGfay percentagenplies a highe€Chroma since this is invariably
related to iron oxide fine particle releasing (clay-scale particles), acting as pigments and intensifying soil
color. This effect is even more remarkable on dry soils, since sample humidification reduces reflection.
The meaning of variation ddry Chromawith Organic carboris not so clear, even though they appear to
be very related. A higher quantity of humus generates an intensity loss in soil color, but a local study by
means of association rules between attribute values would be desirable, in order to verify this hypothesis.
Then, experts could confirm the direction of the dependencies invoiggChromawith CEC and
Useful water as both are very dependent ©fay and Organic carbon percentagedlevertheless, the
dependencies seems to be reasonable in some measure.

Finally, the fuzzy approximate dependency betw€atcic carbonate percentagend Dry Chroma
seems to be very interesting, according to experts. A priori, it could be argued that a high carbonate
percentage should lead to a low intense and whitish soil color.

For this particular case, asked experts were highly satisfied as knowledge extracted by means of fuzzy
data mining was more suitable tfusior’ or comparison with expert knowledge that crisp. Moreover,
fuzzy data mining was sensitive to low support dependencies, that were discarded in crisp data mining.
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Agricultural information, and in particular, soil data, is inherently affected by imprecision of uncertain
factors and can be modelled very efficiently in fuzzy databases.

6. Concluding remarks and future tasks

Data mining can benefit from fuzzy set technology, since the latter allows to obtain more understandable
relations in data. In this paper we have proposed a methodology to obtain what we call fuzzy approxi-
mate dependencies (FAD) from databases. FADs generalize several existing ways to smooth functional
dependencies, and provide information about relations at the attribute level. We have enumerated several
scenarios where the concepts introduced can be useful, both for analyzing crisp and, obviously, fuzzy
data. The proposed methodology can be implemented by modifying existing algorithms to discover as-
sociation rules without increasing the theoretical complexity, though time and space are increased by a
constant related to the numberstuts we consider.

We have employed this methodology to adapt A priori in order to discover FADs. Moreover, we have
discussed a real problem where our methodology can be suitable. Our preliminary experiments suggests
that both time and space employed in the mining process are acceptable, though more detailed reports
will be provided as the result of currently ongoing experiments. As a future work we plan to adapt recent
and more efficient algorithms to discover association rules for the purpose of mining FADs.

Additional future tasks will be to study different kinds of fuzzy relations that can be necessary in
order to apply FADs in the analysis of fuzzy databases, in particular when different ways to represent
uncertainty and imprecision are employed in the database model. We also plan to employ FADs to analyze
correspondences between fuzzy partitions of the same set of objects in real databases, as suggeste
in [48].
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Appendix Algorithms

Algorithm 1 (Blanco et al[10]) Algorithm to obtain the support of a crisp itemdegt
. S(Iv) ~0
forall i € {1, .., K} do
NV, v) <0
end for
forall r € r do
NV, t[V]) < NV, t[VD+1
S(Iy) < S(y) +2N(V,t[V]) -1
end for
Exit: S(Iy)/n? is the support of the itemsé{,

[EnY
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Algorithm 2 (Delgado et alf24]) Algorithm to obtainG Do (C/A) from V4 andVauc

1. j<«<k;GD < O;nf(A)* < k;acump < 0;acumyp < 0O
{Calculatenf (A)* = nf(A)* x k}
{This is the normalization factor}
2: while nf(A)* > 0y Va(nf(A)*) =0do
3 nf(A)* <~ nf(A)*-1
4: end while
5. if nf(A)* = 0then
6
7
8

. return (“Error”); End

: end if

: while j > 0do
9:  acumayp < acumaup + Vaup(J)
10:  acumy <— acumy + Va(j)
11:  if j<nf(A)* then

12: GD <~ GD + Q(”Z’éﬁ;‘ljl’)
13:  endif
14: j<«j—1
15: end while
{Normallzatlon}
16: GD <«

17: Returnef)) End

Algorithm 3 (Kandal and YelowtiZ35]). Computes the transitive closure in a fuzzy relation matrix
1: Label all possible valuesin1.., N
2: Build the resemblances primitive matgxwhere entryjj represents the resemblance degree between
i andj values
3: for K =1toN do

4: for I =1toN do

5: if p(I, K) # Qthen

6: for J =1toN do

7 p, J) = max(p(l, J), min(p(I, K), p(K, J)))
8: end for

9: end if

10: end for

11: end for

Algorithm 4 Algorithm to obtain the set of equivalence classes for a given fuzzy itefgset
Require: Ix afuzzy itemset of attribute$y a fuzzy similarity relationdegyx, ana-cut.
Ensure: 7', a set of equivalence classes.

1: forall x € dom(X) do

2. x < {x'|x' €edom(X) and Sx(x,x")>degx}

33 T <« TU{X)

4: end for

5. Exit: returnY, the set of equivalence classes for itemigeat «-cutdegy.
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Algorithm 5 Algorithm to compute the support of a given fuzzy itembsebf attributes

1. j <k

2: while j > 0do

3 T <« ComputeEquivClasses(Ix, Sx, j) (see Algorithmd)
4. forall x € T do

5: acumyx < 0

6: end for

7.  forall x € dom(X) do

8: acumyz < acumz + N(x x)[J]

9: end for

101 Viuyljl < Vaolil+ Yoy acum?
11 j<«j—1

12: end while

13: ReturnV(;,); End.

Algorithm 6 Algorithm to obtain frequent itemsets froffii, i.e., first step when looking for FADs

Require: R, a set of attributes (our itemg);a fuzzy relation inR; Sk, a set of similarity relations for
each attribute ifR.
Ensure: F, the set of all frequent fuzzy itemsets.

1. F<«< @l <« 1,L1 <0

2: for all attributeAr € R do

©

©Noahlw

Allocate memory forV(y;;,,}), an array ok + 1 positions initialized to 0
L1 < L1 U {{ita}}
forall a € dom(Ar) do

Allocate memory forV 4, ), an array of + 1 positions initialized to 0
end for

end for
s whilel<my L; # % do

10: forall tupler € r do

11: for all itemsetl/y € L; do

12: Nix icoplp(ui(X), )] < Nix iy e (X), ©)1 + 1
13: end for

14:  end for

15 for all itemsetly € L; do

16: ComputeV,;,) (see Algorithmb)

17: Free memory of every x ). Vx € dom(X)

18: ComputeG D (I'1,, T)) (see Algorithm2)

19: if GDo(I'1y, T)) < minsupp then

20: Ly < L\{Ix}

21 Free memory oV,

22: end if

23:  end for

24:  F <~ FULj; Ljy1 < CreateLevel(l +1,L;);l <[ +1
25: end while

26: ReturnF, the set of all frequent fuzzy itemsets.
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