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A B S T R A C T

Soil quality has become a fundamental concept in soil science and agriculture, but it can be difficult to apply its
theoretical and experimental approaches to poorly surveyed zones where precision techniques are far from being
applied. In this paper, we propose a new technique that enables little-used qualitative morpho-pedological data
to be managed and integrated into a single Field Soil Quality Index (FSQI). Nonlinear Principal Component
Analysis (NLPCA), a technique able to handle categorical data, is applied here to deal with morpho-pedological
indicators. When categorical values are transformed, they can be properly analyzed and interpreted. This pro-
cedure requires less expert knowledge, so it can help soil quality assessments by non-experts. We applied the
FSQI protocol to soils in the most important olive-growing area in the world, Jaen Province (Southern Spain),
which has serious problems with soil degradation and erosion. First, a soil database for the study area was
compiled, including 18 morphological attributes for 131 surface horizons belonging to eight Land Use Types.
Secondly, the NLPCA provides optimal scalings and attribute weights that transform and integrate morpholo-
gical indicators into a simple weighted additive index (FSQI). Thirdly, the scaling functions and weights found
were applied to the same attributes of an evaluation set comparing two soil management types (conventional vs.
organic) in olive groves. The FSQI means for the first (conventional) were significantly lower than in the organic
groves (0.278 vs. 0.463, P < .05), which supports the validity of the index. A site-specific FSQI web service has
been created to assist in decision-making in the study area, whose methodology can be generalized to other
zones and crops.

1. Introduction

Soil quality is the capacity of soils to support ecosystems functions
(Larson and Pierce, 1991). Soil quality can be assessed from a set of
parameters, the soil quality indicators, which accurately summarize soil
functions. Any negative impact affecting soil quality indicators would
be related, through these functions, with a loss of the economic or
ecological value of the ecosystems. Agriculture is probably the global
activity that most affects soil quality, mainly causing the destruction of
the structure and loss of soil organic matter (Lal, 1998). Knowledge of
soil quality is valuable for decision making process in many aspects of
agriculture, such as assessing soil for precision agriculture (Vitharana
et al., 2008) and consolidating land in fragmented parcels (Gajendra
and Gopal, 2005). Awareness of soil quality can be determinant to
ensuring the success of new or reconverted production areas.

As in other fields of environmental sciences, in soil science efforts
have been made to make quantitative assessments from heterogeneous
datasets (Harden, 1982), which are either qualitative or measured using
scales difficult to compare. This is the case of soil quality assessment
(Seybold et al., 1998), where soil quality indices, integrating the most
relevant soil indicators of each system into a single numerical mea-
surement, have proven to be a suitable way to deal with soil quality
(Velasquez et al., 2007; Bastida et al., 2008). Prior to their integration
in an index, these indicators must be normalized by means of mathe-
matical and logical functions (scoring functions) to relate the physical
value of the indicator with a standardized soil quality scale. This may
be the key step in soil quality index development (Andrews et al.,
2002). Scoring functions may be more or less complicated (linear,
nonlinear, etc.), but all have several adjustable parameters which must
be set heuristically for different places and conditions, based on
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previous knowledge of the soil (Andrews et al., 2004).
Field morphological soil properties are among the most important

pedological properties for genesis and classification. They can be found
easily and economically, are included in virtually all soil databases, and
can be readily applied by growers. However, as they are non-numerical,
their quantitative use in soil quality creates significant difficulties
(MacEwan and Fiztpatrick, 1996). Thus there are few antecedents for
the calculation of soil quality indexes on the basis of pedo-morpholo-
gical indicators, which were established only through knowledge-based
decision rules (Onweremadu et al., 2008; Pulido-Moncada et al., 2014).
However, numerical techniques can make categorical variables pro-
vided by users manageable. Nonlinear Principal Component Analysis
NLPCA (Gifi, 1990) enables an object to be fitted into a multi-
dimensional space given by principal components, which are linear
combinations of a set of attributes with which the system can be
characterized. This is the same as classical or linear principal compo-
nent analysis (PCA), except that non-numerical (ordinal or nominal)
variables can be included in the initial set of attributes and transformed
into a numerical scale by optimal scalings. The method optimizes the
correlations between the transformed variables and the principal
components, which in essence means that the correlational structure
among the variables is represented as clearly as possible, for the par-
ticular dataset analyzed. NLPCA is highly efficient in systems based on
qualitative information, such as pedometrics (Calero et al., 2005, 2008;
Sánchez-Marañón et al., 2011).

Olive groves are one of the main crops in southern Spain, where
they strongly influence the landscape and culture. Furthermore, olive
groves are vital to its economy, particularly in Jaen Province, which
accounts for more than 21% of world production. This explains the high
impact of this crop on soil quality (Gómez et al., 2009), and the growing
interest of European land managers to adopt strategies (i.e., the
“greening” policy) to deal with soil degradation, mainly soil erosion
(COM (2012) 46 final; RD (2014) 1078). So given the critical levels of
soil degradation, it is urgent to advance in the regional impact of
agricultural practices on soil quality beyond just the plot or the farm.
Nevertheless, there are very few studies dealing with soil quality in-
dexes in olive groves and those are based on analytical indicators
(Gómez et al., 2009; García-Ruiz et al., 2012).

The aim of this study was to develop and validate a new soil quality
index (FSQI) based on field morphological indicators acquired from soil
surveys, and apply it to the soils of the world’s largest olive-growing
area. Lack of prior knowledge requires easy access to our index by
growers using a web-based tool. Web-based decision support systems
are emerging as effective tools for reaching a wide range of crops, in-
cluding olive cultivation (Orellana et al., 2011). However, most of them
require a certain amount of expertise for their effective usage. Our tool
is intuitive and can serve as a low cost assessment solution for present
and potential land management.

2. Material and methods

2.1. Site and crop description

Olive groves (Olea europaea L.) occupy over 6600 km2 in the Jaen
Province (South of Spain), the 49% of its total area. They are located
mainly on level or gently sloping lands and over carbonated materials
(marls, limestones and dolostones), and are strongly limited in altitude
by frost (approx. 1200m above sea level). Despite the predominance of
olive trees, other crops, forestry and natural areas are also present, but
limited mainly to steep or very steep slopes in mountainous reliefs and
at altitudes> 1000–1200m. The climate is Mediterranean, with
summer droughts, a mean annual temperature ranging from 7 °C to
18 °C and a mean annual precipitation of around 400–570mm (xeric
soil moisture regimen). The potential vegetation is dominated by an ilex
xeromorphic forest (Quercus sp.) to 1800–1900m, and black pine (Pinus
nigra subsp. salzmanii (Dunal) Franco) at higher altitudes.

A tendency to the intensification of olive groves in the Jaen
Province by increasing fertilizers, pesticides, tree density, mechanical
harvesting and irrigation, occurred in the last decades. Intensification
has favored important processes of soil degradation as the loss of or-
ganic matter and accelerated erosion. In view of this situation, since
2003 successive reforms of the Common Agricultural Policy (CAP) has
encouraged the farmer to adopt sustainable soil management.
Currently, CAP 2014–2020 implements the Good Agricultural and
Environmental Conditions (GAEC), some of them can actively promote
soil quality, e.g. the GAEC 4 forces the farmer to maintain a minimum
ground cover by grass strips in lanes (RD (2014) 1078). Nevertheless,
the majority of soil management systems still remove the plant cover by
tillage, herbicides or both. Only about a 20% of the olive groves in the
Province show a temporary or permanent plant cover (MAGRAMA,
2015).

2.2. Soil data and Land Use Types (LUTs)

We compiled a soil database, explicitly designed for this work, for
the olive grove region in the Province of Jaen. This was one of the most
complete collections of morpho-pedological data on the study area. A
total of seven 1:100,000 soil cartography sheets (Aguilar et al., 1993,
1995, 1997; Delgado et al., 1997a, 1997b, 1997c; Sierra et al., 2003)
were used along with other soil studies (de Haro, 1992; Aranda, 1998;
Martín-García et al., 2000; Calero et al., 2008, 2009). All of these in-
formation sources were to be observed with minimum quality criteria
and georeferenced. The soil database provided a total of 131 soil pro-
files and the morphological and analytical properties commonly han-
dled in pedological works. In this case, 18 field soil morphological in-
dicators (FSMI) and 23 analytical properties were collected. Of the soil
profiles, only the surface horizons (Ah and Ap), with a mean thickness
of 18 cm, were used to develop the soil quality index. FSMIs were de-
scribed according to the Schoeneberger et al. (1998) and FAO (2006)
field guides, employing the Munsell soil color chart (Munsell Color
Company, 1990) to determine color. Eight Land Use Types (LUTs) were
defined in the study area soil database. LUT characterization was based
on the FAO (2006) Land Use Classification Scheme, including some
modifiers for crop type, human influence and vegetation class.

LUTs were described as follows: (1) Little-Disturbed Forest (LDF):
small scattered and relic patches throughout the study area with the
presence of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) forest,
often also including other semi-deciduous and deciduous oak species
(Quercus faginea Lam.; Quercus pyrenaica Will.), (2) Mediterranean
Xeromorphic Woodland (MXW): holm oak, with an open community
structure, more or less altered by human influence, and tending to de-
hesa (traditional forest management, subjected to extensive traditional
grazing and scant firewood extraction by selective cutting), (3) Pine
Plantation Forestry (PPF): areas subjected to low-intensity forestry use,
mainly Pinus subsp. (P. halepensis Miller, P. salzmanii (Dunal) Franco, P.
pinaster Aiton, P. radiate D. Don), in some cases semi-naturalized, (4)
Mediterranean Xeromorphic Scrub (MXS): successional stages com-
monly occupying fire-disrupted MXW, including evergreen scrub such
as Quercus coccifera L., Rhamnus sp., Retama sphaerocarpa L., etc., (5)
Alpha Grass communities (AG): composed mainly of alpha grass (Stipa
Tenacissima L.) and/or other tall and medium height Mediterranean
perennial grasses with similar ecological status (Lygeum spartum L.),
which form high-density prairies, (6) Pastures and degraded grassland
(PDG), including both the earliest successional stages (short grasses and
dwarf-scrubs) and those traditionally used for grazing sheep and goats,
(7) Olive groves (OG), and (8) frequent, but scattered Herbaceous
Annual Cultures (HC), mainly wheat and barley, and to a lesser extent,
corn and cotton. From a pedological view, the soil database includes
information about 11 WRB-soil groups (FAO, 2015), which summarize
virtually all the soil typologies present in the study area. These include
from Arenosols and Gleysols (frequencies of 1%) to Calcisols, Regosols
and Leptosols (frequencies of 31, 21 and 15%, respectively).
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2.3. Nonlinear Principal Component Analysis with Optimal Scaling
(NLPCA)

In Calero et al. (2008), the Categorical Principal Component Ana-
lysis (CatPCA1) NLPCA algorithm (Gifi, 1990; Meulman and Heisser,
1999) was employed to create a numerical pedological index (PDI) from
morphological field soil properties. This procedure was at least as ef-
ficient as the methods used to date (i.e. Harden, 1982), with the ad-
vantage of requiring little expert soil knowledge.

The optimal scaling process was defined as nonlinear transforma-
tion of the categorical variables by assigning them quantitative values
optimizing the variance accounted for by the whole model (Meulman
and Heisser, 1999). The only restriction applied to the transformation
was monotonicity, which makes it possible to distinguish between
FSMIs measured on an ordinal scale (having an intrinsic categorical
order i.e., stickiness: from not sticky to very sticky) from nominal
variables not having this restriction. The hue (moist and dry), structure
type and texture class were considered to be of the latter type. CatPCA
interpretation is similar to the classic or linear principal component
analysis (PCA): the vector coordinates of the FSMIs in each component
are the square of their component loadings. All the statistical analysis
was performed with IBM SPSS 24 (2016).

2.4. Checking the NLPCA solution by bootstrapping

Because the NLPCA was carried out on one particular data set (the
Jaen database), the robustness of the solution was examined by the
balanced bootstrap option in CatPCA. First, we check the bias of com-
ponent loadings by comparing the centroid of bootstrap clouds with the
component loading of original parent sample. Component loadings are
unbiased if these point are close to each other. Second, the sizes of 90%
confidence intervals (CIs) for the bootstrap centroids are used to look at
the stability of the solution. The solution will be stable if slight changes
in the data, such as those produced on the different bootstrap samples,
lead to only slight changes in the results (Linting et al., 2007).

2.5. Soil quality indexing with optimal scaling: Field Soil Quality Index
(FSQI)

We followed a five-step procedure to calculate and validate the soil
quality index. The mathematical details for CatPCA and index devel-
opment are omitted but can be reproduced by applying the method
described by Calero et al. (2008).

Step 1 – Scaling: The first step was the numerical quantification of
FSMIs using CatPCA. No previous selection of morphological in-
dicators was made for a minimum dataset, since the categorical
nature of FSMIs prevents proper a priori application of the statistical
tests used for this aim (i.e. Kruskall-Wallis test in Andrews and
Carroll, 2001). Moreover, since we were also interested in scaling all
the morphological indicators for weighting, the minimum dataset
approach was not appropriate here. Thus all FSMIs were entered in
the CatPCA. CatPCA provided optimal scaling for the categories of
every variable, depending on whether the analysis specified for each
FSMI was nominal or ordinal. At this point, FSMIs can be accurately
correlated with the other numerical indicators by using the Pear-
son's correlation coefficient.
Step 2 – Selecting the soil quality PC: Once the model has been
calculated, the components found can be interpreted in terms of soil
quality, as in classical PCA (Shukla et al., 2006). To label and select
the principal component most associated with the soil quality,

relationships between the LUTs and components were assessed both,
graphically (biplots) and statistically, by mean of the Kruskal-Wallis
χ2 test. We choose a non-parametric method because it did not re-
quire assumption of normality and homoscedasticity, avoiding any
need to transform the data.
Step 3 – Scoring: For a normalized score sij ranging from 0.1 to 1 for
each horizon i and indicator j, the numerical quantifications (op-
timal scalings) were rescaled with homothetic transformations
(Velasquez et al., 2007). According to the relative signs of the
loadings in the soil quality component, we used either the more is
better function, if soil quality increases with component scores:
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where qij is the optimal scaling for the ith horizon and the jth in-
dicator, and yjmin and yjmax are the minimum and maximum category
quantification for the jth indicator. As the scoring was done over the
maximum and minimum soil quality levels, sij should be taken as the
percentage of soil quality concerning the reference values, that is, a
soil functioning at full potential in the studied area (Seybold et al.,
1998).
Step 4 – Indexing: Integration of normalized scores into a weighted
index. This step includes the selection of the weights to be used in
the index. Several strategies have been employed (Andrews et al.,
2004; Sharma et al., 2005). Here, an approach similar to Velasquez
et al. (2007) was followed. The jth-FSMI weight wj (j=1, …, m) in
the index is the vector coordinate of this indicator in the soil quality
component, but we used the bootstrap averages of vector co-
ordinates as weights instead of those based on the sample observa-
tions. Finally, the FSQI was calculated for soil database horizons
(i=1, …, n) as a weighted additive index of the FSMI weighting
factors wj and the normalized scores sij obtained in the previous step:

∑=
=

s wFSQIi
j

m

ij j
1 (3)

rescaling again to one. As a last step, the statistical significance
between FSQI values for the different LUTs was assessed with the
non-parametric Mann-Whitney U test.

2.6. FSQI evaluation

Once the FSQI was calculated, it was tested in olive groves in the
Atanor valley, at a site previously well studied by our research group
(Aranda et al., 2011, 2014; Calero et al., 2013) which was not included
in the original database. This evaluation set was compiled to determine
how well the index discriminates between two types of soil manage-
ment in olive groves (Step 5), while avoiding overfitting the model. The
groves are located in the southeast of Jaen province in the Sierra Ma-
gina Natural Park (from 37°41′ to 37°50′N latitude and 3°20′ to 3°37′W
longitude). Physical conditions are similar to those in the rest of the
province, although the climate is slightly drier and colder than the
provincial average (470mm, 17.3 °C) and the slopes are steeper (from
23 to 32%). Conventional olive groves (COG) coexist with one of the
oldest organic olive groves (OOG) in Spain (30 years old, certified by
the CAAE, the certification institution for organic production im-
plementing EU regulations 2092/91 and 1806/99). We selected an
organic orchard to our index evaluation despite the low representa-
tiveness of these systems in Jaen olive groves (less than 2%, according
to MAPAMA, 2016) because we know accurately its long history of

1 Statistical Package for Social Sciences Data Theory Scaling System Group (DTSS),
Categorical Principal Component Analysis, IBM@ SPSS@ Statistics Version 24, Armonk,
New York, USA.
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plant cover. Thus, the organic orchard from the Atanor valley is a very
suitable example of continuous sustainable soil management over the
last decades, in a variable context in which soil use have been changing
following the intensification trends of the modern oliviculture and the
successive CAP guidelines. In COG, a non-tillage system with extensive
application of herbicides maintains a bare, weed-free soil, all year-
round. OOG are characterized by no mineral fertilization or pesticides,
no-tilled soils and animal manure that it is incorporated about every
four years. In OOG, The plant cover, composed of native weeds, remains
all year-round, although is controlled by mechanical mowing (shallow
cultivator) along the spring with the aim to reduce water stress and
probability of fire. Ten A horizons from each of the two olive soil
management classes (COG and OOG, N=20) were sampled and the
morphological properties estimated. FSMIs were described the same
way as in the Jaen database. Then the categories found in each horizon
were transformed using the CatPCA optimal scalings, to arrive at the
normalized scores. Finally, the normalized scores were integrated in the
FSQI using the same weighting factors. Statistical differences between
the FSQI means for both treatments were determined by the Student’s-t
test (P < .05).

3. Results

3.1. CatPCA model and optimal scalings

A model with three principal components with eigenvalues higher
than one was selected, taking into account the interpretability of
components and the variance-accounted-for. Component loadings and
variance explained by components and individual variables are shown
in Table 1. The mean bias for component loadings, estimated according

to Van Ginkel et al. (2011), was close to cero and similar to the reported
by these authors (−0.00). Moreover, a diagnostics of the stability of
component loadings can be checked in Table 2. In general, the model
showed an acceptable stability, because the mean size of the 90% CIs
for component loadings along dimensions was relatively small (< 0.4),

Table 1
Categorical Principal Component Analysis (CatPCA) of field morphological soil indicators: component loadings and variance explained by components and variables for the parent and
the bootstrapped samples.

Principal Component PC1 PC2 PC3 From the Parent sample

Parent sample Bootstrap average Parent sample Bootstrap average Parent sample Bootstrap average VAFj PVAFj

Moist hue (n) −0.724 −0.745 0.491 0.471 −0.233 −0.213 0.819 4.551
Moist value (o) 0.851 0.845 0.057 0.054 −0.362 −0.343 0.859 4.771
Moist chroma (o) −0.134 −0.121 0.527 0.523 −0.633 −0.610 0.697 3.873
Dry Hue (n) −0.722 −0.742 0.480 0.460 −0.223 −0.205 0.801 4.450
Dry value (o) 0.817 0.815 0.012 0.015 −0.413 −0.393 0.839 4.659
Dry chroma (o) −0.444 −0.433 0.641 0.628 −0.491 −0.478 0.849 4.714
Structure type (n) 0.661 0.663 0.161 0.164 −0.114 −0.096 0.476 2.645
Structure size (o) −0.206 −0.145 0.225 0.190 −0.106 −0.062 0.105 0.581
Structure grade (o) −0.103 −0.053 0.471 0.502 0.530 0.493 0.513 2.852
Dry consistence (o) 0.275 0.280 0.682 0.664 0.356 0.356 0.668 3.708
Moist consistence (o) 0.212 0.208 0.482 0.465 −0.209 −0.080 0.321 1.786
Plasticity (o) 0.418 0.414 0.528 0.523 0.425 0.381 0.633 3.519
Stickiness (o) 0.225 0.241 0.678 0.657 0.552 0.503 0.814 4.524
Pore abundance (o) −0.156 −0.206 −0.194 −0.168 0.419 0.334 0.238 1.322
Pore size (o) 0.294 0.280 −0.149 −0.092 −0.206 −0.211 0.151 0.838
Root abundance (o) −0.693 −0.672 −0.219 −0.216 0.346 0.339 0.648 3.599
Root size (o) −0.323 −0.290 0.174 0.195 −0.088 −0.143 0.142 0.789
Texture class (n) −0.527 −0.489 −0.458 −0.469 −0.198 −0.189 0.527 2.925

VAFs (eigenvalue) 4.460 4.397 3.245 3.123 2.393 2.074 10.099 (9.595†)a

PVAFs (percent) 24.779 24.430 18.030 17.350 13.297 11.522 56.106 (53.303†)b

# 80.159*** 86.46*** 10.139ns 11.44ns 16.595* 16.37*

(n)= nominal variable; (o) = ordinal variable.
VAFj=Variance accounted for by the jth-indicator. PVAFj=Percentage of variance accounted for by the jth-indicator= (VAFj×100)/18 (18 is the number of indicators).
VAFs=Variance accounted for by the sth-component. PVAFs=Percentage of variance accounted for by the sth-component= (VAFs×100)/3 (3 is the number of components).
**Significant at P < .01.

a VAF = Σ VAFj.
b PVAF = Σ PVAFj.
# Mean PC-score differences between Land Use Types: χ2 for Kruskall-Wallis test.
* Significant at P < .05.
*** Significant at P < 0.001
ns not significant.
† (In brackets) Eigenvalue and percentage of variance accounted for by the bootstrapped samples.

Table 2
Sizes of the 90% confidence intervals for bootstrap component loadings.

Variable 90% Confidence interval (CI) size*

PC1 PC2 PC3 Average

Moist hue 0.190 0.255 0.132 0.192
Moist value 0.138 0.295 0.148 0.194
Moist chroma 0.410 0.306 0.149 0.288
Dry Hue 0.195 0.260 0.142 0.199
Dry value 0.150 0.357 0.155 0.221
Dry chroma 0.237 0.218 0.131 0.195
Structure type 0.281 0.528 0.225 0.345
Structure size 0.680 0.761 0.376 0.606
Structure grade 0.423 0.363 0.332 0.373
Dry consistence 0.300 0.268 0.297 0.288
Moist consistence 0.393 0.414 0.378 0.395
Plasticity 0.314 0.312 0.266 0.297
Stickiness 0.300 0.204 0.260 0.255
Pore abundance 0.488 0.557 0.528 0.524
Pore size 0.316 0.545 0.219 0.360
Root abundance 0.245 0.309 0.180 0.245
Root size 0.545 0.763 0.338 0.549
Texture class 0.471 0.653 0.388 0.504

Average 0.338 0.409 0.258 0.335

* CI size= |upper CI limit− lower CI limit|.
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in the order of those given by Timmerman et al. (2007) for the same
bootstrap method (Procrustean rotation).

The three components explained 56% of system variance. The first
explained 25%, the second 18% and the third 13%. This is only a

slightly lower total percentage of variance explained than the linear or
classic PCAs of analytical soil quality indicators for olive grove soils
studied by Gómez et al. (2009), but higher than the morphological
indicators by Velasquez et al. (2007). On the other hand, the amounts of

Fig. 1. Optimal scalings (black line, left axis) and normalized optimal scores (grey line, right axis) of field soil morphological indicators. For category label abbreviations see Table A.1
(Appendix A).
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variance explained by individual variables fluctuated between 4.8% for
moist value and 0.6% for structure size. Color indicators (values),
which were considered by MacEwan and Fiztpatrick (1996) to be rather
sensitive to change in soil use, explained the most variance. Values
were also the indicators that showed the smallest biases and one of the
largest stabilities (shorter CI sizes) of all variables (Table 2). Further-
more, the explanatory power of consistence indicators (stickiness,
plasticity, dry consistence) is also high.

The optimal scalings given by the model are shown in Fig. 1. It was
possible to observe three types of ordinal variable scaling leading to
varying degrees of nonlinearity: from gentle nonlinear trends (e.g., dry
and moist hues) to strongly nonlinear (e.g., structure size). Highly
nonlinear functions were characterized by sudden leaps in category
quantification. As an extreme example of this, the moist consistence
indicator showed a quantified value of -1.981 for very friable, while
there was no difference among the rest of the categories (0.491). Be-
cause a monotonically increasing restriction between categories was
imposed on the ordinal variables, this has to be interpreted as the
centroids for the categories friable, firm and very firm, representing the
cloud of object points (horizons) so labeled in the p-component space,
yield the same value after their projection onto the vector representing
this indicator (Linting and Van der Kooij, 2012). It could also be said
that the very friable soils are more discernible, in terms of moist con-
sistence, than those with other moist consistence categories.

The nominal attributes structure type, hue (moist and dry) and
texture class did not have any a priori ordination of their categories
when entered in the CatPCA. Their ordering must be interpreted ac-
cording to the optimal scalings shown in Fig. 1. Hues order followed a
logical gradient from the yellow (2.5Y) to red cards (progressively
redder: 10YR, 7.5YR, 5YR and 2.5YR). The response was almost linear
from 2.5Y to 5YR, but then decreased to 2.5YR, suggesting that this
difference is poorly perceived by who describes the color. It might be
explained by the strong dependence of red hues on daylight conditions
in field color determination (Sánchez-Marañón et al., 2011). The
structure-type ordering given by the method goes from granular and
crumbly to angular blocky and laminar, with little response to sub-
angular blocky, angular blocky and platy. This indicates stronger dis-
criminating power for biogenic structures (mainly granular structure)
than any of the other types. Finally, the texture classes were loosely
ordered on a complex gradient going from heavy (clayey, sandy clayey)
to light textures (sandy loam and loamy sand), but the response was
important only for the latter, so they are probably more relevant in soil
quality across the study zone.

Table 1 also enables the principal components to be interpreted. The
first component is positively correlated with moist and dry value
(component loadings of 0.851 and 0.817, respectively) and structure
type (loadings of 0.661), and negatively with moist and dry hues
(loadings of −0.724 and −0.722, respectively) and root abundance
(loadings of −0.693). Thus as their value increases, implying both loss
of organic matter and increase in carbonates in the surface horizon, root
abundance decreases. The latter can be inferred from the correlation
study, where some analytical variables were included (Table 3). Moist
value was significantly correlated positively with carbonates
(r= 0.676, P < .001), and inversely with organic carbon
(r=−0.709, P < .001) and root abundance (r= 0.673, P < .01).
The structure–type order had low scores on PC1 for the granular and
crumbly classes and high for platy, which is coherent with a loss of
organic matter and soil quality from tillage (the platy structure is
characteristic of compacted soils). The order of hues from 2.5Y to 2.5YR
shows a rational trend toward redder colors because 2.5Y (yellow) is a
frequent hue in deeply eroded profiles such as Ck horizons and C hor-
izons over marls. This component showed a close relationship with the
soil quality, which decreased with increasing component scores (fewer
roots, lighter, tendency to platy structure, etc.). The second component
was positively correlated with stickiness (loading of 0.678), dry con-
sistence (loading of 0.682) and dry chroma (loading of 0.641) and

negatively with texture class, despite not having a particularly high
load on this component (−0.458). From these loadings and the order of
the texture classes in Fig. 1, it may be deduced that an increase in
texture generally implies a decrease in those properties related with the
clay content, as the stickiness, consistence and chroma. This component
may be related to an increase in fine-soil content and probably is not
easily related to the soil quality influenced by the user, that is, the
dynamic soil quality. The third component was negatively correlated
with the moist chroma (load of −0.633) and positively with the
structure grade (load of 0.530) and stickiness (load of 0.552). Chroma
and structure grade might be influenced by both pedogenesis and soil
management, so it could be related to a certain extent with the dynamic
soil quality, but much more ambiguously than PC1.

The centroids-components loadings (vector) biplots, when including
LUT as a supplementary variable with multiple nominal scaling level,
are shown in Fig. 2. The low angles among the vectors of dry and moist
values and structure type, and the centroids for the crop units, HC and
OG, reveal close interrelationships between these indicators and crops.
The angles and lengths of the vectors on one specific axis expressed the
correlation of each indicator with the corresponding component. Thus,
dry and moist values and structure type are not only closely related
with HC and OG, but also with PC1. Less-altered natural and semi-
natural LUTs are better ordered following other soil indicators, which
seem more related with pedogenesis, as dry and moist hues, structure
grade or texture (Calero et al., 2008). Moreover, projecting centroids on
axes allows identifying the component that better discriminates be-
tween LUTs. Clearly, centroid coordinates on PC1 are more homo-
geneously distributed along the axis and show less overlap between
them. The Kruskal-Wallis test supported this interpretation, because it
was most significant for PC1 (P < .001, Table 1). Since the main in-
terest of the FSQI is to evaluate the quality of crops (specifically olive
groves), PC1 was selected as the soil quality component, because is
simultaneously related with HC, OG, dry and moist values and structure
type.

3.2. Scoring and FSQI

Fig. 1 shows the scoring of the optimal scalings (Step 3). The nu-
merical values of the optimal scalings were normalized according Eqs.
(1) and (2) from 0.1 (poorest soil quality) to 1 (best soil quality), de-
pending on the relative signs of the loadings of each indicator in PC1.
The normalized scores and the square of bootstrapped component
loadings (vector coordinates) were employed for the FSQI (Step 4, Eq.
(3)). As the index integrates normalized scores, a value of 1 (100%)
should be interpreted as the maximum soil quality regarding the re-
ference values from the Jaen database. Mean FSQI values for horizons
in each LUT applied to the 131 sites of the Jaen soil database are shown
in Table 4.

Table 3
Some significant correlations between transformed field soil morphological indicators
and analytical properties in the Jaen database.

x y Equation r

Moist value Organic carbon y=−1.2175x+ 7.4817 −0.709 ***
Carbonates y= 12.202x− 16.372 0.676 ***

Texture class Exchangeable
calcium

y=−6.0914x+ 29.372 −0.608 ***

pH y=−0.9917x+ 7.7453 −0.515 ***

Root abundance Organic carbon y= 0.2393x− 0.5963 0.543 ***
Moist value y=−0.6658x+ 0.0046 −0.673 ***
Structure type y=−0.4854x− 0.029 −0.476 **

Plasticity Stickiness y= 0.6504x+0.0125 0.650 ***
Texture class y=−0.4539x− 0.0334 −0.496 ***

Significance: *P < .05. **P < .01. ***P < .001.
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It may be seen that the index enables discrimination of LUTs, which
were ordered from most to least human disturbance and plant succes-
sional stage. This arrangement can therefore be understood based on
the soil quality. The statistical significance was tested by the Mann-

Whitney U test, comparing LUTs two by two (Table 5). Four groups,
from highest to lowest soil quality, can thus be defined. The first group
is composed only of LDF with evergreen (Holm oak Quercus ilex ballota)
and deciduous (Portuguese oak Quercus faginea) climax forests, with a
mean FSQI significantly higher than all the other LUTs (P < .05). The
second set includes woody areas with pines (PPF) and holm oaks
(MXW), the latter moderately altered with an open structure (dehesa)
and the alpha grass meadows (AG). The third group was composed of
“stage communities” of tall (MXS) and dwarf (PDG) xeromorphic scrub,
but MXS was not significantly different from the second group
(P= .075 and .082 with MXW and PPF, respectively). Therefore, the
MXS units can be assigned to an intermediate soil quality between
woodland areas and scrub landscapes. Finally, a fourth and clearly
differentiated group is composed of agricultural lands (P < .001),
which includes olive groves (OG) and annual cultures (HC) with the
lowest FSQI means (below 0.300).

3.3. FSQI evaluation

The last step was evaluation of the index with samples not pre-
viously used in its development. New field morphological data were
taken to validate the FSQI (data are shown in Table A.1, Appendix A) by
finding out whether it could distinguish between soil management in
olive groves (conventional COG and organic OOG). All the steps en-
umerated above were applied to these data, including optimal scaling
and scoring of horizon categories based on plots from Fig. 1. The re-
sulting FSQIs for COG, with a mean value of 0.278 and a standard
deviation of 0.161, and OOG, with a mean value of 0.463 and a stan-
dard deviation of 0.148, are shown in the Box-and-whiskers plot in
Fig. 3 (Student’s t significant, P= .016). The mean FSQI for the ten
conventional A horizons sampled was similar to that of olive groves
(0.287) from the Jaen database. However, the mean OOG FSQI in-
creased to 0.473, a score close to MXS (0.524) scrubland and PDG
(0.500) in the database.

3.4. FSQI web service

Finally, we have made FSQI computation available for users.
Anyone in the study area interested in calculating this index can go to
the URL http://fsqi.ujaen.es and complete the form (Fig. 4, left) in any
web browser. When applied, the method consists of a series of values
characterizing the soil being analyzed (Fig. 4, right). These morpho-
pedological values are entered in a simple web form. The values are
mapped into the corresponding scores which will be, once the form is
submitted, weighted and linearly combined to compute the final quality
index. The index is returned to the user on a web page showing this
value in terms of a quality percentage for easy interpretation (Fig. 5).

The data is sent to our servers where the index is computed re-
motely and returned to the user. This service has been developed with
standard web technologies (HTML, CSS3, Javascript), so no special
requirements are expected from its users apart from a modern web
browser. On the server side, we have open-source architecture
(Linux+Apache+PHP+ SQLite). The script used to compute the
index is written in PHP language and any submission is stored in a
SQLite database for future analytics. The scores are coded as values in
the HTML form. The script receives the data from the form and calcu-
lates the linear combination of scores and factors. This value is nor-
malized and the final index is presented to the user as a percentage. The
full architecture is shown in Fig. 6.

Now we are developing a more elaborated decision support system
(Aronson et al., 2005) to allow the user to enter the data from their soils
and get the index on mobile devices, as the current system does, but
also to maintain records of the different measurements with geospatial
coordinates, so the qualities can be drawn on a map. The app developed
will be intuitive and will guide the user on the process of entering the
needed information, to ensure precise data taking. According to the

Fig. 2. Biplots of LUT category centroids (in red) and component loadings (in black) from
CatPCA. LDF= Little-disturbed forest; AG=Alpha grasses; PPF=Pine plantation for-
estry; MXW=Mediterranean xeromorphic woodland; MXS=Mediterranean xer-
omorphic scrubland; PDG=Pastures and degraded grassland; HC=herbaceous cultures;
OG=Olive groves. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 4
FSQI values (means and standard deviations SD) for land use types.

N Mean SD

LDF 5 0.839 0.098
AG 5 0.680 0.094
PPF 6 0.670 0.088
MXW 16 0.615 0.100
MXS 5 0.524 0.125
PDG 9 0.500 0.085
HC 14 0.290 0.078
OG 71 0.287 0.092

LDF= Little-disturbed forest; AG=Alpha grasses; PPF=Pine plantation forestry;
MXW=Mediterranean xeromorphic woodland; MXS=Mediterranean xeromorphic
scrubland; PDG=Pastures and degraded grassland; HC=herbaceous cultures;
OG=Olive groves.
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characteristics of the soil and a knowledge base at the backend, the
system will help the user to understand the index and will suggest
different interventions to improve soil conditions. The collected data
from different users will be suitable for analysis and data mining as an
additional value from this cloud-based architecture.

4. Discussion

The results highlight the relationship between the morpho-pedolo-
gical attributes and soil quality goals, as discussed by other authors
(MacEwan and Fiztpatrick, 1996). Thus, except for the hue, the FSMIs
explaining most of the variance in the soil quality component are the
dynamic, time-dependent attributes: value, root abundance and struc-
ture (MacEwan and Fiztpatrick, 1996). The dynamic nature of these
indicators is correlated with the soil organic carbon in the surface
horizons (Table 3), which studies on soil quality indexing of olive
groves consider the main pedological indicator (Gómez et al., 2009;
Álvarez et al., 2007). Hue and some other properties related to soil
quality (e.g. texture class or plasticity) could also be considered in-
herent indicators. These could be dependent on the soil parent material
(e.g., marls and limestone colluvium in the Atanor valley) and probably
influenced the wide dispersion of FSQI values for COG horizons in the
evaluation set (Fig. 3), but the index was sensitive to management
practices. In general, because olive groves are concentrated over Cal-
cisols and Regosols (> 50%), it is expected that certain characteristics
of soil quality indicators are related to soil typology rather than to soil

management. Applying an analytical SQI, Marzaioli et al. (2010) found
a LUTs distribution similar to ours, in soils of Southern Italy very dif-
ferent (Mollic-Vitric Andosols). Nevertheless, the effect of parent ma-
terial and pedogenesis should be considered in regions with other
patterns of crop distribution.

To date, there have been few soil quality studies dealing with single
morphological properties. As morpho-pedological attributes are in-
cluded in any soil survey database from regional to national resource
inventories, this could facilitate their use in soil quality assessment at
this scale. This procedure could thus improve national soil quality
monitoring programs, such as those described by Sparling and Schipper
(2004), which are based exclusively on analytical indicators. This
would seem to be the most suitable way for growers to assess soil
quality in their groves when little knowledge of the soil is available,
even more when our results show that an adequate treatment of the
morpho-pedological data can explain similar percentages of the system
variability that the analytical ones. Some authors have suggested score
cards for untrained farmers (Romig et al., 1995), but this type of data
would be more difficult to interpret and merge with scientific knowl-
edge than pedological data (Calero et al., 2005; Delgado et al., 2009).
Farmers and land managers should still receive some training in soil
science (soil color card use, etc.) before they can use the index proposed
here effectively. Such courses could be economical and easily taught
(compared to physical and chemical soil measures). Morphological in-
dices could complement other complex measures of soil quality that are
completely beyond the reach of olive grove farmers, such as the enzy-
matic activities carried out by García-Ruiz et al. (2012).

The most critical indexing procedure may be the scoring step.
Because of their flexibility, nonlinear functions seem to be the best
choice for use with different soils and conditions, but require more
profound expert knowledge due to the parameters that must be ad-
justed (Andrews et al., 2002, 2004). For example, in their olive grove
soil quality (“soil degradation”) index, Gómez et al. (2009) used non-
linear algorithms with at least five parameters and logic statements as
scoring functions, but not all properties studied have clear reference
values for scoring functions in olive groves (e.g. bulk density). In this
case, the authors resorted to general interpretation of indicator tables
(USDA, 1999, e.g., for setting the parameters for the bulk density
scoring function mentioned). On the other hand, Marzaioli et al. (2010)
used a simpler linear algorithm but needed to set the reference values
for some indicators (e.g., pH) after a thorough review of previous stu-
dies (none of which involved olive groves).

In our study, these expert knowledge-based procedures were re-
placed by a more automated method, optimal scaling functions, which
were transformed into true scoring functions by using the categorical
principal component most closely related to the soil quality. The latter
was defined in terms of its capacity to discriminate among LUTs. Shukla
et al. (2006) used a similar procedure to identify the appropriate soil

Table 5
FSQI differences in Land Use Types (U of Mann-Whitney’s-test).

MXW PPF MXS AG PDG HC OG

LDF 5.0 (−2.891)** 2.0 (−2.379)* 0.0 (−2.619)** 2.0 (−2.200)* 0.0 (−3.007)** 0.0 (−3.242)*** 0.0 (−3.719)***

MXW 31.0 (−1.253) n.s 18.0 (−1.817) n.s. 23.0 (−1.404) n.s 25.0 (−2.661)** 0.0 (−4.656)*** 5.0 (−6.169)***

PPF 5.0 (−1.826) n.s 15.0 (0.000) n.s 5.0 (−2.595)** 0.0 (−3.464)*** 1.0 (−4.029)***

MXS 2.0 (−2.193)* 20.5 (−0.267) n.s 1.0 (−3.148)*** 17.0 (−3.363)***

AG 3.5 (−2.539)** 0.0 (−3.240)*** 0.0 (−3.719)***

PDG 4.0 (−3.718)*** 33.5 (−4.355)***

HC 496.0 (−0.012) n.s

LDF= Little-disturbed forest; AG=Alpha grasses; PPF=Pine plantation forestry; MXW=Mediterranean xeromorphic woodland; MXS=Mediterranean xeromorphic scrubland;
PDG=Pastures and degraded grassland; HC=herbaceous cultures; OG=Olive groves.
Z values (in brackets).
n.s = not significant.

* Significant at P < .05.
** Significant at P < .01.
*** Significant at P < .001.

Fig. 3. Box-and-whiskers plot of Field Soil Quality Index (FSQI) for Organic olive groves
(OOG) and Conventional olive groves (COG) in the evaluation set (Atanor valley).
LUT= Land Use Type.
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quality indicators from PCA and analysis of variance of the different
treatments, but only included analytical indicators. Moreover, many
indices use the PCs from PCA not only for assessing indicators, but also
for weighting them (Andrews et al., 2002; Sharma et al., 2005), where
the goodness depends on the variance explained by the model. Our
procedure is based on premises which are not very different from the
usual indexing techniques, with the additional advantage of avoiding
much of the subjectivity involved in conventional scoring.

An important result of this work is that it supports soil quality ag-
gradation through the organic management of olive groves with a long
history of plant cover in the evaluation area. These results have already
been reported by other authors (Álvarez et al., 2007; Gómez et al.;
2009; García-Ruiz et al., 2012; Marzaioli et al., 2010). As with analy-
tical indicators, some time of suitable management (i.e. plant cover) is
probably needed to give significant results for the FSQI. In the present
study it can be estimated from FSMIs, giving a single useful value for
the evaluation set: 18% (from a FSQI value of 0.28 in COG to 0.46 in
OOG). This increase in soil quality by the organic farming applied in the
Atanor valley has also been found in several previous studies (Aranda
et al., 2011, 2014; Calero et al., 2013). Despite organic farming are
considered the best practice regarding environmental sustainability

Fig. 4. Screen capture of the web form (left). Some possible color and structure values are also shown (right).

Fig. 5. Web page showing a result of FSQI calculation.
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Fig. 6. FSQI web service architecture.
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(Parra-López et al., 2008), some non-organic systems, as integrate
production or protected designation of origin, implement nowadays a
suitable plant cover and other sustainable soil management practices
(Carmona-Torres et al., 2014), so they should also show increases in the
FSQI. The index thus demonstrates its agroenvironmental applicability
in the geographical area where it was defined. Of course, like any in-
dexing procedure, proper extrapolation depends on the identification
and specification of site-dependent factors in the study area (Bastida
et al., 2008), but the suitability of the procedure allows it to be rapidly
exported and tested in other areas or scales.

5. Conclusions

The methodology described in this study for developing and cal-
culating the Field Soil Quality Index (FSQI) is based on an easily ac-
cessible NLPCA algorithm (CatPCA) and some simple statistical tests,
which require little previous knowledge of the soils in the study zone.
The index yielded consistent ecological results: classification of land use
types (LUTs) by the extent of human alteration they have undergone

(from little disturbed forest to cultivation). Moreover, it was properly
evaluated in an agro-environmental context of interest (olive groves in
southern Spain), finding significant amelioration of soil quality from
organic management. The applicability of this methodology to soil
quality assessment must be emphasized, especially the advance in au-
tomation of the scoring functions, which helps the standardization of
soil quality indicators. However, the main advantage of the FSQI may
be that it is derived from user-friendly data. This enables this indexing
procedure to be applied in poorly characterized countries or crops, in a
way that might be useful to growers and land managers. This type of
numerical and quantitative approach to soil quality could be highly
useful for modeling and prediction in future physical, agronomical or
socio-economic scenarios.
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Table A.1
Morpho-pedological data for evaluation (Atanor valley).

Texture class Color Structure Consistence Roots Pores

Dry Moist Dry Moist Stickiness Plasticity Abundance Size Abundance Size

OOG-1 cl 7.5YR 4/4 7.5YR 3/3 sbk2m dsh mf wss wnp rac rsfn pac psfn
OOG-2 cl 10YR 5/4 10YR 4/4 sbk2m dh mf wss wsp ram rsfn pac psfn
OOG-3 cl 10YR 4/4 10YR 3/6 cr2f dsh mf wns wnp ram rsfn pac psfn
OOG-4 cl 10YR 5/4 10YR 4/4 cr3f dsh mvf wss wnp rac rsvfn paf psvfn
OOG-5 l 10YR 6/4 10YR 4/4 cr2m ds mvf wns wnp ram rsvfn pac psfn
OOG-6 cl 2.5Y6.5/5 2.5Y4.5/5 cr2c dsh mvf wss wsp raf rsfn pavf psvfn
OOG-7 cl 10YR 6/4 10YR 4/5 cr2m dh mf wss wnp raf rsfn paf psfn
OOG-8 l 2.5YR 6/3 2.5YR 4/3 cr2m dh mf wns wnp raf rsfn paf psvfn
OOG-9 l 2.5Y6.5/3 2.5Y 4.5/3 sbk2m dh mf wss wsp raf rsfn paf psvfn
OOG-10 cl 10YR 6/4 10YR 4/4 gr2m dh mf wss wsp rac rsfn pac psm
COG-1 cl 10YR 7/3 10YR 5/3 abk2m dh mf wss wnp ravf rsfn pavf psvfn
COG-2 cl 7.5YR 6/6 7.5YR 4/6 sbk2m dh mf wss wsp ravf rsvfn paf psvfn
COG-3 sic 7.5YR 5/6 7.5YR 4/4 abk2m dh mf wss wp ravf rsfn pavf psvfn
COG-4 c 2.5Y 8/1 2.5Y 7/2 sbk2f ds mvf wss wp ravf rsvfn paf psvfn
COG-5 scl 2.5Y 8/1 2.5Y 7/1 sbk1f ds mvf wss wp n.d n.d pavf psvfn
COG-6 cl 2.5Y 8/1 2.5Y 7/2 sbk1m dh mf wss wsp n.d n.d paf Psfn
COG-7 cl 7.5YR 6/4 7.5YR 4/6 abk1c dh mf wss wsp raf rsfn pac Psfn
COG-8 cl 2.5Y 8/1 2.5Y 7/2 abk2m dsh mf ws wsp ravf rsvfn paf Psfn
COG-9 l 2.5Y 8/1 2.5Y 7/2 sbk1m dh mf wss wsp n.d n.d pavf psvfn
COG-10 c 7.5YR 6/4 7.5YR 4/6 abk2m dh mf ws wsp n.d n.d paf psvfn

Texture class: c: clay; sc: sandy clay; l: loam; scl: sandy clay loam; sicl: silty clay loam; sic: silty clay; cl: clay loam; sil: silty loam; sl: sandy loam; ls: loamy sand. Structure type: gr: granular;
cr: crumbly; sbk, subangular blocky; abk, angular blocky; pl: platy. Structure grade: 1: weak; 2: moderate; 3: strong. Structure size: vf: very fine; f: fine; m: medium; c: coarse; vc: very
coarse. Dry consistence: ds: soft; dsh: slightly hard; dh: hard; dvh: very hard; deh: extremely hard. Moist consistence: mvf: very friable; mf: friable; mfi: firm; mvfi: very firm. Stickiness: wns,
non-sticky; wss, slightly sticky; ws, sticky; wvs: very sticky. Plasticity: wnp, non-plastic; wsp, slightly plastic; wp, plastic; wvp: very plastic. Root abundance: ravf: very few; raf: few; rac:
common; ram: many. Root size: rsvf: very fine; rsfn: fine; rsm: medium; rsc: coarse. Pore abundance: pavf: very few; paf: few; pac: common; pam: many. Pore size: psvf: very fine; psfn: fine;
psm: medium; psc: coarse. n.d.: not detected.
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