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Collision among moving objects in space is one of the most common risks in daily life. In this context, we
have developed an abstract model that allows to detect the presence of risk of future collisions among
objects from the video content analysis. Our proposal carries out several stages. First, a camera calibration
process calculates the real location of object in scene. Then, we estimate the object speed and their future
trajectory in order to predict possible collisions. All the information of the objects is described in an
ontology. Using the properties of objects (such as location, speed, trajectories), we have defined a fuzzy
rule that permits to identify whether an object is in danger because another could hit him. The use of
fuzzy logic results in two points: the collision detection is gradual and the model can be adjusted through
membership functions to fuzzy concepts. Furthermore, the proposed model is easily adaptable to any sit-
uation and can be applied on various fields. With the aim of testing our proposal, we have focused on
pedestrian accidents, a case of special interest since a lot of pedestrians die or are injured in traffic acci-
dents daily. We have developed an application based on our model that is able to predict, in real time, the
traffic accidents where a vehicle could run over a pedestrian. The obtained results in the experimental
stage show a high performance of the system.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Collision among moving objects is one of the most common
risks in daily life. However, if a collision between two objects
was predicted, in many cases, an unpleasant fact could be avoided.
This situation is overcoat in traffic accidents, for example, when a
vehicle runs over a pedestrian, when two vehicles crash, when an
airplane collides with an obstacle or a vehicle at the airport, etc. For
this reason, we propose an expert system that uses video content
analysis for predicting collisions, detecting objects in danger and
warning of this fact in real time with the aim of improving safety
in many situations. Our approach is explained in more detail in
Section 3 where we describe the inputs and the outputs of the sys-
tem and the architecture. The architecture is consisted of one
‘Translator Module’ where it carries out the 2D–3D conversion pro-
cess and one ‘Processing Unit’, which includes the knowledge ontol-
ogy (Section 3.2) and the fuzzy reasoner (Section 3.5).

Nowadays, traffic accidents are one of the leading causes of
death in Europe and in the majority of developed countries. As a re-
sult, it is growing a great interest on pedestrian protection recently,
since many accidents injure and kill pedestrians yearly. Due to this
fact, for testing our model, we will focus on pedestrian accidents
ll rights reserved.
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with the aim of increasing safety for pedestrians and drivers. So,
we have developed an application that predicts collisions between
vehicles and pedestrians. In Section 4, we describe this application
and the obtained results in the experimental stage. Finally, in Sec-
tion 5, you can see the conclusions obtained from this study.

Next, we offer a brief overview of previous work in this research
line.
2. Related work

Currently, the security of people in public and private environ-
ments is one of the main topics of concern for most governments
and institutions. In the last few years, the new technologies have
played a very relevant role in current surveillance systems by pro-
viding them with robustness and detecting dangerous situations.
Besides, artificial intelligence has played a key role in surveillance.
A good example of this kind of innovative algorithms is the video
content analysis, also known as intelligent video. This method is
getting more and more important in the surveillance systems of
last generation.

Therefore, the need of dealing with intelligent video arises in or-
der to improve the accuracy of surveillance systems and to reduce
the workload of human operators (Buxton, 2003). In the last
two decades, the scientific community has proposed algorithms,
techniques and models that constitute the second and the third
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Fig. 1. Our approach.
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(still in experimental phase) generation of surveillance systems
(Valera & Velastin, 2005). Second generation systems combine
CCTV technology and IP surveillance with computer vision algo-
rithms and artificial intelligence, while third generation systems
are characterized by their inherently distributed nature and the
high amount of used surveillance devices. The main aim of this
kind of systems is to provide a good scene understanding and a
right interaction with the security guard in real time.

Several stages can be distinguished in visual surveillance sys-
tems: model and knowledge acquisition of the monitored environ-
ment (Li, Ding, & Liu, 2003; Mittal & Paragios, 2004), detection and
tracking of moving objects (Behrad, Shahrokni, & Ahmad, 2001;
Fejes & Davis, 1999), object classification (Ferryman, Maybank, &
Worrall, 2000; Fusier et al., 2007) and behavior analysis (Borg
et al., 2005; Stell, 2004). These systems are able to detect a moving
object and tracking its trajectory by classifying them and interpret-
ing their interactions with the rest of elements of the scenario.

Most of video-surveillance systems are based on image process-
ing algorithms with the goal of performing concrete functions,
such as the detection and tracking of objects. The number of works
that pays special attention to the intelligent analysis of object
behavior is not high. However, this phase is one of the most useful
when carrying out surveillance, since the results obtained can be
used by the security guard to do his work. For this reason, our
aim is to provide security system with intelligence by generating
new knowledge to work with high-level information and to detect
more abstract situations.

One of the most prominent application areas for the develop-
ment of surveillance systems is the traffic monitoring. The majority
of this type of systems can be understood as surveillance-based
systems for passively monitoring the traffic. In this context, there
are applications of three different purposes:

� Works that ‘obtain information on different traffic parameters’
(Collins et al., 2000), such as: number of vehicles per unit of
time, vehicle classification, average speed and individual speed
of each vehicle. Some works, as Tomas and Garcia (2005), have
also been carried out for intelligently managing the information
shown to the drivers depending on the road conditions.
� Traffic control for toll purposes or sanctions. Most of these sys-

tems try to manage the traffic flow by controlling the traffic
lights, as Mohammadian (2006) and Vallejo, Albusac, Jimenez,
Gonzalez, and Moreno (2009). This last work presents a multi-
agent system to the control of driver’s abnormal behaviors in
a crosswalk. These systems present some problems, for exam-
ple, some of them need a person to detect incorrect behaviors
through a monitor.
� Researches whose objective is ‘ monitoring to detect accidents

automatically’, also called AID (Automatic Incident Detection).
These focus on finding irregularities, such as stopped traffic,
slow traffic and traffic jams. In this context, we can find works
as Bo, Qimei, and Fan (2006), Lee, Hellinga, and Saccomanno
(2007) Ismail, Sayed, Saunier, and Lim (2009). In Lee et al.
(2007), collisions in freeway traffic are detected. Ismail et al.
(2009) described an automated video analysis system that can
detect and track road users in a traffic scene, and it classifies
them as pedestrian and motorized road users; it identifies
important events that may lead to pedestrian–vehicle collisions,
and it calculates several severity conflict indicators.

In this last sense, and with the aim of solving lives, we propose a
system for traffic monitoring that is able to predict risk of traffic
accident where a pedestrian is run over by a vehicle. Our system
is based on fuzzy logic because we need a progressive response
that is calculated quickly in real time. The detection and preven-
tion in real time is stronger point with respect to other proposals.
3. Our approach: model for predicting potential future
collisions

In this paper, we develop an expert system able to predict a
collision between any two objects. Our system analyzes video
information and emits a visual alarm that warns on possible colli-
sions. A particularized representation for a crosswalk is shown in
Fig. 1.

The proposed system has been designed to monitor local sce-
narios. We define a scenario as a monitored environment where oc-
cur several events. In our case, these events are captured by one or
several video cameras. For example, a scenario can be a crosswalk,
an airport, a road.

Our approach is based on a fuzzy rule to detect in advance po-
tential future collisions, in a general way. This study is based on
calculating the object real positions (3D positioning). In this re-
spect, the use of 2D positions involves some problems, for example,
lack of perspective, occlusion of objects. This could lead to false
detection of collisions since it does not know the real positions
(unknown the third coordinate).

The input of our system is the detection and the 2D tracking of
objects from cognitive video analysis. We do not intend to make
basic process of ‘object detection’ from video, because a large
number of research works have been performed in this stage. Fur-
thermore, the aim of our approach is based on advance aspects of
information analysis and alarms detection. For this reason, our sys-
tem receives annotated video as input.

The output of our system is the detection of future collisions
among objects. Depending on the situation of the study, we can
study pedestrian–vehicle collisions, vehicle–vehicle collisions,
obstacle–airplane collisions, etc. When our system predicts the
presence of a collision, an alarm will be activated and it will attract
the attention of the objects that are in risk, in real time. In addition,
we have developed a desktop application, where you can check the
status of the system throughout the day. Finally, when an alarm
has been enabled, the system offers and stores an explanation of
the reasons that triggered the alarm activation.
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3.1. Architecture

Fig. 2 shows the system architecture, which is consisted of one
‘Translator Module’ and one ‘Processing Unit’.

3.1.1. Translator
As mentioned above, our system receives as input the outcomes

of a knowledge extraction system about object detection and 2D
tracking from video. The Translator Module is responsible for
turning input events into data that are represented under the con-
ceptual framework defined in our ontology (see Section 3.2).

The Translator is constituted by a Server that is listening to in-
put events. It is important to stand out that input information is
analyzed and processed by the Translator, so that it is able to ob-
tain new data in higher level. In this way, the Translator provides
a geometric procedure that obtains the real position of the objects
(3D positioning). The 3D localization is highly valuable, because as
we see next, the prediction is based on distance, current speed and
time of collision. However, these calculations would be distorted if
we maintain the 2D location, for example, the speed calculation is
more highly precise in ‘meter per second’ than in ‘pixels per sec-
ond’. For this reason, we generate new 3D knowledge that will en-
hance our system to make future decisions.

3.1.2. Processing Unit
In turn, this unit is made up by the following:

1. The Server (S), which is responsible for receiving the events
that are send by the Translator and for updating the ‘Scenario
Object Warehouse’ (creating new objects or updating the exist-
ing ones).

2. The Scenario Object Warehouse (SOW), which shows the dif-
ferent objects that exist on the scenario in real time. All infor-
mation that is obtained from the input knowledge extraction
system along with the new information generated by our sys-
tem is stored and integrated in this warehouse. A process of
mutual exclusion is performed to access the SOW in order to
avoid inconsistencies.

3. The Alarm Detection Module (ADM). In this module, we ana-
lyze the presence of danger due to a possible collision. When
the SOW is updated, the ADM consider if there are objects in
the SOW that modify the degree of belief depending on their
features. The degree of belief is a value between 0 and 1, and
it represents the alarm level. If the belief degree of situation
presence exceeds the threshold, the alarm will be activated.

4. The Object Eliminator (OE), which is a threat that is released
regularly. This process is designed to verify that the objects in
SOW are right objects of the real scene, in other words, whether
these objects are active objects. So, OE finds objects that have
Fig. 2. Architecture.
not been updated for some time, these objects will be consid-
ered as inactive objects on the scenario, and they will be
removed by the Object Eliminator. To perform this process, each
object has an associated degree of belief that reflects their activ-
ity in the scene. The existence of this procedure is very impor-
tant because if there is not a good cleaning in the SOW, this fact
could lead to detecting false alarms.

The communication between architecture modules is imple-
mented using event channels. In this case, we talk about events
in the usual sense of the network services. In this context, the
information can be sent asynchronously. Customers or receivers
can subscribe to a channel and kept waiting for news without mak-
ing a request. So, event channels provide an efficient method of
change information method.

Furthermore, the User Datagram Protocol (UDP) (Postel, 1980) is
used to transmit the data because it improves the results of Trans-
mission Control Protocol (TCP). This is due to UDP does not offer ori-
ented connections and it does not check data. UDP is an Internet
Protocol Suite that sends messages without implicit handshaking
dialogues for guaranteeing reliability, ordering or data integrity.
Time-sensitive applications often use UDP because dropping pack-
ets is preferable to using delayed packets. UDP is located in the
transport layer.

3.2. Ontology

We have designed an ontology with the aim of representing all
the knowledge in a homogeneous way with independence of the
system inputs. The two highlight concepts of our system are
objects and alarms. Both concepts are formally defined next.

3.2.1. System objects
A ‘system object’ is defined as the set (i,db, li, t,q,a, loc), where:

� i is the object identifier.
� db is a degree of belief, which varies between 0 and 1 and indi-

cates the activity level of the object in the scene.
� li is a list with other possible identifiers of i-object.
� t is the time of last update of the object in the system. The used

time unit is the millisecond, which is sufficiently precise for any
video rate.
� q represents the object qualities. An quality is an attribute or

property of an object. It represents as a triple (c,v,d), where c
denotes the class or type of quality; v is the quality value; and
d is the degree of belief of the quality (between 0 and 1). Exam-
ple: (‘‘type”, ‘‘vehicle”, 0.7).
� loc represents the set of object locations within the scenario. A

location is defined with a set (p,v,s, t, i) where p is the position, v
denotes the speed; s represents the object real size; t is the time
when the object has this position; and i indicates the increase in
time since the last object location.

3.2.2. Alarms
An alarm is represented as a set (i,db,u, t,os, ts) where

� i is the alarm identifier.
� db is the degree of belief of the alarm. It varies between 0 and 1

and indicates the alarm level.
� u is the threshold. It belongs to the interval [0,1]. We consider

that an alarm is activated when its degree of belief exceeds this
threshold.
� t is the time of last update of the alarm. The used time unit is the

millisecond.
� os is a structure that summarizes the explanation of the alarm

activation. It consists in a peculiar sequence of system objects.
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� ts is the explanation of the alarm activation in text format.

3.3. Determination of 3D positioning

In order to create an accurate and precise system, we locate the
position of objects in the real world (3D positioning) using a cam-
era calibration process.

There are several mathematical methods that allow to find the
2D coordinates of a projected point on the image plane (Q0 = (x0,y0))
from the 3D point in the world (Q = (x,y,z)). One of them is based
on the use of the view transformation matrix (M), which defines
the position and rotation of the view (in our case, the camera).
The processing perspective consists of changing the scene coordi-
nate system to another coordinate system centered on the obser-
ver (camera). This process has two stages:

� We move the observer to the origin of coordinates. This applies a
translation of the axes X, Y and Z. Considering (tx, ty, tz) as the
camera position regarding the origin, the translation matrix is
T ¼

1 0 0 0
0 1 0 0
0 0 1 0
�tx �ty �tz 1

0
BBB@

1
CCCA
� We rotate the observer sight line to the Z-axis. In a three-dimen-
sional system, there are three possible angles that can be
applied on the observer. A h-angle on the Y-axis, a /-angle on
the X-axis and a u-angle on Z-axis. Accordingly, the rotation
matrices for each angle are
Rh ¼

cosðhÞ 0 � sinðhÞ 0

0 1 0 0

sinðhÞ 0 cosðhÞ 0

0 0 0 1

0
BBBB@

1
CCCCA

R/ ¼

1 0 0 0

0 cosð/Þ sinð/Þ 0

0 � sinð/Þ cosð/Þ 0

0 0 0 1

0
BBBB@

1
CCCCA

Ru ¼

cosðuÞ sinðuÞ 0 0

� sinðuÞ cosðuÞ 0 0

0 0 1 0

0 0 0 1

0
BBBB@

1
CCCCA
For that reason, the M-matrix is obtained after applying the
translation and rotation processes to the camera: M = TRhR/Ru.

Thus, the 2D point is Q0 = QM, where Q is the point in three
dimensions and M is the view transformation matrix.

Our problem is the reverse process. We have the object 2D posi-
tions in the image, and we need their 3D positions in the real
world. A priori, we know that it is not possible because a compo-
nent is lost in the image: the z-component (or depth).

On the other hand, we know that the photo was taken at a focal
length ‘d’, which represents the image scale. Therefore, we know
that the z-coordinate of point is ‘d’. For each 2D point (x,y), we
can find infinite possible points that are projected on the same
coordinate (x,y,d). These points are defined by P = (x,y,d) = (2-
x,2y,2d) = � � � = (lx,ly,ld), where l is any real value.

In this new process, we will undo the previous changes to
returning the eye of the observer at its original site and get rid of
projections for finding the points in the real world.

Q ¼ Q 0M�1 ¼ Q 0R�1
u R�1

/ R�1
h T�1
First we must undo the rotations. For example, we have to mul-
tiply by the inverse matrix of Ru to undo the first rotation Ru. It is
not necessary to make a diagonalization process, because we know
that the inverse matrix consists of applying the negative angle. As
we know the rules, sin(�u) = �sin(u) and cos(�u) = cos(u), we
can solve

R�1
u ¼

cosðuÞ � sinðuÞ 0 0
sinðuÞ cosðuÞ 0 0

0 0 1 0
0 0 0 1

0
BBB@

1
CCCA

R�1
/ ¼

1 0 0 0
0 cosð/Þ � sinð/Þ 0
0 sinð/Þ cosð/Þ 0
0 0 0 1

0
BBB@

1
CCCA

R�1
h ¼

cosðhÞ 0 sinðhÞ 0
0 1 0 0

� sinðhÞ 0 cosðhÞ 0
0 0 0 1

0
BBB@

1
CCCA

So, the new point without rotations is Prðx0; y0; z0;aÞ ¼
PR�1

u R�1
/ R�1

h .
Next, we must undo the translation. To do this, we calculate the

inverse matrix of the translation matrix T:

Tð�tx;�ty;�tzÞ�1 ¼ Tðtx; ty; tzÞ ¼

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

0
BBB@

1
CCCA

Finally, the new point without rotations or translations is

Pr;t ¼ ðx0þ a � tx; y0þ a � ty; z0þ a � tz;aÞ

We must normalize Pr,t for calculating non-homogeneous coor-
dinates, obtaining

P ¼ Pr;t ¼ txþ x0
a
; tyþ y0

a
; tzþ z0

a
;1

� �

As we knew, the actual point is depending on a, due to lack of
depth. For this reason, it has infinite solutions. To obtain a specific
value, we introduce a plane that represents the ground where the
image was taken. This plane is defined by a vector N = (Nx,Ny,Nz)
and a point S = (Sx,Sy,Sz). And thus, its parametric equation is

N ¼ xNx þ yNy þ zNz � jN � Sj ¼ 0

If we equate the N-plane equation with the P-point, we can
determine a value for a. This value represents the intersection or
the common point between the N-plane and the line represented
by P(r,t).

a ¼ ðNx � x0þ Ny � y0þ Nz � z0� jN � SjÞ
ðNx � txþ Ny � tyþ Nz � tzÞ ¼ ðjN � Pj � jN � SjÞðN � TÞ

Finally, if we replace a in P, we obtain the searched 3D point:

Pðx;y; zÞ ¼ ðx0 � jN � TjÞ
ðjN � Pj � jN � SjÞ þ tx;

ðy0 � jN � TjÞ
ðjN � Pj � jN � SjÞ þ ty;

ðz0 � jN � TjÞ
ðjN � Pj � jN � SjÞ þ tz

� �

This method allows us to calculate object 3D position from its
2D position. This requires to know (with respect to the coordinate
axes that we take as reference) the camera location, the angles of
camera inclination on different axes and the focal distance (see
Fig. 3). Usually, these parameters can be measured using topo-
graphical instruments.



Fig. 3. 2D–3D conversion.

Fig. 4. Process geometry.
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3.4. Estimation of the object speed

The variation in the position of an object in time is defined as
the object speed. In our approach, we know the different positions
of the objects in time, so that we can obtain the object speeds.

Scurrent ¼
Pcurrent � Pbefore

tcurrent � tbefore

However, the actual speed can vary over the estimated one, due
to the white additive error from image process, the 2D tracking and
the 3D conversion. In order to minimize it, we adjust the current
speed of each object according to their N previous speeds. So, the
calculation of the adjusted speed (S*) of an object in an instant tk is

S�k ¼
Xn

i¼1

ðai � S�k�iÞ;
Xn

i¼1

ai ¼ 1

where ai are weights that belongs to the interval [0,1].
Thanks to it, possible errors in local calculations are reduced

and the abrupt changes in the position are fuzzed.

3.5. Rule for predicting potential future collisions

A priori, to carry out the detection of future collisions, our first
proposal was to study the behavior of the mobile objects involved
in the collision equally. However, after several tests, we realized
that in many situations, it is necessary to distinguish different ob-
ject roles in a collision: ‘vulnerable’ or ‘threatening’. In this way,
our model can differentiate between relevant and irrelevant colli-
sions and take into account only the first ones. For example, if a
person runs toward a stopped car, the collision is not relevant; in
the other hand, if a vehicle runs toward a person, may be it is.
Therefore, we rely on the idea that an A-object will collide with a
B-object. The A-object is called ‘threatening-object’ because it is
the cause of the collision. The B-object is called ‘vulnerable-object’
because it is in danger from collision. We have conducted the divi-
sion of the objects into A and B roles, because there are situations
where an only object is dangerous, for example, the crash between
a pedestrian and a car. However, in other situations, both are dan-
gerous, such as two cars that collide at an intersection. In this case,
the situation has been resolved by symmetry. First, our model eval-
uates an object as A-role and the other one as B-role, and then the
opposite situation. So, the two objects are regarded as vulnerable
and threatening.

We have solved the prediction of possible future collisions
among objects by means of the assessment of a fuzzy rule. The rule
is based on three variables:
� The estimated time for the collision between the ‘threatening-
object’ and the ‘vulnerable-object’ (tcollision).
Our system obtains the time that is needed by a ‘threatening-
object’ crash with a ‘vulnerable-object’. For calculating these
data, we need to know the point (Pc, Point of collision), where
the collision will occur. We have defined it as the point that is
located in the intersection between the direction vector of the
‘threatening-object’ (Pr þ Sr

!
, Position and Speed of ‘threatening-

object’) and the Plane of Movement of the ‘vulnerable-object’
(Pm).
In geometric terms, a plane is defined by a perpendicular vector
to it and a point in it. We know that the vectorial product
between the vector perpendicular to the scene ground (Pg,
Plane of ground) and the direction vector of a ‘vulnerable-
object’ (Sv

!
, Speed of ‘vulnerable-object’) defines the perpendic-

ular vector to Plane of Movement (Pm
!
¼ ðPg

!
� Sv
!
Þ). This vector

and the position of the ‘vulnerable-object’ Pv allow us to calcu-
late the equation of Pm in general way:
Pm
!

x

y

z

0
B@

1
CAþ j ~Pv � Pm

!
j ¼ 0
In addition, we can extrapolate the future ‘threatening-object’ posi-
tion depending on time:
Pr0 ¼ Pr þ Sr � tcollision
In order to get the point of collision, we can determine the time
tcollision that the ‘threatening-object’ spends from its current position
Pr with its current speed Sr until the intersection with the Plane of
Movement, Pm

!
. So,
Pr0
\

Pm
!
) tcollision ¼

jPv � Pmj � jPr � Pmj
Sr � Pm
The geographical representation of this method is shown in Fig. 4.
� The distance between the ‘vulnerable-object’ and point of collision

with the ‘threatening-object’ (dist).
As we have obtained tcollision, we can determine the future posi-
tion where this ‘vulnerable-object’ and the ‘threatening-object’
will be located at the moment tcollision:
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Pv 0 ¼ Pv þ ðSv � tcollisionÞ
Pr0 ¼ Pr þ ðSr � tcollisionÞ
where Pv and Pr are the ‘vulnerable-object’ and ‘threatening-
object’ position, and Sv and Sr are the ‘vulnerable-object’ and
‘threatening-object’ speed, respectively.
Finally, we calculate the distance ‘dist’ between the ‘vulnera-
ble-object’ and the ‘threatening-object’:
dist ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPv 02 � Pr02Þ

q

Fig. 6. Fuzzy process.
� The speed of ‘threatening-object’ at the scene (Sv).
Another important factor in the study of prevention of collisions
is speed. For example, when a high probability that two objects
may collide (they will become very close) is detected, it is
important to know if one of them has stopped (its current speed
is zero), because in this case, the alarm level will be decre-
mented. Also, it is very important ‘threatening-object’ speed:
Sr, since it is more probable that a collision happens if the
‘threatening-object’ runs at high speed.

The rule used to detect the danger of a collision between a
‘threatening-object’ and a ‘vulnerable-object’ is defined informally
as follows:

”If there exists a ‘threatening-object’ that can collide with a ‘vulner-
able-object’ in a ‘short time’ (w0), and this ‘vulnerable-object’ is
‘near’ the point of collision with the ‘threatening-object’ (w1),
and the ‘threatening-object’ runs at ‘high speed’ (w2), then there
exists a risk that the ‘threatening-object’ hit the ‘vulnerable-
object’.”

The three conditions of the rule are fuzzy. The values w0, w1 and
w2 belong to the interval [0,1]. Next, it shows as they are
evaluated:

� w0. Once tcollision is known, a trapezoidal function is used to
obtain the degree of membership (w0) of tcollision with respect
to the fuzzy concept ‘short time’, (see Fig. 5). A trapezoidal func-
tion is used because is a good evaluator for human reference in
this case. This is due to, first, when the ‘threatening-object’
overtake the plane of the ‘vulnerable-object’, the time tcollision

become negative, so it is not relevant. The degree of member-
ship of obtained negative time with respect to the concept
‘short time’ is 0. Second, there exists a critical time interval
(when there is very short time to collision) where the degree
of membership is 1. Third, when tcollision is high (a long time to
collision), it is not relevant either. So, the degree of membership
is 0 again. Between the first and second case, and the second
and third cases, we have not considered a discrete change, but
gradual.
� w1. Also, we use other function that indicates the degree of

membership (w1) of dist with respect to the fuzzy concept
Fig. 5. Memberships to the fuzzy concepts:
‘near’, (see Fig. 5). Let us observe that our approach relies on a
reference distance d. With the function used, we assume that
if distance between two positions is less than 0.5d, they are
nearby. In contrast, if the distance exceeds d + 0.5d, probably
they will not be nearby. In intermediate cases, it will be
decreasing the certainty that they are close.
� w2. We use a function that indicates the degree of membership

w2 of the ‘threatening-object’ speed Sv with respect to the fuzzy
concept ‘fast’, (see Fig. 5).

The evaluation of the fuzzy rule is carried out using the fuzzy
AND operator over w0, w1 and w2. We have used here the ‘minimi-
zation function’ to represent the fuzzy AND operator. As we con-
sider, the alarm level assessment is the lowest of the three values:

AlarmLevel ¼ Minðw0;w1;w2Þ; AlarmLevel 2 ½0::1�

As we can see, it is necessary that the three conditions
(w0,w1,w2) are carried out in order to the risk of collision exists.
Alarm level is a degree value that belongs to [0,1] interval. We
have divided this interval into subintervals, which we have as-
signed a label. Thus, the system output (the alarm level) is reinter-
preted to determine the risk level in the scenario such as zero, low,
medium and high. These states are in function on a threshold va-
lue. The threshold of the alarm also belongs to [0,1]. Besides, we
have associated a color for each alarm-level-state.

� White state: zero risk, when the alarm level is zero. No signs of
risk of collision among objects.
� Green state: low risk, when the alarm level belong to
ð0; threshold=2�.
� Yellow state: medium risk, when the alarm level belong to

(threshold/2, threshold). When the color is yellow, the system
alarm emits a warning visual that attracts the attention of
involved objects.
� Red state: high risk, when the alarm level belong to (thresh-

old,1), it is very likely to occur a collision. In this case, the emit-
ted alarm is more intense to stop the involved objects.
The complete process is summarized in Fig. 6.
(w0) short time; (w1) near; (w2) fast.
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4. The application for avoiding pedestrian accidents

4.1. Motivation

Daily, a lot of pedestrians die or injured in traffic accidents.
Many of these accidents are due to the lack of minimum visibility
that prevents drivers for seeing a pedestrian in time to brake, the
distance among crosswalks that leads pedestrians to cross outside
of them, the lack of a specification that indicates mandatory speed
reduction in the presence of a crosswalk, etc. In addition, it is
important to emphasize that the great majority of these accidents
happen on roads or outside of crosswalks.

According to a study carried out by the foundation RACC (Real
Automobil Club de Catalunya), we know that the number of pedes-
trian deaths has decreased in Europe and in Spain in the last
5 years. However, Spain has the highest mortality ratio in Europe
with 15.7 deaths per million inhabitants. During the year 2007,
in Spain, 591 pedestrians were killed in traffic accidents, both on
roads and in urban areas, and 10,838 pedestrians were injured.
The reduction in pedestrians killed in urban areas continues at a
rate lower than on the road. Other important data are that over
90% of killed pedestrians in Spain were killed outside the cross-
walk. Moreover, in Spain, there are deficiencies in the crosswalk
design that do not have traffic lights.

In this context, and in order to increase safety, we present a
solution that allows to detect the presence of risk of traffic accident
where a pedestrian is in danger because a vehicle could hit him.
Our goal is to predict an accident in time and to avoid an unpleasant
fact. In order to resolve this, we have adapted the model proposed
in the previous section. This new system analyzes the content of vi-
deo from cameras and detects the presence of future collisions be-
tween pedestrians and vehicles.
4.2. Application

We use the general collision prediction model (see Section 3) to
solve a concrete situation: to detect risk presence of a pedestrian
can be run over by a vehicle. Our approach is based on the idea
of identifying in advance a possible collision between an ‘vehi-
cle–object’ and an ‘person–object’. Thus, we have adapted the ab-
stract model to this situation; in this case, the vehicle is the
‘threatening-object’ and the pedestrian is the ‘vulnerable-object’
(see Section 3.5).

As mentioned above, our system receives as input the out-
comes of a knowledge extraction system about object detection
and 2D tracking from Video. So, we have used the results of a
work that is described in Silla-Martinez (2008), which carries
out detection and 2D tracking of moving objects. This system
analyzes video from each camera, frame by frame, and uses
the MPEG-7 format to make the video annotation. In each frame,
the moving objects are detected and are classified as people or
vehicles with a degree of belief. Each detected object is
encompassed by an ellipse. The two ellipse radios are known
(object size in two dimensions). Furthermore, in the order to
indicate the 2D tracking in the annotation, each detected object
has an associated list with those objects of the previous
frame that are its antecessors. In other words, the detected ob-
ject is connected with one or several object/s in the previous
frame.

In conclusion, the information that we know about each object,
using the outcomes of the research described in Silla-Martinez
(2008), can be represented by the set (i,p,s,c,a), where

� i is the object identifier,
� p is the i-object 2D position within the frame,
� s represents the i-object 2D size (it is the height and width of the
ellipse),
� c denotes the i-object classification into vehicles or people with a

degree of belief and
� a is a set that contains the i-object antecessors in the previous

frame.

With the aim of reducing the computational complexity, we
process all the obtained information of a frame on a single block.
In this way, it transmits a single event by each frame. The video
events stream that our system currently receives as input is de-
fined by the following set (ci, f, t,ol) where

� ci denotes the camera identifier;
� f is the frame number; and
� t is time.
� ol a list of detected objects in the current frame. We know of each

object its identifier, its 2D position, its 2D speed (data calculated
by our Translator), its 2D size and their classification into people
and vehicles with a degree of belief.

The Translator reads the flow of MPEG-7 and converts it into 3D
location events that can be integrated in our system (see Fig. 7).

We have designed a desktop application where you can check
the status of the studied situation: pedestrian in danger from traf-
fic accident. In this application, the operator sees the development
of alarm estate by means of a graphic bar that changes color and
size according to the level of alert (see Fig. 8).
4.3. Experimental results

We have tested the system with real situations, and we have
analyzed the video that has been captured from a real urban zone.
The used scenario has been a crosswalk without traffic lights (see
Fig. 9). The first step was to calibrate the used camera to obtain
3D positions of the detected objects from video.

In order to evaluate the system, we have simulated a set of
examples that cover many different situations. We need to analyze
situations where there is danger of traffic accidents and also situ-
Fig. 7. Translator.



Fig. 8. Desktop application.

Fig. 9. Test scenario.

Fig. 10. Human results.

Fig. 11. Performance system.
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ations where a pedestrian is hit by a vehicle. For these reasons, we
have simulated annotated video events as system inputs.

We have designed 24 canonical examples of situations that can
occur in real life in our selected scenario. Among these examples,
there are four situations where it is clear that there is no risk of
accident, seven situations where this risk is not easy to detect, five
situations where pedestrians are run over by vehicles, four situa-
tions where vehicles stop in order to pedestrians to cross and four
situations where vehicles do not stop and pedestrians has to wait.

The parameters used in the membership functions to the stud-
ied fuzzy concepts (w0) short time; (w1) near; (w2fast) (see Fig. 5)
to test the system are

� Trapezoidal function that shows the importance of the time that
is required until the collision: lA = �1 s, lB = 0 s, lC = 1 s,
lD = 2.5 s.
� Function that shows the importance of vehicle speed:

lInf = 0 km/h, as 0 value, and lSup = 20 km/h, as 1 value.
� Function that indicates the significance of proximity of person

to collision point: d = 4 m as 0.5 value. For this case, 6 m corre-
spond to 0 value and 2 m correspond to 1 value.
� The chosen alarm threshold is 0.75.

The test stage has been carried out in three parts. First, we have
tested our system with the 24 examples, and we have scored the
obtained results. Second, the same situations have been analyzed
by people, who have recorded their observations. Third, we have
compared both results: the system ones and the human ones.
Eight people have taken part in the experimental test stage. We
shown the simulated videos to these people. They scored, in each
example, the degree of presence (white, green, yellow, red – see
Section 6) of danger or collision risk between a vehicle and a per-
son. The data recorded by these people are the maximum estimate
that they sensed when they saw the videos. We show the data of
this study in Fig. 10.

On the other hand, we have executed our system for these 24
situations. Then, we compare our results with human perception.
The obtained results are in Fig. 11. If we compare these results with
the previous ones, we find 20 coincidences, two overestimates and
two underestimates. These results show a high performance of the
system.

In addition, we can observe that the two cases where the sys-
tem underestimate the human prediction are reasonable because
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the values are from green to white (both, with silent alarm) and
from red to yellow (both, with visual alarm being activated).

In turn, the two overestimate cases correspond on yellow to
green values. The cause is due to an adjustment of the system that
prefers to avoid dangerous situations instead of it ignore the colli-
sions where pedestrians can be injured.

5. Conclusions and future work

Two are the main results in this paper: (1) An abstract model for
predicting collisions among objects using video data. (2) A system
that predicts when a pedestrian is in danger because he/she could
be hit by a vehicle. This system is a concrete implementation of the
proposed abstract model.

One advantage is that the used method can apply to any general
scenario where there are moving objects, in other words, is exten-
sible to any type of detection of collisions between any type of ob-
jects. The only point that changes is the classification of the objects,
which are involved in the collision. In addition, the fuzzy functions
that are used in this model are easily adjusted according to each
studied situation.

Other strong point of our approach is that our system is able to
carry out a processing multi-camera. The used algorithms have
been designed to work with different views of a scenario and inte-
grate data from different cameras, thanks to calculation of 3D posi-
tioning and the homogeneous ontology. This fact requires that the
cameras have been calibrated using the same reference axis on the
scene.

Thanks to the use of fuzzy logic the output of the model, in this
case the detection of a possible future collision is gradual.

With respect to the application, we have proposed a novel intel-
ligent monitoring system that is able to predict the presence of
‘risk of vehicle–pedestrian collision’ in a monitored environment.
It is important to emphasize that our system not only detects,
but it predicts. So, the system can anticipate to the accident be-
tween vehicles and pedestrians and generates an visual alarm.

The inputs of the system are results from video analysis, which
are integrated and processed to generate new knowledge, as 3D
positioning. Our approach is based on a mathematical, geometric
and fuzzy model. The geometric process calculates complex fea-
tures such as the speed and the trajectories of the objects and
the estimated time for a future vehicle pedestrian collision. In
addition, some mathematical operations to minimize tracking er-
rors are necessary (for example, the time weighting).

After a precise geometric process, the system calculates three
variables to evaluate the collision: time to crash, distance to colli-
sion point and vehicle speed. These variables are converted into
degree values by membership functions to the fuzzy concepts
short ‘time’, ‘near’ and ‘fast’, respectively. After obtaining and
smoothing these variables, it can be studied together to solve the
fuzzy rule. Thus, the system is robust against fuzzy information.
The alarm assessment follows a model based on a fuzzy rule that
allow us detect future possible collisions between vehicles and
people.

This system is a good tool for improving the security people in
traffic areas, since the system alerts, in real time, to accidents
where the pedestrians can be damaged by a vehicle. Currently, this
system displays the alarm in a visual way on a computer. However,
in a real scene, it should be located in the same place where an
audible or visual alarm would alert pedestrians and vehicles that
are involved.

This study will continue with the integration of other knowl-
edge sources (sounds detection, sensors detection, etc). In this
way, integration of video–audio-sensors analysis make possible
the development of surveillance system more powerful because
there will exist more available information at the decision-making
process. So, we will detect new situations of risk or interest (new
alarms), for example, collisions between vehicles. For these pur-
poses, our system is easily scalable. We will create new ‘Transla-
tors’ to introduce the new knowledge sources, and we will
develop new Alarms Detection Modules to carry out identification
of new situations. In turn, each alarm situation can be analyzed and
implemented in a different way because our system design makes
it possible. Thus, different techniques can be used to detect situa-
tions from the ontology.
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