Solving Fuzzy Temporal Problems Without Backtracking

Alfonso Bosch', Francisco Guil', Carmen Martinez', Roque Marin®
1 Dpto. Lenguajes y Computacion. Universidad de Almeria.(Spain)
2 Dpto. Ingenieria de la Informacion y Comunicaciones. Univ. de Murcia (Spain)
{abosch, fguil, cmcruz}@ual.es, roque@dif.um.es

Abstract

The Disjunctive Fuzzy Temporal Constraint Network
model allows to express complex qualitative and
quantitative temporal constraints, but its complexity is
exponential. There are several subsets of these networks
that can be solved in polynomial time. Another subset
can be reduced to equivalent networks with a tree
structure. In order to study the usefulness of these
approaches, an evaluation has been carried out,
generating sets of random test problems. The goal is to
obtain a set of methods for managing Disjunctive Fuzzy
Temporal Constraint Networks, integrating them in a
general-purpose module, and to obtain, if possible,
heuristic knowledge for selecting the most suitable
method for each concrete problem.

1. Introduction

Fuzzy Temporal Constraint Network (FTCN) model,
introduced in [1,9], allows to express temporal constraints
with convex and normalized possibility distributions.
Fuzzy temporal constraints allow combining precise,
imprecise, qualitative, and quantitative information. Then,
this model is suitable for temporal reasoning in domains
where the combination of such constraint types is
required. A fuzzy model allows intermediate consistency
degrees, and to quantify the possibility and necessity of a
relationship or query.

In certain tasks, such as planning, a more general
model is needed, where temporal constraints can be
convex or not. Then, the FTCN model is enhanced,
allowing the definition of a constraint with a finite set of
possibility distributions, normalized and convex,
obtaining the Disjunctive Fuzzy Temporal Constraint
Networks (DFTCN) model. This model extends the TSCP
framework proposed by Dechter [5], and it allows
constraints such as “Irrigation is much before or a little
after than Treatment”, subsuming the Vilain & Kautz
point algebra (PA) [14]. This framework allows
representing all the possible relationships between time
points, intervals, and their disjunctions. The aim of this

framework is to contribute to constraint-based temporal
reasoning under uncertainty, using fuzzy TCSPs for
search and querying.

The main drawback of DFTCN is its computational
inefficiency, because generally these networks are non-
decomposable networks [5], needing backtracking to find
a solution. Determining the consistency and computing
the minimal network are also exponential. With small
problems, this is not a drawback, but in order to
generalize the use of the model in a general scope, it
would be interesting to simplify its processing, if possible.
The idea is to explore different approaches to be used
before applying backtracking.

One approach is to try avoiding backtracking, using
the topology of the problem graph [6]. Another one is
decomposing the network into subproblems that can be
solved separately. A third approach is to apply
preprocessing, reducing the original network and testing
the problem consistency.

This model is being integrated with an advisor system
for the control of plagues in greenhouses. The advisor
system (SAEPI) makes a decision about the need of a
chemical treatment, where several crops and/or plagues
can be involved. The next step is the selection of the best
treatment plan, based on a multicriteria decision model.
This treatment consists usually of multiple actions
(application of chemical products, release of natural
enemies), and there are complementary measures too
(take out auxiliary elements, like beehives). The different
actions are affected by temporal constraints among them
and with general cultivation scheduling. The last step is to
use the DFTCN model to assess the suitability of the
treatment plan, checking its consistency, and generating a
schedule, or checking if a schedule proposed by the user
(a solution) is possible or not, and its degree of
possibility.

The remainder of this paper is organized as follows.
Section 2 presents the DFTCN model; Section 3 presents
approaches for constraint networks: series-parallel
networks and tree decomposition; Sections 4 and 5
present an empirical evaluation and an analysis of the

results; and Section 6 summarizes the conclusions and
presents the future work.

2. The Disjunctive Fuzzy Temporal
Constraint Networks Model

A disjunctive fuzzy temporal constraint network
(DFCTN) L consists of a finite set of n+1 temporal
variables X, ... ,X, (X, as time origin for problem
variables), whose domain is a full ordered set of
equidistant precise instants T = {y, f,..., ;, ...}, and a finite
set of disjunctive binary constraints L; among these
variables. The separation between two consecutive
instants, #;-#, will be the maximum precision factor f,,
which can be selected depending on the nature of the
problem. X, is a variable added to use only binary
constraints, and it can be assigned to an arbitrary value
(for simplicity’s sake, this value is usually 0).

A disjunctive binary constraint L,; among temporal
variables X;, X, is defined with a finite set of possibility
distributions, {7, 7, ,...,7, ; normalized and convex [7],
defined over a set I, isomorphic with integers Z; for n € I,
7, (n) € [0,1] represents the possibility that a time
quantity m can be precisely # time units.

A value assignation for variables X; X, X;=a; X;=b, a, b
€ 1, satisfies the constraint L iff it satisfies one of its
individual constraints:

Eln,.j‘.’eL;. /m;(b—a)>0 (1)

The maximum possibility degree of satisfaction of a
constraint L;; for an assignment X;= a, X;= b is

0, (a,b)= rllglii(ﬂ: (b—a) ()

A constraint £; among X;, X; defines a symmetric
constraint L Ji among X;, X, and the lack of a constraint is
equivalent to the universal constraint 7, . A DFTCN can
be represented with a directed graph, where each node
maps to a variable and each arc maps to a constraint
between the connected variables, omitting symmetric and
universal constraints. The set of possible solutions of an
DFTCN L, is defined as the fuzzy subset from 7"
associated to the possibility distribution given as:
ﬂs(l‘l,...,ln)=?S]j.ig}(o'i‘/?a>((ti’t/) (3)
<j<n

An n-tuple T = (¢,, ... t,) € 7" of precise instants is an
o-possible solution of a DFTCN L¢ if z(7) =o0. We
say that a DFTCN L is consistent if it is 1-consistent, and it
is inconsistent if it does not have any solution.

Given a DFTCN L% it is possible to find out several
networks which are equivalent to L. We can obtain this
networks using the composition and intersection operations
defined in [3]. Among all the equivalent networks, there is
always a network M DETCN that is minimal. This network

contains the minimal constraints. If M‘ contains a empty
constraint, L’ is inconsistent. If p if the maximum of
possibility distributions in each constraint, and the network
has ¢ disjunctive constrains and » variables, then the
minimal network M? of a DFTCN L? can be obtained with a
complexity O(p®n®), where n’ is the cost of resolving each
case non disjunctive FTCN[10]. Due to this exponential
complexity, we need to find a more practical approach.

3. Series-Parallel Networks and Tree

Decomposition

Topological characteristics of constraint networks can
help us to select more effective methods to solve them,
and there are previous studies about this topic [6]. In this
work, we will focus on series-parallel networks and tree-
decomposition.

3.1. Series-Parallel Networks

A network is series-parallel [12] in respect to a pair of
nodes i,; if it can be reduced to arc (ij) applying
iteratively this reduction operation: a) select a node with a
degree of two or less; b) remove it from the network; c)
connect its neighbours. A network is series-parallel if it is
series-parallel in respect to every pair of nodes. There is
an algorithm that checks this property with an O(n)
complexity [15].

If a DFTCN is series-parallel, the path consistent
network is the minimal network [15]. As a subproduct of
checking if a network is series-parallel, a variable ordering
is obtained, when deleting the nodes. Applying directional
path-consistency (DPC) algorithm [6] in the reverse order, a
backtrack-free network is obtained, and the minimal
constraint between the first two variables of the ordering
too. This can be interesting when we need only to compute
a minimal constraint for two variables, as in LaTeR [4]. In
addition, if the network is series-parallel, we can decide
absolutely whether the network is consistent, by applying
DPC algorithm in the reverse order.

3.2. Tree Decomposition

We stated that general DFTCN are not tractable when
searching the minimal network and finding a solution, but
both problems are tractable when a DFTCN has a tree
structure. Then, it seems adequate to study the possibility
of removing redundancies from a DFTCN to extract (if
it’s possible) a tree representing a relative DFCTN
equivalent to the original one.

Tree-decomposition is proposed by Meiri et al. [11] for
discrete CSPs, and it can be extended to DFTCN. If a tree
T can be extracted from a path-consistent network by

means of arc removal, the tree 7° represents exactly the
original network. The tree extraction using arc removal
will be possible only when the path-consistent network is
also minimal. If the path-consistent network is minimal,
and the algorithm cannot find the tree decomposition, then
there is no tree representation.

The tree decomposition method consists of removing
redundant constraints from the original network, until a
tree that exactly represents the network without
information loss is found [2,11,13]. The algorithm works
as follows: Given a path-consistent DFTCN, it examines
each triplet of variables, identifying the redundancies of
each triplet, assigning weights to the arcs depending on
the founded redundancies. The generated tree, 7% is a
maximum weight spanning tree (MWST) respect to these
weights. The last step is to verify that 7¢ represents truly
the original network. If 7 does not represent truly the
original network, removed arcs can be added again, until
both networks become equivalent. This algorithm has a
polynomial cost, and when applied to a minimal
disjunctive network, it determines whether the network is
decomposable or not.

4. Empirical Evaluation

We have conducted an empirical evaluation process,
generating sets of random DFTCN with different
characteristics, preprocessing them with PC-2 algorithm
from Mackworth [8], and applying Tree-Decomposition
and Series-Parallel algorithms.

The parameters used in our problem generator are n

(variables), R (constraint range), p (constraint possibility
distributions), ¢ (connectivity), T (constraint tightness)
and F (fuzziness). The values selected for the first test
battery have been n= 4 — 40; R= 600; p=1,2,4,8,16,32; g=
0.1,0.3,0.5; 7= 0.1,0.5,0.9; F=0.1.
n ranges from 4 to 40 variables, in order to see the
evolution from very small to large problems. R has a fixed
value of 600, enough to fit the maximum number of
possibility distributions, and due to the continuous nature
of the model (versus the discrete CSP models), it seems
not necessary to test different values. p (non-disjunctive
problems) to 32 (highly disjunctive problems), with a
exponential progression, because this is intuitively one of
the factors with higher influence on the problem
complexity. Another factor with high influence is g,
representing the number of problem constraints; we use
three levels, from 0.1 to 0.5, enough to create highly
interconnected graphs. The tightness of the problem is the
fraction of values allowed by a constraint, and there are
three cases: few values allowed (0.1), average (0.5) and
many values (0.9). F indicates the fraction of values
allowed with a possibility degree lower than 1, with a
fixed value of 0.1.

The number of generated problem sets is npgT =
37x6x3x3 = 1998. For each set of problems, we have
generated and solved 20 individual problems. All the
generated and processed problems have been stored in a
problem repository.

In every evaluation process, it is necessary to verify
the results. We have repeated the process with new sets of
problems for 4, 6 ... 40 variables, comparing the obtained
results. The difference on the percentage of tree-
decomposable problems was 0.3 %, and the difference on
the execution time was 2.6%. For series-parallel, the
difference was 0.2%.

5. Results

Figure 1 shows that the fraction of series-parallel
problems, decreases with the problem size. Figure 2
shows decreases with the problem size. Above 24
variables, there is not any path-consistent problem that
could be tree-decomposable. And the number of path-
consistent problems decreases also with the problem size.

|EI Mo Serie-Parallel B Serie-Parallel ‘
1.200

1.000

800 HHHHHH

600 HHHHHHHHHKEHHA

Problems

40 HHHRHAHRARAHRRAA

200 HHHHHHHHHHHHHHAH

Variahle Number

Fig. 1. Series-Parallel problems versus Variable Number

|E| No decomposable B Decomposable |

1.200

1.000

Problems
@
4
H

4 9 14 19 24 29 34
Variable Number

Fig. 2. Tree-decomposable and Path-consistent problems versus
Variable Number

—+— 10 —=— 30 —— 50
350

a0 o T

ey RN N

P IR N .
100 N N
50 NN N

14 1% 24

Variable Humber

Problems

Fig. 3. SP problems vs. Variable Number for each connectivity

6.000

5.000 bl

4.000

3.000

Problems

2.000

1.000 \

10 30 50
Connectivity of the Graph

Fig. 4. SP problems vs. connectivity

Figure 3 shows that connectivity has a strong impact
on the series-parallel property. For sparse problems (10%
connectivity) the curve holds up to approximately 17
variables, and drops after this point.

Figure 4 shows the overall influence of connectivity,
presenting a inverse exponential trend.

—- 1w E

Time (seconds)

Variable Number

Fig. 5. TD execution time for each connectivity vs. Variable
Number.

=01 =05 e

e - ™ -

Time (seconds)

e

e
T

i
e

4 H u 1 i] M ®
Variable Number

Fig. 6. TD execution time for each tightness vs. Variable
Number.

Figure 5 shows that a connectivity of 10% (which
maps with problems with less constraints) has a higher
cost than the connectivity of 30%, while a connectivity of
50% presents a lower cost until 20 variables, and starting
from 25 variables the cost increases dramatically. Then,
there is not a proportional response between the number
of problem constraints and the elapsed time on this
parameter range. As we know that above 25 variables
there are not tree-decomposable problems, the lower cost
for few variables when complexity is high could be a
consequence of the earlier detection of that the problem is
non tree-decomposable. We can check it looking at the
number and fraction of tree-decomposable problems for
the different parameter combinations.

In Figure 6, the highest cost maps with a tightness of
0.1 (tighter problems), with multiple peaks, while the 0.5
and 0.9 values have a similar cost and lower.

Table 1 shows the number of decomposable problems
versus the number of possibility distributions for each
constraint.

Table 1. Number of tree-decomposable problems vs. the
number of possibility distributions

Possibility distributions for each constraint
Variable |y 2 4 8 16 32
4 156 148 144 147 145 146
5 114 114 133 107 118 122
6 100 102 100 94 94 101
7 95 87 73 64 85 80
8 80 62 70 55 59 62
9 57 61 60 47 57 65
10 47 51 51 43 54 57
11 50 50 42 40 51 42
12 33 32 38 40 37 40
13 38 44 28 29 30 29
14 14 25 33 34 32 26
15 33 29 25 19 21 17
16 15 17 15 7 15 21
17 12 9 13 12 12 14
18 8 13 6 8 6 6
19 3 4 5 5 7

20 3 2 9 5 3 8

21 7 6 4 2 4

22 2 1 2 2

23 3 3 1

24

25 1 1
Total 868 854 844 764 830 850

We can see that the number of possibility distributions
has not a direct influence on the number of tree-
decomposable problems. A behaviour pattern cannot be
derived from Table 1. For each number of variables, the
number of tree-decomposable problems versus the
number of possibility distributions has variations, but
between a range (sometimes they are significant, but
without a pattern). In fact, when grouping the number of
tree-decomposable problems for each number of
possibility distributions, the only total that presents a
meaningful deviation corresponds to 8 possibility
distributions for each constraint (which is the lowest).
Then, we can state that the level of disjunctions in a
DFTCN has not influence on the possibility that the
network could be tree-decomposable.

6. Conclusions and Future Work

This paper presents the application of tree
decomposition and series-parallel networks for an
efficient management of DFTCN problems, which nature
is exponential. We have carried out an exhaustive
evaluation test, verifying its accuracy. The cost of tree
decomposition is polynomial, and its success is mainly
limited by the problem size and connectivity. The cost of
series-parallel test is linear, and its usefulness seems to be
higher.

A natural continuation of this work is to study deeper
the obtained results, in order to search a cost model for
TD or an estimation about whether a DFTCN is tree-
decomposable (or series-parallel) or not, based on its
initial features.

There are also other topological properties of DFTCN
that are being exploited and studied. Preprocessing methods
are also interesting, because they can reduce the
backtracking search effort. The general goal is to develop
a prototype for the representation and management of
temporal information, with a selection mechanism that
chooses the most suitable technique for each task.

The selection mechanism could use initially heuristics
based on direct problem features (topology, disjunction
ratio, number of disjunctions, range). In a next stage, we
can study if it is possible to propose a cost model to
bound “tractable” problems, and the necessary effort to
solve a concrete problem.

Acknowledgements. This work is partially supported by
an EC FEDER Program grant (1FD97-0255-C03-03) and
a Spanish MCYT Program grant ((TIC2000-0873-C02-
02).

References

[1] S. Barro, R. Marin, and A.R. Paton, “A model and a
language for the fuzzy representation and handling of time”,
Fuzzy Sets and Systems, 61, 1994, pp. 153-175.

[2] A. Bosch, M. Torres, 1. Navarrete, and R. Marin, “Tree
Decomposition of Disjunctive Fuzzy Temporal Constraint
Networks”. Proc. of Computational Intelligence: Methods and
Applications CIMA’2001, ICSC-NAISO, Bangor (UK), 2001,
#1714-066, 7 pages.

[3] A. Bosch, M. Torres, R. Marin. Reasoning with Disjunctive
Fuzzy Temporal Constraint Networks. TIME-2002, Manchester
(UK), pp. .36-43, 2002.

[4] V. Brusoni, L. Console, B. Pernici, and P. Terenziani,
“LaTeR: a general purpose manager of temporal information”,
Methodologies for intelligent systems 8, LNCS 869, Springer,
1994, pp. 255-264.

[5] R. Dechter, 1. Meiri, and J. Pearl, “Temporal constraint
networks”, Artificial Intelligence 49, Elsevier, 1991, pp. 61-95.

[6] R. Dechter, and J. Pearl, “Network-based heuristics for
constraint-satisfaction problems”, Artificial Intelligence, 34,
Elsevier, 1987, pp. 1-38

[7] D. Dubois, H. Prade, Possibility Theory: An approach to
computerized processing of uncertainty, Plenum Press, New
York, 1988.

[8] A. Mackworth, “Consistency in networks of relations”,
Artificial Intelligence 8, Elsevier, 1977, pp. 99-118.

[9] R. Marin, S. Barro, A. Bosch, and J. Mira, “Modelling the
representation of time from a fuzzy perspective”, Cybernetics
and Systems, 25, 2, Taylor&Francis, 1994, pp. 207-215.

[10] R. Marin, M. Cardenas, M. Balsa, and J. Sanchez,
“Obtaining solutions in fuzzy constraint networks”, Int. Journal
of Approximate Reasoning, 16, Elsevier, 1997, pp. 261-288.

[11] L. Meiri, R. Dechter, and J. Pearl, “Uncovering trees in
constraint networks”, Artificial Intelligence, 86, Elsevier, 1996,
245-267.

[12] U. Montanari, “Networks of constraints: fundamental
properties and applications to picture processing”, Information
Science, 7, 1974, pp. 95-132.

[13] I. Navarrete, R. Marin, and M. Balsa, ‘“Redes de
Restricciones Temporales Disyuntivas Borrosas”, Proceedings

of ESTYLF’95, Murcia, European Society for Fuzzy Logic and
Technology, (Spain), 1995, pp. 57-63

[14] E. Schwalb, and L. Vila, “Temporal Constraints: A
Survey”, Constraints 3 (2/3), 1998, pp. 129-149.

[15] J.A. Wald, and C.J. Colburn, “Steiner Trees, Partial 2-
Trees and Minimum IFI Networks”, Networks, 13, 1983, pp.
159-167.

