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Summary. A group decision making (GDM) problem is a decision process where
several decision makers (experts, judges, etc.) participate and try to reach a common
solution. In the literature these problems have been solved carrying out a selection
process that returns the solution set of alternatives from the preferences given by
the experts. In order to achieve an agreement on the solution set of alternatives
among the experts, it would be adequate to carry out a consensus process before
the selection process. In the consensus process the experts discuss and change their
preferences in order to achieve a big agreement. Due to the fact that the experts may
belong to different research areas, they may express their preferences in different
information domains. In this contribution we focus on the consensus process in
GDM problems defined in heterogeneous contexts where the experts express their
preferences by means of numerical, linguistic and interval-valued assessments. We
propose a consensus support system model to automate the consensus reaching
process, which provides two main advantages: (1) firstly, its ability to cope with
GDM problems with heterogeneous information by means of the Fuzzy Sets Theory,
and, (2) secondly, it assumes the moderator’s tasks, figure traditionally presents in
the consensus reaching process.

9.1 Introduction

Group decision-making (GDM) problems may be defined as decision situations
where two or more experts try to achieve a common solution about a problem
taking into account their opinions or preferences.

In the literature we can find many proposals to solve decision problems
where experts use the same information domain to express their preferen-
ces (Bui 1987; Herrera and Herrera-Viedma 2000; Kacprzyk 1986; Kim et al.
1999). However, in several occasions it may be more suitable that experts
express their opinions in different expression domains according to their own
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knowledge or nature of the alternatives. For example, if experts belong to dif-
ferent departments (marketing, accounting, psychology, etc.), they may prefer
to provide their opinions by using an information domain closer their research
topics. Moreover, in a decision problem we can deal with alternatives whose
nature is quantitative and others whose nature is qualitative. The first ones
can be assessed by means of precise values like crisp values (Kacprzyk 1986;
Yager 1988). However, when alternatives are related to qualitative aspects, it
may be difficult to qualify them using precise values. In such cases, where the
uncertainty is present, the experts can use interval-valued (Kundu 1997; Le
Téno and Mareschal 1998) or linguistic values (Herrera and Herrera-Viedma
2000; Yager 1995) to express their preferences. In such situations, the decision
problem is defined into a heterogenous context.

Usually GDM problems have been solved carrying out Selection Processes
where experts obtain the best solution set of alternatives from the preferences
given by themselves (Fodor and Roubens 1994; Roubens 1997). However it
may happen that some experts consider that their preferences have not been
taken into account to obtain the solution, and therefore they do not agree
with it. To avoid this situation, it is suitable to carry out a consensus process
(see Fig. 9.1) where the experts discuss and change their preferences in order
to reach a sufficient agreement before making a decision (Carlsson et al. 1992;
Herrera et al. 1996; Herrera-Viedma et al. 2002; Kacprzyk et al. 1997).

Different methods have been proposed to deal with Selection Processes in
heterogeneous GDM problems in the literature (Delgado et al. 1998; Herrera
et al. 2005; Zhang et al. 2004), but there are not defined specific consensus
processes for this kind of problems. Consequently, in this chapter we focus
on the Consensus Process on GDM problems dealing with heterogeneous
information.

The consensus is an important area of research in GDM (Bordogna et al.
1997; Bryson 1996; Carlsson et al. 1992; Fan and Chen 2005; Herrera-Viedma
et al. 2002; Kacprzyk et al. 1997; Szmidt and Kacprzyk 2003; Yager 1997).
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Fig. 9.1. Resolution process of a GDM problem
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The consensus is defined as a state of mutual agreement among members of
a group where all opinions have been heard and addressed to the satisfac-
tion of the group (Saint and Lawson 1994). The consensus reaching process
is a dynamic and iterative process composed of several rounds, where the
experts express and discuss their opinions. Traditionally this process is coor-
dinated by a human moderator, who computes the agreement among experts
in each round using different consensus measures (Herrera-Viedma et al. 2004;
Kuncheva 1991). If the agreement is not enough then the moderator recom-
mends the experts to change their furthest preferences from the group opinion
in an effort to make them closer in the next consensus round (Bryson 1996;
Zadrozny 1997).

The moderator has been a controversial figure because experts may have
complaints about his lack of objectivity. Moreover, in heterogeneous contexts,
he may have problems to understand all the different domains and scales in
a proper way. Therefore, the aim of this chapter is to present a consensus
support system (CSS) model for GDM problems such that:

• The experts can express their preferences by means of linguistic, numerical
or interval-valued preference relations, i.e., into a heterogeneous context.

• The moderator’s tasks are assumed by an automatic guided advice gene-
rator.

The chapter is set out as follows. First, we introduce the GDM problems
defined in heterogeneous contexts in the Sect. 2. In the Sect. 3 the different
phases of the consensus model are explained in detail. Finally, in the Sect. 4,
a practical example is proposed in order to show the performance of the CSS.

9.2 Preliminaries

Let’s begin this section introducing the GDM problems based on fuzzy
preference relations. Afterwards, it is briefly reviewed different approaches
proposed in the literature to express the experts’ preferences and finally it is
presented the heterogeneous GDM problems.

9.2.1 Group Decision Making Problems

GDM problems are decision situations in which two or more individuals or
experts, E = {e1, e2, . . . , em} (m ≥ 2), provide their preferences on a set of
alternatives, X = {x1, x2, . . . , xn} (n ≥ 2), to derive a solution (an alternative
or set of alternatives). Depending on the nature or the knowledge on the
alternatives, experts may express their preferences using different approaches.

In fuzzy contexts, experts’ preferences are usually expressed by means
of fuzzy preference relations (Kacprzyk 1986). A preference relation may be
defined as a matrix Pei ⊂ X ×X
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Pei
=

⎛

⎜⎝
p11
i · · · p1n

i
...

. . .
...

pn1
i · · · pnni

⎞

⎟⎠ ,

where the value μPei
(xl, xk) = plki is interpreted as the preference degree of

the alternative xl over xk expressed by the expert ei.
Let’s suppose plj ∈ [0, 1], then:

1. plj = 1 indicates the maximum degree of preference of xl over xj .
2. 0.5 ≤ plj ≤ 1 indicates a definitive preference of xl over xj .
3. plj = 0.5 indicates the indifference between xl and xj .

The fuzzy preference relations may satisfy some of the following properties:

• Reciprocity: plj + pjl = 1, ∀l, j
• Completeness: plj + pjl ≥ 1, ∀l, j
• Max–Min Transitivity: plk ≥Min(plj, pjk), ∀l, j, k
• Max–Max Transitivity: plk ≥Max(plj , pjk), ∀l, j, k
• Restricted Max–Min Transitivity: plj ≥ 0.5, plk ≥ 0.5 ⇒ plk

≥Min(plj, pjk)
• Restricted Max–Max Transitivity: plj ≥ 0.5, plk ≥ 0.5 ⇒ plk

≥Max(plj , pjk)
• Additive Transitivity: plj + pjk − 0.5 = plk, ∀l, j, k

9.2.2 Preferences Modeling

Fuzzy Preference Relations

A valued fuzzy preference relation R on X is defined as a fuzzy subset of the
direct product X × X , i.e, R : X × X → [0, 1]. The value, R(xl, xk) = plk

denotes the degree in which an alternative xl is preferred to alternative xk.

Pei
=

⎛

⎜⎝
0.5 · · · 0.7
...

. . .
...

0.3 · · · 0.5

⎞

⎟⎠

These were the first type of fuzzy preference relations used in decision
making (Kacprzyk 1986) to deal with uncertainty, but soon appeared other
approaches to express the uncertainty that will be reviewed in the following
subsections.

Interval-Valued Preference Relations

A first approach to add some flexibility to the uncertainty representation
problem was by means of interval-valued preferences relations:

R : X ×X → I([0, 1]),
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where R(xl, xk) = plk denotes the interval-valued preference degree of the
alternative xl over xk. In these approaches (Kundu 1997; Le Téno and
Mareschal 1998), the preferences provided by the experts are interval values
assessed in I([0, 1]), where the preference is expressed as [a, a]lk, with a ≤ a

Pei
=

⎛

⎜⎝
[0.5, 0.5] · · · [0.7, 0.9]

...
. . .

...
[0.1, 0.3] · · · [0.5, 0.5]

⎞

⎟⎠ .

Fuzzy Linguistic Preference Relations

A fuzzy linguistic preference relation is defined as

R : X ×X → S

being S = (s0, . . . , sg) a set of labels.
There are situations in which a better approach to qualify aspects of many

activities may be to use linguistic assessments instead of numerical values.
The fuzzy linguistic approach represents the information as linguistic values
by means of linguistic variables (Zadeh 1975). This approach is adequate to
qualify phenomena related to human perception that we often assess using
words in natural language. This may arise for different reasons. There are some
situations where the information may be unquantifiable due to its nature,
and thus, it may be stated only in linguistic terms (e.g., when evaluating
the “comfort” or “design” of a car, terms like “bad”, “poor”, “tolerable”,
“average”, “good” can be used (Levrat et al. 1997)). In other cases, according
to (Zadeh 1996) there is a tolerance for imprecision which can be exploited
to achieve tractability, robustness, low solution cost, and better rapport with
reality (e.g., when evaluating the speed of a car, linguistic terms like “fast”,
“very fast”, “slow” are used instead of numerical values).

We have to choose the appropriate linguistic descriptors for the term set
and their semantics. One possibility of generating the linguistic term set con-
sists in directly supplying the term set by considering all terms distributed on
a scale on which a total order is defined (Yager 1995). For example, a set of
seven terms S, could be given as follows:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = perfect}.

In these cases, it is usually required that there exist:

1. A negation operator Neg(si) = sj such that j = g-i (g+1 is the cardinality
of the term set)

2. A maximization operator: Max(si, sj) = si if si ≥ sj
3. A minimization operator: Min(si, sj) = si if si ≤ sj
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Fig. 9.2. A set of seven linguistic terms with its semantics

The semantics of the terms is given by fuzzy numbers defined in the [0,1]
interval. A way to characterize a fuzzy number is to use a representation based
on parameters of its membership function (Bonissone and Decker 1986). For
example, we may assign the following semantics to the set of seven terms via
triangular fuzzy numbers:

Perfect(P ) = (0.83, 1, 1) V ery High(V H) = (0.67, 0.83, 1)
High(H) = (0.5, 0.67, 0.83) Medium(M) = (0.33, 0.5, 0.67)
Low(L) = (0.17, 0.33, 0.5) V ery Low(V L) = (0, 0.17, 0.33)
None(N) = (0, 0, 0.17),

which is graphically shown in Fig. 9.2.
Therefore a linguistic preference relation R(xl, xk) denotes the linguistic

preference degree of the alternative xl over xk. Using the linguistic term set
shown in the Fig. 9.2, a linguistic preference relation could be:

Pei
=

⎛

⎜⎝
M · · · V H
...

. . .
...

V L · · · M

⎞

⎟⎠ .

9.2.3 Group Decision Making Problems Defined on Heterogeneous
Contexts

The ideal situation in a GDM problem is that all experts have a wide know-
ledge about the alternatives and provide their opinions in a numerical precise
scale. However, in some cases, experts may belong to distinct research areas
and have different levels of knowledge about the alternatives. Due to this, the
experts may prefer to express their preferences by means of different infor-
mation domains. In such cases, the problem is defined in a heterogeneous
context.

In this chapter we deal with heterogenous GDM problems where the
experts express their preferences using different expression domains (numer-
ical, interval-valued or linguistic), Di ∈ {N |I|L}. Each expert gives their
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opinions by means of a fuzzy preference relation defined on an unique
expression domain, Pei

:

Pei
=

⎛

⎜⎝
p11
i · · · p1n

i
...

. . .
...

pn1
i · · · pnni

⎞

⎟⎠ ,

where plki ∈ Di represents the preference of the alternative xl over the
alternative xk given by the expert ei.

9.3 A Consensus Support System Model for GDM
Problems with Heterogeneous Information

In this section we present the model of a consensus support system for GDM
problems with heterogeneous information. The CSS model has two main
features:

1. It is able to carry out the consensus process in heterogeneous GDM
problems with numerical, interval-valued and linguistic assessments.

2. It includes a guided advice generator that assumes the moderator’s tasks
and recommends the changes in experts’ preferences in order to obtain a
high consensus degree.

The CSS model will be built up using:

• A methodology to unify the heterogeneous information into a single
domain.

• Different measurements to cope with the agreement: consensus degree and
proximity measure. The first one is used to evaluate the agreement amongst
the experts, while the second one is used to measure the distance between
the collective and individual expert’s preferences.

• A set of advice rules based on the these measurements are used to guide
the direction of the changes in the experts’ opinions.

The CSS model consists of the following phases depicted in Fig. 9.3:

1. Making the information uniform. In this phase, the experts’ heterogeneous
preferences are unified into an unique domain.

2. Computing consensus degree. In this phase consensus degree amongst the
experts is computed. To do so, a similarity function is used to calculate
the coincidence amongst experts’ preferences.

3. Checking the agreement. In this phase the CSS controls the level of
agreement achieved amongst experts. If the agreement is greater than
a specified consensus threshold (γ) then the consensus process will stop
and the selection process will be applied to obtain the solution of the
problem. Otherwise, in the following phase the experts’ preferences must
be modified.



236 F. Mata et al.

COMPUTING
CONSENSUS DEGREE

GENERATING ADVICE

COMPUTING PROXIMITY  MEASURE
GUIDED ADVICE GENERATOR

Selection process

CONSENSUS MODEL

Advice

MAKING THE  INFORMATION
UNIFORM

 CHECKING THE AGREEMENT

e1

e2

em

Pe1   onD1

Pe2  onD2

Pem  onDm

PREFERENCE  RELATIONS

Fig. 9.3. A CSS model with heterogeneous information

4. Generating advice. To help experts change their preferences, the CSS gen-
erates a set of recommendations or advice. To do this, a proximity measure
is used in conjunction with the consensus degree to build a guided advice
generator in charge of identifying the preferences to be changed and rec-
ommending experts, how should be the changes in order to increase the
agreement in the next consensus round.

9.3.1 Making the Information Uniform

Considering that we are dealing with heterogeneous contexts with numerical,
interval-valued and linguistic information and because of there are not stan-
dard operators to manage directly heterogeneous information, we need to
unify this into a common utility space that we will call basic linguistic term
set (BLTS), ST = {s0, . . . , sg} (Fig. 9.4). To do so, as it was proposed in (Her-
rera et al. 2005), we define different transformation functions to transform
each numerical, interval-valued and linguistic preference value into a fuzzy set
defined in BLTS, F (ST ).

Transforming Numerical Values in [0, 1] into F (ST )

To transform a numerical value into a fuzzy set on ST , we use the following
function. Let ϑ be a numerical value, ϑ ∈ [0, 1], and ST = {s0, . . . , sg} the
BLTS. The function τNST that transforms a numerical value ϑ into a fuzzy
set on ST is defined as (Herrera and Mart́ınez 2000):
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Heterogeneous
Information

Making the Information Uniform

F(ST)
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Fig. 9.4. Unification process of heterogeneous information

0.78

Fig. 9.5. Transforming a numerical value into a fuzzy set in S

τNST : [0, 1] → F (ST )
τNST (ϑ) = {(s0, γ0), . . . , (sg, γg)}, si ∈ ST and γi ∈ [0, 1]

γi = μsi(ϑ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ϑ /∈ Support(μsi(x))
ϑ−ai

bi−ai
, if ai ≤ ϑ ≤ bi

1, if bi ≤ ϑ ≤ di
ci−ϑ
ci−di

, if di ≤ ϑ ≤ ci

Remark 1. We consider membership functions, μsi(·), for linguistic labels, si ∈
ST , represented by a parametric function (ai, bi, di, ci). A particular case are
the linguistic assessments whose membership functions a triangular, i.e., bi =
di.

Example 1 Let ϑ = 0.78 be a numerical value to be transformed into a fuzzy
set in S = {s0, . . . , s4}. The semantic of this term set is:

s0 = (0, 0, 0.25), s1 = (0, 0.25, 0.5), s2 = (0.25, 0.5, 0.75), s3 = (0.5, 0.75, 1)
s4 = (0.75, 1, 1)

Therefore, the fuzzy set obtained is (see Fig. 9.5):

τNST (0.78) = {(s0, 0), (s1, 0), (s2, 0), (s3, 0.88), (s4, 0.12)}
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Transforming Linguistic Terms in S into F (ST )

To transform a linguistic value into a fuzzy set on ST , we use the following
function. Let S = {l0, . . . , lp} and ST = {s0, . . . , sg} be two linguistic term
sets, such that, g ≥ p. Then, the function τSST that transforms li ∈ S into a
fuzzy set on ST is defined as:

τSST : S → F (ST )
τSST (li) = {(sk, γik) / k ∈ {0, . . . , g}}, ∀li ∈ S

γik = maxy min{μli(y), μsk
(y)},

where F (ST ) is the set of fuzzy sets defined in ST , and μli(·) and μsk
(·) are

the membership functions of the fuzzy sets associated with the terms li and
sk, respectively.

Therefore, the result of τSST for any linguistic value of S is a fuzzy set
defined in ST .

Remark 2. In the case that the linguistic term set S of the non-homogeneous
contexts let be chosen as ST then the fuzzy set that represents a linguistic
term will be all 0 except the value correspondent to the ordinal of the linguistic
label that will be 1.

Example 2 Let S = {l0, l1, . . . , l4} and ST = {s0, s1, . . . , s6} be two term set,
with 5 and 7 labels, respectively, and with the following semantics associated:

l0 = (0, 0, 0.25) s0 = (0, 0, 0.16)
l1 = (0, 0.25, 0.5) s1 = (0, 0.16, 0.34)
l2 = (0.25, 0.5, 0.75) s2 = (0.16, 0.34, 0.5)
l3 = (0.5, 0.75, 1) s3 = (0.34, 0.5, 0.66)
l4 = (0.75, 1, 1) s4 = (0.5, 0.66, 0.84)

s5 = (0.66, 0.84, 1)
s6 = (0.84, 1, 1)

The fuzzy set obtained after applying τSST for l1 is (see Fig. 9.6):

τSST (l1) = {(s0, 0.39), (s1, 0.85), (s2, 0.85), (s3, 0.39), (s4, 0), (s5, 0), (s6, 0)}.

Transforming Interval-Valued into F (ST )

To transform an interval-valued into a fuzzy set on ST , we use the following
function. Let I = [i, i] an interval valued in [0, 1] and ST = {s0, . . . , sg} the
BLTS . Then, the function τIST that transforms the interval-valued I into a
fuzzy set on ST is defined as:

τIST : I → F (ST )
τIST (I) = {(sk, γik) / k ∈ {0, . . . , g}},
γik = maxy min{μI(y), μsk

(y)},
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S

ST

Fig. 9.6. Transforming l1 ∈ S into a fuzzy set in ST

i i

1

0 1

Fig. 9.7. Membership function of I = [i, i]

where F (ST ) is the set of fuzzy sets defined in ST , and μI(·) and μsk
(·) are

the membership functions associated with the interval-valued I and terms sk,
respectively.

Remark 3. We assume that the interval-valued has a representation inspired
in the membership function of fuzzy sets (Kuchta 2000):

μI(ϑ) =

⎧
⎨

⎩

0, if ϑ < i
1, if i ≤ ϑ ≤ i
0, if i < ϑ

,

where ϑ is a value in [0, 1]. In Fig. 9.7 can be observed the graphical represen-
tation of an interval.

Example 3 Let I = [0.6, 0.78] be an interval-valued to be transformed into
a fuzzy set in ST with five terms symmetrically distributed. The fuzzy set
obtained after applying τIST is (see Fig. 9.8):

τIST ([0.6, 0.78]) = {(s0, 0), (s1, 0), (s2, 0.6), (s3, 1), (s4, 0.2)}.

Results of the Unification Process

Once we have introduced in the previous subsections each one of the differ-
ent transformation functions, to note that after the unification process and
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Fig. 9.8. Transforming [0.6, 0.78] into a fuzzy set in ST

assuming that each fuzzy set will be shown by means of its membership degrees
(αlki0, . . . , α

lk
ig), the preferences of each expert will be represented as a matrix

of fuzzy sets, P̃ei
:

P̃ei
=

⎛

⎜⎝
p̃11
i = (α11

i0 , . . . , α
11
ig ) · · · p̃1n

i = (α1n
i0 , . . . , α

1n
ig )

...
. . .

...
p̃n1
i = (αn1

i0 , . . . , α
n1
ig ) · · · p̃nni = (αnni0 , . . . , α

nn
ig )

⎞

⎟⎠ .

9.3.2 Computing Consensus Degree

The consensus degree evaluates the level of existent agreement among the
experts. So, if experts’ preferences are similar, the consensus degree will be
high, else, if preferences are very different, the consensus degree will be low.
To compute the level of agreement, a consensus matrix is obtained aggregat-
ing the values which represent the similarity or distance among the experts’
preferences, comparing each other.

The distance between two preferences p̃lki and p̃lkj is computed by means of
the similarity function s(p̃lki , p̃

lk
j ) measured in the unit interval [0, 1] (Herrera-

Viedma et al. 2005):

s(p̃lki , p̃
lk
j ) = 1 −

∣∣∣∣∣
cvlki − cvlkj

g

∣∣∣∣∣ . (9.1)

The cvlki is the central value of the fuzzy set:

cvlki =
∑g

h=0 index(s
i
h) · αlkih∑g

h=0 α
lk
ih

, (9.2)

and represents the average position or center of gravity of the information
contained in the fuzzy set plki = (αlki0, . . . , α

lk
ig), being index(sih) = h. The

range of this central value is the closed interval [0, g].
The closer s(p̃lki , p̃

lk
j ) to 1 the more similar preferences plki and plkj are,

while the closer s(p̃lki , p̃
lk
j ) to 0 the more distant plki and plkj are.

Once we have defined the function to evaluate the similarity, the consensus
degree is computed according to the following steps:
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1. First, the central values of all fuzzy sets are calculated:

cvlki ; ∀ i = 1, . . . ,m; l, k = 1, . . . , n ∧ l �= k. (9.3)

2. Afterwards, for each pair of experts ei and ej (i < j), a similarity matrix
SMij =

(
smlk

ij

)
is calculated, where

smlk
ij = s(p̃lki , p̃

lk
j ). (9.4)

3. Finally a consensus matrix, CM , is obtained by aggregating all the
similarity matrices

CM =

⎛

⎜⎝
cm11 · · · cm1n

...
. . .

...
cmn1 · · · cmnn

⎞

⎟⎠ .

This aggregation is carried out at the level of pairs of alternatives:

cmlk = φ(smlk
ij ); i, j = 1, . . . , m ∧ ∀ l, k = 1, . . . , n ∧ i < j.

In our case, we use the arithmetic mean as the aggregation function φ,
although, different aggregation operators could be used according to the
particular properties we want to implement.

Interpretation of the Consensus Degree

The consensus degree is analyzed in three different levels: pairs of alternatives,
alternatives and relations. In this way, we can know in a precise way the level
of agreement in each pair and so to identify the pairs as well as the alternatives
in which there exists greater disagreement.

Level 1. Consensus on pairs of alternatives. The consensus degree on a pair of
alternatives (xl, xk), called cplk, measures the consensus degree amongst
all the experts on that pair. In our case, this is expressed by the element
(l, k) of the consensus matrix CM , i.e.,

cplk = cmlk, ∀l, k = 1, . . . , n ∧ l �= k.

Values of cplk close to 1 mean a greater agreement. This measure will
allow the identification of those pairs of alternatives with a poor level of
agreement.

Level 2. Consensus on alternatives. The consensus degree on an alternative
xl, called cal, measures the consensus degree amongst all the experts
on that alternative. It is calculated as the average of each row l of the
consensus matrix CM , i.e.,

cal =

∑n
k=1, l �=k cp

lk

n− 1
. (9.5)
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These values are used to propose the modification of preferences associa-
ted to those alternatives with a consensus degree lower than a minimal
consensus threshold γ, i.e., cal < γ.

Level 3. Consensus on relations or global consensus. The consensus degree
on relations, called cr, measures the global consensus degree amongst the
experts’ preferences. It is computed as the average of all the consensus
degrees on the alternatives, i.e.,

cr =
∑n
l=1 ca

l

n
. (9.6)

The CSS uses this value to check the level of agreement achieved in each
round, so if cr is closer to 1, the level of agreement is high, while if cr is
closer to 0, the level of agreement is low.

9.3.3 Checking the Agreement

In this phase the CSS controls the level of agreement achieved in the current
consensus round. Before applying the CSS model, a minimum consensus
threshold, γ ∈ [0, 1], is fixed, which will depend on the particular problem
we are dealing with. When the consequences of the decision are of a tran-
scendent importance, the minimum level of consensus required to make that
decision should be logically high, for example γ = 0.8 or higher. At the other
extreme, when the consequences are not so transcendental (but are still impor-
tant) and it is urgent to obtain a solution of the problem, a fewer consensus
threshold near to 0.5 could be required.

In any case, independently of the value γ, when the global consensus cr
reaches γ, the CSS will stop and the selection process will be applied to obtain
the solution. However, there is the possibility that the global consensus will
not converge to consensus threshold and the process will get block. In order
to avoid this circumstance, the model incorporates a parameter, Maxcycles,
to limit the number of consensus rounds to carry out. The performance of this
phase is shown in Fig. 9.9.

9.3.4 Generating Advice

When the agreement is not big enough, cr < γ, experts should modify their
preferences in order to make them closer and increase the consensus in the
next consensus round. To do so, we will use proximity measures to identify the
furthest experts’ preferences from the collective opinion. Once these preferen-
ces have been identified, a guided advance generator is in charge of suggesting
how to change them in order to increase the consensus in the next consensus
round. Both processes are presented in detail following.
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cr  >= γ

Nºcycles < Maxcycles

YES

NO

NO

YES

CONSENSUS CONTROL

Selection process

Fig. 9.9. Consensus control

Computing Proximity Measure

The proximity measure evaluates the distance between the individual experts’
preferences and the collective preference. To calculate it, firstly we need to
obtain a collective preference relations P̃c,

P̃c =

⎛

⎜⎝
p̃11
c · · · p̃1n

c
...

. . .
...

p̃n1
c · · · p̃nnc

⎞

⎟⎠

which represents the group’s opinion. P̃c is calculated by aggregating the set
of (uniformed) individual preference relations {P̃e1 , . . . , P̃em}:

p̃lkc = ψ(p̃lk1 , . . . , p̃
lk
m) = (αlkc0, . . . , α

lk
cg),

where
αlkcj = ψ(αlk1j , . . . , α

lk
mj)

being ψ an “aggregation operator”.
Once the CSS has obtained the collective preference relation, it computes

a proximity matrix, PMi, for each expert ei,

PMi =

⎛

⎜⎝
pm11

i · · · pm1n
i

...
. . .

...
pmn1

i · · · pmnn
i

⎞

⎟⎠ .

To evaluate the proximity between each expert’s individual preferences,
P̃ei

, and collective preferences, P̃c, we use the similarity function defined in
expression (9.1),

pmlk
i = s(p̃lki , p̃

lk
c ).

These matrices contain the necessary information to know the position of
the preferences of each expert with regards to the group’s position.
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Interpretation Proximity Measures

From the proximity matrices we can also know the proximity of the preferences
of each expert at level of pairs of alternatives, alternatives and relations. In
this way it is easy to identify the furthest experts on those assessments where
the consensus is not enough:

Level 1. Proximity on pairs of alternatives. Given an expert ei, his/her prox-
imity measure on a pair of alternatives, (xl, xk), called pplki , measures the
proximity between his/her preference value and the collective’s one on
that pair. In our case, this value coincides with the element (l, k) of the
proximity matrix PMi, i.e.,

pplki = pmlk
i , ∀l, k = 1, . . . , n ∧ l �= k.

Level 2. Proximity on alternatives. Given an expert ei, his/her proximity mea-
sure on an alternative xl, called pal, measures the proximity between
his/her preference values on that alternative and the collective’s ones. It
is computed as the average of the proximities on pairs of alternatives of
xl

pali =

∑n
k=1,k �=l pp

lk
i

n− 1
. (9.7)

Level 3. Proximity on the relation. Given an expert ei, his/her proximity mea-
sure on the relation, called pri, measures the global proximity between
his/her preference values on all alternatives and the collective’s one. It is
computed as the average of all proximity on alternative values, i.e.,

pri =
∑n

l=1 pa
l
i

n
. (9.8)

If pri is close to 1 then ei contributes positively to the consensus, while if
pri is close to 0 then ei has a negative contribution to consensus.

Guided Advice Generator

The goal of the guided advice generator is to identify the furthest experts’
preferences and suggest how to change them in order to increase the consensus.

To achieve this purpose the guided advice generator uses two types of
advice rules: identification rules and direction rules.

Identification Rules (IR)

These rules identify what experts, alternatives and pairs of alternatives should
be changed. In this way, the model only focuses on the preferences in dis-
agreement and will not recommend to change those preferences where the
agreement is enough. The model uses three rules:
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1. An identification rule of experts. It identifies those experts that should
change some of their preferences values. Previously, we should have
decided the number or % of experts (ne) that should modify their prefe-
rences. The choice of the value of ne may depend on the type of problem
and/or the amount of time available to achieve the consensus. If a quick
achievement of consensus is desired, then the value of ne might be high
(for example ne = 75%), while if ne is low (for example ne = 25%) then
more time will be needed to reach the consensus. Once decided the number
of experts, the ne experts with the lowest proximity values must change
their preferences. This set of experts is denoted as EXPCH . Therefore,
the identification rule of experts is the following:
IR.1. ∀ei ∈ E ∩EXPCH , then ei must change his/her preferences, being

EXPCH = {eσ(1), . . . , eσ(ne)},

where σ is a permutation over the set of proximities on the relation defined
as prσ(j) ≤ prσ(i) ∀ j ≤ i.

2. An identification rule of alternatives. It identifies those alternatives where
there is not enough consensus and therefore they should be changed. This
set of alternatives is denoted as ALT and is composed of those alternatives
whose consensus degree cal is lower than the consensus threshold γ, i.e.,

ALT = {xl ∈ X | cal < γ}.

The identification rule of alternatives is the following:
IR.2. ∀ei ∈ EXPCH, ei should change some assessments associated to
the pairs that belong to the alternative xl, such that, xl ∈ ALT .

3. An identification rule of pairs of alternatives. It identifies those particular
pairs of alternatives (xl, xk) of the alternatives in disagreement xl ∈ ALT
that should be changed. This set of pairs of alternatives is denoted as
PALTi. To do this, we use the proximity measures on pairs of alternatives,
being the identification rule the following:
IR.3. ∀(xl ∈ ALT ∧ ei ∈ EXPCH), if (xl, xk) ∈ PALTi then ei should
change plki , being PALTi the set of pairs of alternatives (xl, xk) whose
proximity values at level of pairs, pplki , are fewer that a minimum
proximity threshold, β, i.e.,

PALTi = {(xl, xk) | xl ∈ ALT ∧ ei ∈ EXPCH ∧ pplki < β}.

Clearly, the greater β the greater the number of changes needed.

Direction Rules (DR)

Once the model has identified the pairs of alternatives to be changed,
(xl, xk) ∈ PALTi, it uses a set of direction rules to suggest how to change the
current assessments in order to increase the agreement in the next consensus
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round. Taking into account that p̃lki is a fuzzy set, the guided advice gene-
rator defines two direction parameters: ml or main and sl or secondary. These
parameters represent the value and position of the two highest membership
values of the expert’s preference

(
p̃lki (mlpos), p̃lki (mlval), p̃lki (slpos), p̃lki (slval)

)

and the collective preference
(
p̃lkc (mlpos) , p̃lkc (mlval), p̃lkc (slpos), p̃lkc (slval)

)
.

The rules compare the position and value of the parameters ml and sl of
the expert’s preference and collective preference. According to the result of
this comparison, the advice generator suggests increase o decrease the expert’s
current assessment.

These parameters are used by the following direction rules:

DR.1. If p̃lki (mlpos) > p̃lkc (mlpos) then the expert ei should decrease the
assessment associated to the pair of alternatives (xl, xk).

DR.2. If p̃lki (mlpos) < p̃lkc (mlpos) then the expert ei should increase the
assessment associated to the pair of alternatives (xl, xk).

DR.3. If p̃lki (mlpos) = p̃lkc (mlpos) then rules DR.1, and DR.2 are applied using
the membership values of the main labels, p̃lki (mlval) and p̃lkc (mlval).

DR.4. If
(
p̃lki (mlpos) = p̃lkc (mlpos), p̃lki (mlval) = p̃lkc (mlval)

)
, then rules DR.1,

DR.2, and DR.3 are applied using the position and membership values of
the secondary labels sl.

Example 4 Given the expert’s preference, p̃12
1 = (1,0.67, 0.33, 0, 0, 0, 0, 0, 0),

and the collective preference p̃12
c = (0.38, 0.28, 0.14, 0.17,0.3, 0.27, 0.19, 0.11,

0.13), their direction parameters are respectively:

p̃12
1 (mlpos) = 0, p̃12

1 (mlval) = 1, p̃12
1 (slpos) = 1, p̃12

1 (slval) = 0.67,

p̃12
c (mlpos) = 0, p̃12

c (mlval) = 0.38, p̃12
c (slpos) = 4, p̃12

c (slval) = 0.3.

Finally to note that the consensus reaching process will depend on the size
of the group of experts as well as on the size of the set of alternatives. So,
when these sizes are small and when opinions are similar, the consensus level
required is easier to obtain. However, when the experts opinions are quite
different, the number of consensus rounds and the time to reach the wanted
agreement will be greater.

9.4 Example of Application of the CSS Model

In this section we show an application example of the proposed CSS model to
carry out a consensus reaching process in a real-word problem. We shall only
focus on the consensus process, by recommending readers to consult (Delgado
et al. 1998; Herrera and Mart́ınez 2000; Herrera et al. 2005) to see how the
selection of the best alternative(s) is carried out.

A drink company specializing in sport drinks is planning to launch a new
soft drink, but first, it has to choose a taste that is accepted by the majority
of the sportsmen. The company is considering four possible tastes:
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• Lemon taste: x1

• Apple taste: x2

• Orange taste: x3

• Peach taste: x4

The management has decided to consult three experts. Experts have to
express their preferences about the different tastes or alternatives by using
preferences relations and they must reach a high level of agreement before
making the decision. Each expert belongs to a different area and expresses his
preferences by using a different information domain:

• The expert e1 belongs to the marketing department and gives his prefe-
rences by means of numerical values in [0, 1], Pe1 .

• The expert e2 is an elite sportsman and prefers to use linguistic assess-
ments of the linguistic term set S described in section “Fuzzy Linguistic
Preference Relations” Pe2 .

• The expert e3 is a specialistic in soft drinks and gives his preferences by
means interval-valued preference values in [0, 1], Pe3 .

Note that the preferences plli do not have been considered because they
represent the preference degree of an alternative over itself

Pe1 =

⎛

⎜⎜⎝

− .5 .8 .4
.3 − .9 .3
.3 .2 − .4
.9 .8 .5 −

⎞

⎟⎟⎠ ; Pe2 =

⎛

⎜⎜⎝

− H VH M
L − H VH
V L N − V H
L V L N −

⎞

⎟⎟⎠

Pe3 =

⎛

⎜⎜⎝

− [.7, .8] [.65, .7] [.8, .9]
[.3, .35] − [.6, .7] [.8, .85]
[.3, .35] [.3, .4] − [.7, .9]
[.1, .2] [.2, .4] [.1, .3] −

⎞

⎟⎟⎠ .

9.4.1 First Round

Once the experts have provided their preferences, the CSS carries out the first
round of the consensus reaching process following the phases described in the
Sect. 9.3.

Making the Information Uniform

In this phase the heterogeneous information is unified into a common domain
ST . As we said in the Sect. 9.3.1, once an appropriate ST has been chosen,
the model applies different transformation functions τDST to transform each
expert’s preference into a fuzzy set defined on ST , obtaining the following
fuzzy sets:
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P̃e1 =

⎛

⎜⎝

− (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, .19, .81, 0) (0, 0, .59, .41, 0, 0, 0)
(0, .19, .81, 0, 0, 0, 0) − (0, 0, 0, 0, 0, .59, .41) (0, .19, .81, 0, 0, 0, 0)
(0, .19, .81, 0, 0, 0, 0) (0, .81, .19, 0, 0, 0, 0) − (0, 0, .59, .41, 0, 0, 0)
(0, 0, 0, 0, 0, .59, .41) (0, 0, 0, 0, .19, .81, 0) (0, 0, 0, 1, 0, 0, 0) −

⎞

⎟⎠

P̃e2 =

⎛
⎜⎝

− (0, 0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0)
(0, 0, 1, 0, 0, 0, 0) − (0, 0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 1, 0)
(0, 1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) − (0, 0, 0, 0, 0, 1, 0)
(0, 0, 1, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) −

⎞
⎟⎠

P̃e3 =

⎛
⎜⎝

− (0, 0, 0, 0, .81, .81, 0) (0, 0, 0, .12, 1, .19, 0) (0, 0, 0, 0, .19, 1, .41)
(0, .19, 1, .12, 0, 0, 0) − (0, 0, 0, .41, 1, .19, 0) (0, 0, 0, 0, .19, 1, .12)
(0, .19, 1, .12, 0, 0, 0) (0, .19, 1, .41, 0, 0, 0) − (0, 0, 0, 0, .81, 1, .41)
(.41, 1, .19, 0, 0, 0, 0) (0, .81, 1, .41, 0, 0, 0) (.41, 1, .81, 0, 0, 0, 0) −

⎞
⎟⎠

Computing Consensus Degrees

1. Central values. Applying (9.2), the model computes the central values of
the fuzzy sets:

cv(e1) =

⎛

⎜⎜⎝

− 3 4.81 2.41
1.81 − 5.41 1.81
1.81 1.19 − 2.41
5.41 4.81 3 −

⎞

⎟⎟⎠ cv(e2) =

⎛

⎜⎜⎝

− 4 5 3
2 − 4 5
1 0 − 5
2 1 0 −

⎞

⎟⎟⎠

cv(e3) =

⎛

⎜⎜⎝

− 4.5 4 5.13
1.94 − 3.86 4.94
1.94 2.13 − 4.81
0.86 1.81 1.18 −

⎞

⎟⎟⎠

2. Similarity matrices. The model computes a similarity matrix between each
pair of experts by using the distance function (9.1):

SM12 =

⎛

⎜⎜⎝

− 0.83 0.96 0.9
0.96 − 0.76 0.46
0.86 0.8 − 0.56
0.43 0.36 0.5 −

⎞

⎟⎟⎠ SM13 =

⎛

⎜⎜⎝

− 0.75 0.87 0.54
0.97 − 0.74 0.47
0.97 0.84 − 0.59
0.24 0.5 0.69 −

⎞

⎟⎟⎠

SM23 =

⎛

⎜⎜⎝

− 0.91 0.84 0.64
0.99 − 0.97 0.99
0.84 0.64 − 0.97
0.81 0.86 0.8 −

⎞

⎟⎟⎠

3. Consensus matrix. The model calculates the consensus matrix by aggre-
gating the similarity matrices:

CM =

⎛

⎜⎜⎝

− 0.83 0.89 0.69
0.97 − 0.82 0.64
0.89 0.76 − 0.71
0.49 0.57 0.66 −

⎞

⎟⎟⎠
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4. Consensus degrees. The model computes the consensus degree at different
levels:
Level 1. Consensus on pairs of alternatives. The element (l, k) of CM

represents the consensus degree on the pair of alternatives (xl, xk).
Level 2. Consensus on alternatives.

ca1 = 0.8, ca2 = 0.81, ca3 = 0.78, ca4 = 0.57

Level 3. Consensus on the relations or global consensus.

cr = 0.74

From these results, we can draw some conclusions:

1. The level of agreement in the pair (21) is very high, cp21 = 0.97, it means
that the assessments given on that pair are very similar. On the contrary,
the assessments given on the pair (41) have to be enough different because
cp41 = 0.49 is low.

2. The alternative where the agreement is bigger is x2, while the alternative
with smaller agreement is x4.

3. The level of global agreement among experts is not bad, cr = 0.74, but as
we shall see following, it is not enough to finish the consensus process.

Checking the Agreement

In this phase the global consensus value cr is compared with the consensus
threshold γ. In this example, we have decided to use a high consensus thresh-
old, γ = 0.8. As cr = 0.74 < γ, the current consensus is not big enough to
finish the consensus process and therefore the process must continue.

Production of Advice

In this phase the CSS identifies what preferences should be changed and how
to carry out these changes.

Computation of Proximity Measures

The model computes the collective preference relation aggregating all individ-
ual preference relations using the average as aggregation operator:

1. Computing collective preferences

p12
c = (0, 0, 0, 0.33, 0.6, 0.27, 0)

p13
c = (0, 0, 0, 0.4, 0.39, 0.66, 0)

p14
c = (0, 0, 0.19, 0.47, 0.06, 0.33, 0.13)

p21
c = (0, 0.12, 0.93, 0.04, 0, 0, 0)

p23
c = (0, 0, 0, 0.13, 0.66, 0.26, 0.13)

p24
c = (0, 0.06, 0.27, 0, 0.06, 0.66, 0.04)
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p31
c = (0, 0.46, 0.6, 0.04, 0, 0, 0)

p32
c = (0.33, 0.33, 0.39, 0.13, 0, 0, 0)

p34
c = (0, 0, 0.19, 0.13, 0.27, 0.66, 0.13)

p41
c = (0.13, 0.33, 0.39, 0, 0, 0.19, 0.13)

p42
c = (0, 0.6, 0.33, 0.13, 0.06, 0.27, 0)

p43
c = (0.47, 0.33, 0.27, 0.33, 0, 0, 0)

2. Proximity matrices. A proximity matrix for each expert is obtained:

PM1 =

⎛

⎜⎜⎝

− 0.84 0.95 0.77
0.98 − 0.82 0.63
0.96 0.98 − 0.68
0.5 0.58 0.72 −

⎞

⎟⎟⎠ ; PM2 =

⎛

⎜⎜⎝

− 0.99 0.92 0.86
0.98 − 0.94 0.83
0.89 0.78 − 0.88
0.92 0.77 0.77 −

⎞

⎟⎟⎠

PM3 =

⎛

⎜⎜⎝

− 0.9 0.91 0.77
0.99 − 0.92 0.84
0.94 0.85 − 0.91
0.73 0.91 0.97 −

⎞

⎟⎟⎠

3. Proximity measures. The model computes the proximity at different levels:
Level 1. Proximity on pairs of alternatives. These values are equal to

values of the proximity matrices.
Level 2. Proximity on alternatives.

x1 x2 x3 x4

pa1
1 = 0.85 pa2

1 = 0.81 pa3
1 = 0.87 pa4

1 = 0.6
pa1

2 = 0.92 pa2
2 = 0.92 pa3

2 = 0.85 pa4
2 = 0.82

pa1
3 = 0.86 pa2

3 = 0.92 pa3
3 = 0.9 pa4

3 = 0.87

Level 3. Proximity on the relation.

pr1 = 0.78, pr2 = 0.88, pr3 = 0.89

According to the results, the furthest expert is e1 and the nearest expert is
e3.

Guided Advice Generator

The model applies the identification rules to identify what preferences have
to be changed and the direction rules to suggest how to make the changes.
Identification Rules

1. Set of experts to change their preferences, EXPCH . The ranking of the
experts according to their proximity is e3, e2, e1, being e1 the furthest
expert. In this example, like we are working with three experts, we will
suggest that only one change their assessments, i.e., ne = 1:

EXPCH = {e1}.
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2. Set of alternatives whose assessments should be changed, ALT . In this
case, as we have fixed a consensus threshold γ = 0.8, we have:

ALT = {xl ∈ X | cal < 0.8} = {x3, x4}.

3. Set of pairs of alternatives whose associated assessments should be
changed, PALTi. At this point, the model identifies the pairs of alterna-
tives that have to be changed taking into account a proximity threshold
β = 0.75:

PALT1 = {(x3, x4), (x4, x1), (x4, x2), (x4, x3)}

Finally, the list of preference to change is:

p34
1 , p

41
1 , p

42
1 , p

43
1

Direction Rules

1. Direction parameters.

(plk
i (mlpos),plk

i (mlval), (plk
c (mlpos),plk

c (mlval),

plk
i (slpos),plk

i (slval)) plk
c (slpos),plk

c (slval))

p34
1 (2, 0.59, 3, 0.41) (5, 0.66, 4, 0.27)

p41
1 (5, 0.59, 6, 0.41) (2, 0.39, 1, 0.33)

p42
1 (5, 0.81, 4, 0.19) (1, 0.6, 2, 0.33)

p43
1 (3, 1, ∗, 0) (0, 0.47, 2, 0.27)

(*) means that there are more than one possible secondary label candidates but

they do not play any role in the production of recommendations.

2. Application of the direction rules.
• Given that p41

1 (mlpos) > p41
c (mlpos), p42

1 (mlpos) > p42
c (mlpos) and

p43
1 (mlpos) > p43

c (mlpos), expert e1 is advised to decrease these assess-
ments according to the rule DR1.

• Given that p34
1 (mlpos) < p41

c (mlpos) expert e1 is advised to increase
this assessment according to the rule DR2.

9.4.2 Second Round

Following the previous advice given by de CSS model, the expert e1 changes
his preferences. In order to avoid abrupt changes in experts’ preferences, we
have decided to increase or decrease the current assessments 0.2.
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Pe1 =

⎛

⎜⎜⎝

− .5 .8 .4
.3 − .9 .3
.3 .2 − .6
.7 .6 .3 −

⎞

⎟⎟⎠

Due to the CSS carries out the same operations in all rounds of consen-
sus, in the following rounds we only show the results that provide us bigger
information about the performance of the model.

Making the Information Uniform

The operations in this phase are the same than in the first round.

Computing Consensus Degree

1. Consensus matrix.

CM =

⎛

⎜⎜⎝

− 0.83 0.89 0.69
0.97 − 0.82 0.64
0.89 0.76 − 0.84
0.56 0.71 0.79 −

⎞

⎟⎟⎠

2. Consensus degrees. The model computes the consensus degree at different
levels:
Level 1. Consensus on pairs of alternatives. Elements (l, k) of the consen-

sus matrix CM .
Level 2. Consensus on alternatives.

ca1 = 0.8, ca2 = 0.81, ca3 = 0.83, ca4 = 0.69

Level 3. Consensus on the relations or global consensus.

cr = 0.78

By comparing the results obtained in the first and second round, we can
highlight that:

1. The level of agreement in the pair (41), cp41 = 0.56, is bigger in the second
round than in the first round, cp41 = 0.49, therefore we can verify that
decreasing the value given by the expert e1 on p41

1 , e1 has been able to
bring near his assessment to the assessments given by e2 and e3.

2. The level of agreement in the alternatives affected by the changes has
increased, therefore the correct direction of the changes have been recom-
mended.

Checking the Agreement

Given that cr = 0.78 < γ = 0.8, the consensus degree is not big enough yet
and the consensus process must continue.
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Production of Advice

Computation of Proximity Measure

1. Proximity measures. The model computes the proximity at different levels:
Level 1. Proximity on pairs of alternatives for expert ei are given in PMi.
Level 2. Proximity on alternatives.

x1 x2 x3 x4

pa1
1 = 0.85 pa2

1 = 0.81 pa3
1 = 0.92 pa4

1 = 0.73
pa1

2 = 0.92 pa2
2 = 0.92 pa3

2 = 0.87 pa4
2 = 0.86

pa1
3 = 0.86 pa2

3 = 0.92 pa3
3 = 0.92 pa4

3 = 0.9

Level 3. Proximity on the relation.

pr1 = 0.83, pr2 = 0.89, pr3 = 0.9

Note that although e1 has been able to bring near his preferences to the
collective preference in the second round (from pr1 = 0.78 to pr1 = 0.83),
e1 continues being the furthest experts, and therefore, the CSS model will
recommend him to change his preferences again.

Guided Advice Generator

Identification Rules

1. Set of experts to change their preferences, EXPCH .

EXPCH = {e1}
2. Set of alternatives whose assessments should be changed, ALT .

ALT = {xl ∈ X | cal < 0.8} = {x4}
3. Set of pairs of alternatives whose associated assessments should be

changed, PALTi.
PALT1 = {(x4, x1), (x4, x2)}

List of preference to change:

p41
1 , p

42
1

Direction Rules

1. Direction parameters.

(plk
i (mlpos),plk

i (mlval), (plk
c (mlpos),plk

c (mlval),

plk
i (slpos),plk

i (slval)) plk
c (slpos),plk

c (slval))

p41
1 (5, 0.81, 4, 0.19) (2, 0.39, 1, 0.33)

p42
1 (4, 0.59, 3, 0.41) (1, 0.6, 2, 0.33)
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2. Application of the direction rules.
• Due to fact that p41

1 (mlpos) > p41
c (mlpos) and p42

1 (mlpos) > p42
c (mlpos),

expert e1 is advised to decrease these assessments according to the rule
DR1.

9.4.3 Third Round

Following the advice given in the second round by de CSS, the expert e1
changes his preferences.

Pe1 =

⎛

⎜⎜⎝

− .5 .8 .4
.3 − .9 .3
.3 .2 − .6
.5 .4 .3 −

⎞

⎟⎟⎠

Making the Information Uniform

The operations in this phase are the same than in the first round.

Computing Consensus Degree

1. Consensus matrix.

CM =

⎛

⎜⎜⎝

− 0.83 0.89 0.69
0.97 − 0.82 0.64
0.89 0.76 − 0.84
0.76 0.84 0.79 −

⎞

⎟⎟⎠

2. Consensus degrees. The model computes the consensus degree at different
levels:
Level 1. Consensus on pairs of alternatives. Elements (l, k) of the consen-

sus matrix CM .
Level 2. Consensus on alternatives.

ca1 = 0.8, ca2 = 0.81, ca3 = 0.83, ca4 = 0.8

Level 3. Consensus on the relations or global consensus.

cr = 0.81

Checking the Agreement

Finally, in the third round the level of agreement is bigger than the consensus
threshold, cr = 81 > γ = 0.8. Therefore, the experts have been able to reach
the minimum level of agreement fixed initially and the consensus reaching
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process should finish. Immediately afterward, a selection process should be
run to obtain the final solution of the decision problem.

As summary of this section and according to the results shown in each con-
sensus rounds, if the experts follow the recommendation given by the model,
we can affirm that the CSS achieves to increase the level of agreement during
the consensus reaching process.

9.5 Conclusions

In this chapter we have proposed a CSS model to automate the consensus pro-
cesses in GDM problems where the experts use different information domain
to provide their opinions. Two main features may be emphasized about this
model: (1) it is able to manage consensus processes in problems where experts
use numerical, interval-valued or linguistic assessment to express their prefe-
rences, and (2) it is able to suggest the changes of preferences that experts
should apply in order to reach the wanted consensus. The model can be used
to substitute the figure of the moderator, avoiding in this way a possible
moderator’s partiality during the consensus reaching process.

This CSS model uses a methodology based on transformation functions to
unify the heterogeneous information into a common domain. It also defines a
similarity function based on central values of the fuzzy sets to compute two
kind of measurements: the consensus degree and the proximity values. These
calculations are carried out at three different levels: pairs of alternatives, alter-
natives and relations. Based on both measurements, a guided advice system
has been designed to help the experts to identify the preferences where the
disagreement is bigger and to suggest how to change such preferences in order
to increase the agreement among the experts.

Once the experts have changed their preferences and have achieved a high
level of consensus, they are prepared to carry out the process to choose the
best alternative(s) to solve the outlined problem.
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