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Summary. E-commerce companies have developed many methods and tools in
order to personalize their web sites and services according to users’ necessities and
tastes. The most successful and widespread are the recommender systems. The aim
of these systems is to lead people to interesting items through recommendations.
Sometimes, these systems face situations in which there is a lack of information
and this implies unsuccessful results. In this chapter we propose a knowledge based
recommender system designed to overcome these situations. The proposed system is
able to compute recommendations from scarce information. Our proposal will consist
in gathering user’s preference information over several examples using an incomplete
preference relation. The system will complete this relation and exploit it in order to
obtain a user profile that will be utilized to generate good recommendations.

1 Introduction

In the last years Internet development has grown beyond all expectations. New
services have arisen in order to meet the users’ necessities. As a consequence of
this development nowadays people can accomplish a great number of activities
such as watching films, buying books or flowers, chatting with other people,
etc.

Usually these services are designed to offer a wide range of items
and/or activities in order to be able to cater for the necessities or re-
quirements of millions of potential users [14, 15, 19]. For instance, Amazon
(http://www.amazon.com) sells over eight millions of books of any genre:
scientific, business, or historical books as well as comics, novels or mystery
books. iTunes Store (http://www.apple.com/itunes/store/) offers over three
and a half millions of songs of a wide variety of artist such as The Killers,
Bob Dylan, U2, or Sheryl Crow.

Although these services are designed to offer interesting items or services
that fulfil the necessities or requirements of millions of potential users, many
of them have problems to identify, and therefore, satisfy the necessities of a
particular user. An e-bookshop can offer a wide range of mystery books in
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order to offer interesting ones for any user who likes this genre. However, it is
not easy for this shop gets to know or finds out which particular books or kind
of books each user likes. In such cases, the user has to search among all the
books in order to find those ones that are more interesting for him/her. Due
to the fact that the e-shops offer a huge variety of books, the search processes
could be tedious and the user could waste much time exploring alternatives
that he/she will never like and it is possible that the user gives it up and tries
to find what he/she wants in a traditional shop where he/she can receive some
pieces of advice from the shop assistant.

As a consequence of these problems, many tools have arisen to assist people
in their searches. The most famous and successful ones are the Recommender
Systems. These systems were first developed in the e-commerce area. Quite
often e-commerce customers have to face situations in which the web site offers
them a huge range of items that potentially could meet their requests, however
only a small set of them really fulfil their necessities and many times they are
hard to find out. These systems were developed with the aim of leading these
customers towards interesting items by means of recommendations, limiting
the offered items or sorting them according to the customers’ necessities or
tastes.

In the literature we can find different techniques to generate recommen-
dations. Essentially, all these techniques have the same aim and accomplish
the same phases to make the recommendations. First of all, before any rec-
ommendation process begins, they need a data set stored. The sources of
information and its nature can be very varied. Such information is provided
by customers, users, experts and it is related to their opinions, preferences,
descriptions. . . The recommendation process starts when a user wants to find
out a new item and the Recommender System has already stored the previous
dataset with information regarding the user him/herself and/or other users.
Then, an algorithm combines the information provided by the user about
his/her necessities and the information stored in the Recommender System
to generate recommendations about which items are the most suitable for
him/her. Depending on the algorithm used to generate the recommendations
we can classify them into:

• Demographic Recommender Systems [12]. In this type of systems, the rec-
ommendations are based on demographic information. A specific customer
will receive recommendations according to the information they have about
the people who belong to the same demographic group.

• Content-Based Recommender Systems [15]. They gather information
about the features of the items user has liked in the past and use this
information to find other items that the user could like.

• Collaborative Recommender Systems [7]. These systems predict the users’
preferences as a weighted aggregation of other users’ preferences, in which
the weights are proportional to the similarity between users on the basis
of their ratings.



A Knowledge Based Recommender System 95

• Knowledge Based Recommender Systems [4]. These systems infer the rec-
ommendations using the knowledge they have about the users, the items
and how the features of these items fulfil the users’ expectations.

• Utility Based Recommender Systems [8]. They make recommendations
based on the computation of the utility of each item for the user.

• Hybrid Recommender Systems [3, 5]. The aforementioned Recommender
Systems present some problems and drawbacks. Some authors have pro-
posed to combine these techniques to smooth out these disadvantages and
therefore improve the accuracy of the recommendations.

To choose the most suitable items for a user, these systems use information
about the items, the users, their necessities, tastes... Sometimes this informa-
tion is scarce and insufficient. Classical Recommender Systems, Collaborative
and Content-based, are unable to make accurate recommendations in such
cases. For instance, both of them need historical information about which
items the user has liked in the past. If this information is not available (for
example, it is a new customer) then, they cannot find out which items could
be recommended. To smooth out these drawbacks some proposals have been
presented. One of them is the Knowledge Based Recommender Systems. In
these systems users state their preferences choosing an example that represent
their preferences. The system defines a user profile based on the description of
the example, and then, the system finds out which items are the most suitable
one according to the user profile.

In this chapter we shall propose a Knowledge Based Recommender model
that tries to improve the gathering process and the recommendations of the
classical Knowledge Based Recommender Systems by using more examples
and employing preference relations. To accomplish the gathering process, the
user provides his/her preferences over a small set of items. This set contains
examples that the user has chosen to represent his/her necessities. The user’s
preferences are expressed by means of an incomplete preference relation in
which the user only supplies a row (or a column) of the relation. This in-
complete preference relation will be completed by means of a method based
on a consistency property, and from this relation, the system will compute
a user profile that will be used to generate the recommendations. Thus, the
gathering process is easier for users since they do not have to provide much
information, given that the system can compute and complete by itself.

2 Preliminaries

In this section we shall review some preliminaries needed to understand the
model that will be presented in the following section. First of all, we shall
study the lack of information in Recommender Systems. Secondly we shall
present a brief review of Knowledge Based Recommender Systems. Thirdly, we
shall describe the preference relations. And finally we shall show a method to
complete an incomplete preference relation by using the consistency property.
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2.1 Problems in Classical Recommendater System Models

In the real world these systems face situations in which the information about
user’s necessities and tastes is not available or is scarce. For instance, some
recommender systems ground their recomendations in the historical informa-
tion about the user. If they are dealing with a new user, they will not be able
to generate any recomendations. Even though, if they have historical informa-
tion about the user, it may not be useful or enough for the current search, i.e.,
the user is looking for something that is neither related to his/her necessities
in the past nor the necessities of other users. Moreover, the border that differ-
entiates when the recommender system has enough information to generate
recomendations and when it needs more information is incredibly blurry [5].

These problems particularly concern Classical Recommender Systems,
both the Collaborative and the Content-based ones, which require historical
information about their users. Some of the most common problems are [5]:

• The new user ramp-up problem. If the user has few ratings, Recommender
Systems may not be able to make recommendations. This problem is pre-
sented in both Collaborative and Content-based Recommender Systems.

• New item ramp-up problem. In Collaborative Recommender Systems, items
with few ratings are unlikely recommended, even though, they could be
interesting for the users.

• Grey sheep problem. We can find this problem in Collaborative Recom-
mender Systems. There might exists users whose ratings are not consis-
tently similar with any group of users, and for this reason, they will rarely
receive any accurate recommendation.

• Quality dependent of large historical data set. Many times, to obtain ac-
ceptable recommendations, a good and large historical dataset is needed.

These problems can cause recommender systems to lead the user towards
false positives (items that are not truly interesting for him/her). If the user
purchases the recommended item and finds out that he/she does not like it,
the user will be unlikely to use the recommender system again [17] and this
can cause a loss of money and customers. To sort out these problems some
solutions have been presented, such as the Hybrid Recommender Systems [5]
or the Knowledge Based Recommender Systems [4]. The aim of the first ones is
to overcome the drawbacks of these Recommender Systems combining them to
smooth out the above problems. The most usual combination is between the
Collaborative and the Content-Based Recommender Systems. For instance,
this kind of Hybrid Recommender Systems does not suffer from the new item
ramp-up problem. However, the Knowledge Based Recommender Systems face
the problem of lack of information from another point of view. These systems
exploit the information provided by the user about their necessities and the
knowledge that the system has about the items that can be recommended, to
find out which items match the user real expectations.
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In this chapter we develope a variation of a Knowledge Based Recom-
mender Systems. In the next subsection we shall explain in further detail the
working of a classical knowledge based recommender system.

2.2 Knowledge Based Recommender Systems

These Recommender Systems attempt to arise recommendations by exploiting
the knowledge they have gathered about the items, the users, . . . The algo-
rithms used to infer these recommendations are usually based on case based
reasoning [11]. These algorithms deal with three types of knowledge:

• Catalog knowledge. Knowledge that the Recommender System has about
the items and their features.

• Functional knowledge. These systems need to know how items might meet
the user’s necessities.

• User’s knowledge. The system needs to gather information about the user’s
necessities in order to find which items satisfy his/her necessities.

The acquisition of user’s knowledge is the most challenging and important
process in Knowledge Based Recommender System. For instance, this knowl-
edge can be gathered through general demographic information, but the better
and more knowledge we have about his/her necessities, the more accurate rec-
ommendation will be made. That is the reason why the most usual way to
obtain this knowledge is directly requiring an example of the user’s necessities.
With this example the system is able to define a user profile that describes
user’s necessities. Then, it can find which items satisfy these necessities and
they are returned as recommendations.

The main advantage of this kind of Recommender Systems is that they
do not suffer from problems such as, the new user or new item ramp-up
problem or those ones that are related to historical data about the users. As
a consequence of this fact they are suitable in situations where there is no
historical information (or it is very scarce) about the user.

Even though, these systems are easy to use, they present some drawbacks
in the gathering process users’ preferences, i.e., the user’s knowledge. First
of all, in some contexts users can find thousands and thousands of items
related to their necessities. Many times it could be so difficult to find an
example of what the user needs as to find directly what he or she really needs.
And secondly, although the user can find an example of his/her necessities,
it is possible that this example does not match exactly with his/her real
expectations. The user profile defined from this example will not faithfully
represent his/her necessities and therefore, he/she will not obtain a suitable
recommendation. In order to solve this problem, this type of Recommender
Systems let the user refines his/her user profile modifying, removing, or adding
some features. Nevertheless, this process could be hard, time-consuming and
not all the users can be willing to do so.
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2.3 Incomplete Preference Relations

The numerical preference relations have been widely use to model preferences
for problems such as decision-making problems [6,10,16]. In this representation
the intensity of preference between any two alternatives of a set of feasible
ones, X = {x1, . . . , xn} (n ≥ 2), is measured with a scale [0, 1].

Definition 1. [2] A numerical preference relation P on a set of alterna-
tives X is a function on the alternative set X×X that is defined as following:

µP : X × X → [0, 1] .

Every value in the matrix P represents the preference degree or intensity
of preference of the alternative xi over xj :

• pij = 1/2 indicates the maximum grade of indifference between xi and xj

(xi ∼ xj).
• pij = 1 indicates that xi is absolutely preferred to xj

• pij > 1/2 indicates that xi is preferred to xj (xi � xj)

based on this representationwealso know thatpii = 1
2 ∀i ∈ {1, . . . , n} (xi ∼ xi) .

In an ideal situation the information provided by the user should be consis-
tent and complete, however, many times in real situations this is not possible
or suitable. For instance, users could be under time pressure or some alter-
natives could be unknown. In these situations, it would be more suitable to
represent his/her preferences by means of an incomplete preference relation.

In our case, we know that time is a key issue in the gathering process of
Knowledge Based Recommender Systems. Therefore, we shall propose that
the users of our recommender system will provide preferences about different
examples by using a preference relation that is a structure easy to exploit in
order to obtain a user profile. However, to avoid a time-consuming process, in-
stead of expecting the user provides a complete preference relation, the system
will require an incomplete one, just a row (or a column) of the preference re-
lation.

From the incomplete preference relation the system extracts as much in-
formation as it can. To do so, the system will fill it up by using a method that
ensures that the resulting relation is not only complete, but also consistent.
In the following section we shall review a method to complete this kind of
relations.

2.4 A Method for Filling Preference Relation Based
on the Consistency Property

The concept of consistency is usually characterized by the idea of transitivity.
Transitivity represents the idea that the preference value obtained by compar-
ing directly two alternatives should be equal to or greater than the preference
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value between those alternatives obtained using an indirect chain of alterna-
tives [13, 18]. Some of the suggested transitivity properties that we can find
in the literature are the Triangle condition [13], the Weak transitivity or the
Additive transitivity [18].

The last one seems a suitable property to characterize consistency in nu-
merical preference relations and has been used successfully to construct con-
sistent numerical relations from incomplete ones [1, 9].

Definition 2. [1,9] A numerical preference relation is “additive consistent”
when for every three options on the problem xi, xj , xk ∈ X their associated
preference degrees pij , pjk, pik fulfil the following expression [9]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k.

A simple and practical method for filling a complete preference relation
from an incomplete one that only has got the values of a row (or a columnn)
is the following one [1, 9]:

Step 1. Let X = {x1, . . . , xn} be a discrete set of alternatives. The expert
must provide a row (or a column) of the preference relation

Step 2. To utilize the known elements in P to determine all the unknown
elements, and thus get a consistent preference relation, P ′, using the
following expressions obtained from definition 2:
1. pij + pjk + pki = 3

2

2. pi(i+1) + p(i+1)(i+2) + · · · + p(j−1)j + pji = j−i+1
2 ∀i < j

Step 3. End.

Example. Let’s Suppose that we have a set of four alternatives {x1, x2, x3, x4}.
If we know that {p12 = 0.55, p13 = 0.7, p14 = 0.95}, we shall have the following
preference relation:

P =

⎛⎜⎜⎝
0.5 0.55 0.7 0.95

0.5
0.5

0.5

⎞⎟⎟⎠ .

If we use the previous algorithm we obtain:
p21 = 3

2 − p12 − p22 = 3
2 − 0.55 − 0.5 = 0.45,

p31 = 3
2 − p13 − p33 = 3

2 − 0.7 − 0.5 = 0.3,
...
therefore:

P ′ =

⎛⎜⎜⎝
0.5 0.55 0.7 0.95
0.45 0.5 0.65 0.9
0.3 0.35 0.5 0.75
0.05 0.1 0.25 0.5

⎞⎟⎟⎠ .r
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3 A Knowledge Based Recommender System Based
on Numerical Consistent Preference Relations

Here, we will present our model for a Knowledge Based Recommender System
that employs incomplete preference relations in order to build the user profile.

The main advantage of this kind of Recommender Systems is that they are
suitable for casual exploration, i.e., they do not require to have any historical
information (for instance, the items that the user has liked in the past) to make
suitable recommendations. However, in this type of Recommender System the
processes for building the user profile are usually more complex than in other
kind of recommender systems such as the Collaborative or the Content-based
ones. Besides, this user profile plays a key role in order to obtain an accurate
recommendation. The more accurate it is gathered, the better recommentions
are obtained.

Taking into account that the Knowledge Based Recommender System will
deal with user’s preferences and descriptions of the items, in our proposal
both of them are modelled by means of numerical values. In future works we
will study other types of preference modelling that can be more appropriate
such as intervals, linguistic assessments and so on.

The Knowledge Based Recommender System that we propose has three
phases (see Fig. 1):

(a) Gathering user preference information. The target of this phase is to ob-
tain the preference information from the user. For this purpose, we need a
small number of preferred items (4 or 5) that represents user’s necessities
and an incomplete preference relation provided over them.

(b) Building the user profile. The preference relation and the items’ descrip-
tions are used to build the user profile. First of all, the system fills up the
incomplete preference relation and obtains partial profiles. These profiles
express the user’s preferences related to a specific item. Afterwards, they
are aggregated to obtain the user profile.

(c) Recommendation. Eventually, the system recommends the items that are
the closest to the user profile, i.e., the items that are the best to fulfil the
user’s real expectations.

Fig. 1. Recommendation Model
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3.1 Gathering User Preference Information

Initially, the user, u, chooses four or five items as examples of his/her prefer-
ences or necessities. Moreover, this process would be as difficult as (or more)
finding directly the item(s) he/she likes. In order to make easier this choice,
the system suggests a subset of representative items in which the user must
select the examples of his/her necessities. This subset should be big enough
to have items that represent any kind of user’s necessities, these items ought
to be “well-known” for almost everybody, but not too big because users could
find this task too teadious. If he/she had to choose these examples from all the
item database, he/she would waste much time exploring useless alternatives.
We must remark that there is not any correlation between “well-known” and
“preferred”, i.e., in this set of well-known items we will find preferred items
as well as items which the users do not like.

Let X = {x1, x2, . . . , xm} be the set of items to be recommended and each
one is described by a vector of features xi =

{
c1
i , . . . , c

t
i

}
, the system offers a

subset Xr = {xr
1, x

r
2, . . . , x

r
m′} (m′ ≤ m) that contains the most representative

or well-known items of X (Xr ⊆ X). The aim of this step is to obtain the
user preference information. To do so, it must accomplish these two steps:

1. Acquiring an incomplete preference relation. The user provides it over the
set of examples that represents his/her necessities.

2. Filling the preference relation. To exploit the above preference relation
and define the user profile it is required that the system fills it up in order
to build a complete and consistent preference relation.

Now, we shall present these steps in depth.

Acquiring an Incomplete Preference Relation

Once the user, u, selects from the subset of Xr four or five items, Xu =
{xu

1 , . . . , xu
n}, as examples of his/her preferences, he/she has to choose one of

them as the closest example to his/her necessities. Then, the user compares
this example with the other ones assessing his/her preferences in a numerical
value belonging to the interval [0, 1].

Although, the user is only required to give a row of the preference relation
(p11, . . . , p1n), the system needs a complete preference relation to generate
better recommendations. Therefore, the system will complete a consistent
one by using the algorithm presented in Sect. 2.4. This way of computing the
user preferences provides us two advantages:

(a) The user only provides the minimum and necessary information (a row or
a column of a preference relation).

(b) The preference relation has not got inconsistent values because the al-
gorithm will build a consistent preference relation from the incomplete
preference relation.
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Filling Up the Preference Relation

After the user has provided one row (or column) of the preference relation,
the system can fill up the relation applying the properties presented in [1].
The result is:

P ′ =

⎛⎜⎜⎝
p11 p12 . . . p1n

p∗21 p∗22 . . . p∗2n

. . . . . . . . . . . .
p∗n1 p∗n2 . . . p∗nn

⎞⎟⎟⎠ ,

where p1j is a value that the user has provided about the preference of example
xu

1 over the example xu
j , and p∗ij is an estimated value for the preference of

the example xu
i over xu

j . By definition, pii has the value 0.5 (that means
indifference).

3.2 Building the User Profile

The next phase of this model is to build the user profile. To accomplish this
task the system will build a set of partial profiles, one for each item. Then, the
partial user profiles will be combined to obtain the final user profile that will
be used to compute the recommendations. This phase consists of two steps
(see Fig. 2):

1. Building partial user profiles. The system will compute the partial user
profiles from user’s preference.

2. Computing the user profile. This user profile represents the knowledge
about the user’s necessities and it will be utilized to obtain the most
suitable items for the user.

Now, we shall explain these steps in further detail.

Fig. 2. Building the user profile
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Building Partial User Profiles

Before building the user profile, the system will obtain partial profiles for each
item that was chosen as example of the user’s necessities. This partial profile
will represent the user’s preference regarding each item. For a given item, xu

j ,
the system will build a partial profile, ppj , related to this item aggregating the
vectors of features of the other items different from xu

j . That way, for the item
xu

j , the system will combine the description of the items {xu
i ,∀i �= j}. Our

aim is to build a partial user profile that take into account that some items
are closer to the user needs or tastes than others. To measure the importance
of each item the system will use the filled preference relation, so that, for the
partial user profile for the item xu

j , the importance of the item {xu
i , i �= j}

is pji. To aggregate the vector of features of each item (its description) the
system will use the IOWA operator (Induced OWA operator) proposed in [21].

The IOWA operator is used to aggregate tuples of the form (vi, ai). Within
these pairs, vi is called the order inducing value and ai is called the argument
value. The following procedure for performing the IOWA aggregation was
suggested:

FW (〈v1, a1〉 , . . . , 〈vl, al〉) = WT Bv,

where Bv = (b1, . . . , bl) is the result of ordering the vector A = (a1, . . . , al)
according to the value of the order inducing variables, vi, and WT is the
column vector of weights which satisfies:

W = (w1, . . . , wl)

wi ∈ [0, 1] ∀i
l∑

i=1

wi = 1.

Our goal in this step is to obtain partial profiles
{

ppj =
(
c1
ppj

, . . . , ct
ppj

)}
,

one for each item xu
j , aggregating the vectors

{
(c1

i , . . . , c
t
i),∀i �= j

}
that de-

scribe the item {xu
i ,∀i �= j}. Each element ck

ppj
is obtained by aggregation

of the n − 1 elements
{
ck
i ,∀i �= j

}
. In this process, we need to choose order

inducing variables, such as the IOWA operator suggest. For this purpose, we
will take the column j of the preference relation (p1j , p2j , . . . , pnj). So, for
every attribute we apply the following function:

ck
ppj

= FW

(〈
p1j , c

k
1

〉
, . . . ,

〈
pnj , c

k
n

〉)
= WT Bv.

Then, the vector Bv = (b1, . . . , bn−1) is given by an ordering, from the
greatest to the smallest value, of the elements of the set

{
ck
i ,∀i �= j

}
accord-

ing to such order inducing variables, (p1j , . . . , pnj) where pij represents the
preferences of the example xu

i over the example xu
j .

In the literature there are different methods to compute the weighting
vector W = (w1, . . . , wn−1). For instance, We could associate it with a lin-
guistic quantifier [21]. The selection of the quantifier will depend on the type
of problem, items, etc.
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Computing the Final User Profile

Now, we have a set of partial user profiles, {pp1, . . . , ppn}, the system will
aggregate them in order to obtain an unique and final user profile that state
the user’s preferences and tastes (see Fig. 3). This aggregation process is very
similar to the previous one and the system will also use the IOWA operator.
For every attribute the system will apply the following function:

ck
fp = F ′

W

(〈
p1, c

k
pp1

〉
, . . . ,

〈
pn, ck

ppn

〉)
= W ′T B′

v,

where the vector B′
v = (b′1, . . . , b

′
n) is given by an ordering, from greatest

to smallest value, of the elements of the set
{
ck
ppi

}
according to the order

inducing variables, (p1, . . . , pn) and the weighting vector W ′ = (w′
1, . . . , w

′
n).

The inducing variables (p1, . . . , pn) represents the importance of each al-
ternative. The most important alternative, which is the closest to the user’s
needs, will have the greatest value and the furthest alternative, the smallest
value. To obtain these values we need to compute the importance of each par-
tial user profile. The importance of the partial user profile, ppi, is computed
by using the following function:

pi =
1

n − 1

n∑
j=1|j �=i

pji.

This function computes the importance, pi, as a mean of the preferences
provided by the user over the item xi. These preferences are obtained from
the preference relation that was filled up in Sect. 3.1.

pp1

pp2

pp3pp4

FPu

Fig. 3. Final User Profile. Vector representation
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Finally, the system obtains the user profile, FPu, for the user, u, that will
be used in the recommendation phase:

FPu =
{
c1
fp, . . . , c

t
fp

}
.

3.3 Recommendation

Once the user profile FPu =
{

c1
fp, . . . , c

t
fp

}
has been computed, the system

will recommend the most suitable items to the user’s necessities and tastes.
The system has a item database X = {x1, x2, . . . , xm} in which the system
keeps all the items that can be recommended. Each item xi ∈ X is described
by a set of features xi =

{
c1
i , . . . , c

t
i

}
. To compute a score that measures the

similarity between an item, xi, and the user profile we shall used a similarity
function based on the cosine of two vectors [22]. To acomplish these compu-
tations we shall deal with the user profile and the descriptions of items as
vectors composed by t features defined in a t-dimensional space. Then, we
shall define the similarity function based on the cosine of two vectors (see
Fig. 4):

Definition 3. The similarity between the user profile, FPu and the item xi

is obtained as

Similarity (FPu, xi) = cos
(−−→
FPu,−→xi

)
=

−−→
FPu · −→xi

||FPu|| · ||xi|| .

pp1

xi

FPu

Similarity(FPu, xi)

Fig. 4. Similarity between the final user profile and an item
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The final recommendation(s) will be those items that are closest to the
final user profile, FPu, i.e., its overall similarity is greater. It is very likely
that among the closest items the user could find the items that were chosen
as examples of his/her necessities. These items must be left out from the final
solution because their aim was to represent something close to what the user
really needs, not to fulfil his/her necessities.

4 Example

In this section, we shall apply our model to a specific problem where a user
wants to obtain some recommendations. The items that can be recommended
are stored in a database X = {x1, x2, . . . , xm}. Each item is described by a
vector of features, xi =

{
c1
i , . . . , c

t
i

}
, in which each feature is assessed in the

interval [0, 1] (see Table 1).
The system will show the set Xr of the most “well-known” examples of the

system, and the user will select the four closest examples of his/her necessities
(see Table 2):

The examples chosen by the user are Xu = {Product 11, P roduct 15,
P roduct 23, P roduct 24}. Moreover, the user provides his/her preferences
about these examples. In our case, he/she provides the preference of the first
item over the other ones:

Table 1. Item database

Item ID Description

Product 1 (0.74, 0.37, 0.26, 0.41, 0.39, 0.86, 0.22, 0.050, 0.62, 0.62)

Product 2 (0.36, 0.52, 0.74, 0.28, 0.42, 0.14, 0.76, 0.12, 0.36, 0.59)

Product 3 (0.55, 0.012, 0.81, 0.88, 0.45, 0.97, 0.13, 0.60, 0.88, 0.49)

Product 4 (0.20, 0.18, 0.61, 0.93, 0.28, 0.49, 0.78, 0.88, 0.49, 0.67)

. . . . . .

P roduct 11 (1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

. . . . . .

P roduct 15 (1.0, 0.3, 1.0, 1.0, 0, 0, 1.0, 0, 1.0, 1.0)

. . . . . .

P roduct 21 (0.82, 0.30, 0.89, 0.46, 0.38, 0.12, 0.26, 0.27, 0.57, 0.49)

. . . . . .

P roduct 23 (0.5, 0.1, 0.4, 0.8, 1.0, 1.0, 1.0, 0.4, 0.9, 0.9)

Product 24 (0.1, 0.3, 0.3, 0.9, 1.0, 0, 0.78, 0, 0.85, 0.95)

. . . . . .

P roduct m . . .
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Table 2. Given examples

Item Description

... ...

Product 11 (1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

... ...

Product 15 (1.0, 0.3, 1.0, 1.0, 0, 0, 1.0, 0, 1.0, 1.0)

... ...

Product 23 (0.5, 0.1, 0.4, 0.8, 1.0, 1.0, 1.0, 0.4, 0.9, 0.9)

Product 24 (0.1, 0.3, 0.3, 0.9, 1.0, 0, 0.78, 0, 0.85, 0.95)

... ...

Product m′ ...

P =

⎛⎜⎜⎝
0.5 0.25 0.4 0.65

0.5
0.5

0.5

⎞⎟⎟⎠ .

Now, with these preference values the system must find and recommend
the most suitable items among all the items of its items database (see Table 1).

First of all, the system fills up the user’s preference relation using the
algorithm reviewed in Sect. 2.4 and obtains a complete and consistent prefer-
ence relation:

P ′ =

⎛⎜⎜⎝
0.5 0.25 0.4 0.65
0.75 0.5 0.65 0.9
0.6 0.35 0.5 0.75
0.35 0.1 0.25 0.5

⎞⎟⎟⎠ .

In the next phase the system will compute the user profile, but before,
it must compute the weights that will be used to obtain the partial profiles
and the final user profile. To obtain these weights we shall use the following
function based on the use of a non-decreasing linguistic quantifier, Q [20]:

wi = Q

(
i

m

)
− Q

(
i − 1
m

)
, i = 1, . . . , m,

where m is the number of values we are going to aggregate, and Q is the
linguistic quantifier “at least half ” [20]:

Q(x) =

⎧⎨⎩
0 si x < a
x−a
b−a si a ≤ x ≤ b

1 si x > b
with a = 0, b = 0.5.

The above function obtains the weighting vectors, W and W ′, that will be
utilized to obtain the partial user profiles and the final user profile respectively.
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Table 3. Partial profiles

Partial profile Description

ppProduct 11 (0.83, 0.23, 0.8, 0.93, 0.33, 0.33, 1, 0.13, 0.97, 0.97)

ppProduct 15 (0.67, 0.13, 0.6, 0.87, 1, 1, 1, 0.6, 0.93, 0.93)

ppProduct 23 (1, 0.27, 1, 1, 0.33, 0.33, 1, 0.33, 1, 1)

ppProduct 24 (0.83, 0.23, 0.8, 0.93, 0.33, 0.33, 1, 0.13, 0.97, 0.97)

The values obtained for the first vector are W = {0.67, 0.33, 0} and for the
second one W ′ = {0.5, 0.5, 0, 0}.

With these weights and using the complete and consistent preference rela-
tion the system aggregates the items descriptions to obtain the partial profiles.
For example, to obtain the first value of partial profile related to the first ex-
ample, ppProduct 11, the system shall compute:

c1
ppP roduct 11

= FW (〈0.75, 1〉 , 〈0.6, 0.5〉 , 〈0.35, 0.1〉) = 0.83.

We can see the partial profiles in Table 3.
To obtain the final user profile we shall aggregate the partial profiles using

the weights W ′. For instance, to obtain the first value of the final user profile
the system shall compute:

c1
fp = F ′

W (〈0.57, 0.83〉 , 〈0.23, 0.67〉 , 〈0.43, 1〉 , 〈0.77, 0.83〉) = 0.83.

Where the inducing variables {p1, . . . , p4} are calculated, from the prefer-
ence relation, as follows:

p1 =
1
3

n∑
j=1|j �=1

pji =
1
3

(0.75 + 0.6 + 0.35) = 0.57,

p2 =
1
3

n∑
j=1|j �=2

pji =
1
3

(0.25 + 0.35 + 0.1) = 0.23,

p3 =
1
3

n∑
j=1|j �=3

pji =
1
3

(0.4 + 0.65 + 0.25) = 0.43,

p4 =
1
3

n∑
j=1|j �=4

pji =
1
3

(0.65 + 0.9 + 0.75) = 0.77.

If we compute all the values we shall obtain the following final user profile
(see Table 4).

The last step in our model is the recommendation phase. In this phase the
system will compute the similarity of the final user profile with the description
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Table 4. Final user profile

Final profile

(0.83, 0.23, 0.8, 0.93, 0.33, 0.33, 1., 0.13, 0.97, 0.97)

Table 5. Recommendations

Item Similarity

Product 4 0.914

Product 21 0.897

Product 3 0.895

. . . . . .

of each item of the item database and it will recommend those items that are
the closest to the user’s necessities. The system will use the function defined
in Sect. 3.3 that is based on a cosine measure. The results of this comparisons
can be seen in Table 5.

Therefore, according to these results the closest item to the user necessities
is the item Product 4, the second one is the Product 21, the next one is the
Product 8 and so on.

5 Conclusions

When people visit an e-shop, they usually can find thousands of items related
to their necessities, but only a few of them can fulfil their real expectations
and sometimes it is hard to find them. The Recommender Systems assist
them in finding these items among all of them. There are different types of
Recommender Systems, such as the Content-based and the Collaborative ones.
These kind of Recommender Systems make good recommendations as long as
they have enough information about the users, their necessities or the items.
However, when this information is scarce or not available, they are unable to
make recommendations.

In this chapter we have presented a model for Knowledge Based Recom-
mender System that provides a technology to avoid this problem. It gathers
the information from the users using a numerical preference relation structure
that only requires to be filled with a small number of values and then, using
the consistency property the system will complete the preference relation in
order to exploit it and to obtain better recommendations but without forcing
the users to spend much time in the generation of his/her profile.
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