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Abstract. Rand index is one of the most popular measures for comparing two
partitions over a set of objects. Several approaches have extended this measure
for those cases involving fuzzy partitions. In previous works, we developed a
methodology for correspondence analysis between partitions in terms of data
mining tools. In this paper we discuss how, without any additional cost, it can
be applied as an alternate computation of Rand index, allowing us not only to
compare both crisp and fuzzy partitions, but also classes inside these partitions.
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1 Introduction

Fuzzy models have been extensively used in pattern recognition. In particular, cluster-
ing techniques have been extended to determine a finite set of groups or categories,
that can be fuzzy (elements being associated to each cluster with a degree of mem-
bership), to describe a set of objects with similar features. Developed algorithms have
been successfully applied in a wide range of areas including image recognition, signal
processing, market segmentation, document categorization and bioinformatics.

The main problems arising the comparison of two fuzzy partitions of a given set are
the following: (1) the number of clusters in both partitions are not necessarily the same,
(2) the measures for comparing two equivalent partitions, that can be represented by
matrices A and B, must be invariant under row permutations.

As far as we know, most of current approaches are only suitable for comparing a
fuzzy partition with a crisp one, where the latter represents the “true” partition of data.
But in nearly all real cases, there is no such crisp partition giving a perfect matching.

There are three kinds of approaches for evaluating the partitions quality: internal,
external and relative criteria [27]. Internal criterion is used for evaluating a partition
separately, usually for measuring the grade of fit between the partition and the input
data. External measures compare the obtained partition with a reference partition that
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pertains to the data but which is independent of it. Relative measures, also known as rel-
ative indices, assess the similarity between two partitions computed by different meth-
ods. Our approach belongs to this last group. Our goal in this paper is to define an
alternative to the popular Rand index [29], by means of a family of data mining tools,
applied to both crisp and fuzzy correspondence analysis between partitions.

The paper is organized as follows. In the following section, we mention some com-
parison methods between partitions, specially those related to fuzzy cases. Then, we
summarize the models for data mining employed as tools for analyzing some types of
correspondences, described in the next section. After this, there is our problem approach
in terms of the data mining measures applied to correspondence analysis. Finally, some
future trends in this work to come are defined as well as we present our conclusions.

2 Rand Index and Other Comparison Measures

Comparison methods include those measures that compare two partitions. When com-
paring a resulting partition by a clustering process with a referential one, which is
considered to be the “true” partition, we will call it an external method. External in-
dices [27] give the expert an indication of the quality of the resulting partition, while
when comparing two different partitions we obtain a grade of how similar they are. If
both partitions come from different clustering processes the method is considered as
relative.

There are many indices to be reviewed for crisp partitions [22] (see also [2]). For
fuzzy partitions we will refer to the most important approaches developed until now.
Many of them are generalizations of crisp measures.

The Rand index [29] proposed by Rand in 1971 is given in terms of the number of
pairwise comparisons of data objects. It is one of the most popular indices. Given A and
B two crisp clusters we set:

– a, pairs belonging to the same cluster in A and to the same cluster in B.
– b, pairs belonging to the same cluster in A but to a different cluster in B.
– c, pairs belonging to a different cluster in A but to the same cluster in B.
– d, pairs belonging to different clusters in both A and B.

Then, the Rand index is given by the proportion between the number of agreements and
the total number of pairs:

IR(A,B) =
a+ d

a+ b+ c+ d
(1)

Campello [13] extends the Rand index for comparing fuzzy partitions. For that purpose,
he rewrites the original formulation in terms of the fuzzy partitions. Let X and Y be two
fuzzy partitions defined over the set of objects O, we consider:

• X1 = {(o,o′) ∈ O×O that belong to the same cluster in X}.
• X0 = {(o,o′) ∈ O×O that belong to different clusters in X}.
• Y1 = {(o,o′) ∈ O×O that belong to the same cluster in Y}.
• Y0 = {(o,o′) ∈ O×O that belong to the different clusters in Y}.
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The Rand index is rewritten in terms of the previous four quantities: a = |X1 ∩Y1| ,b =
|X1 ∩Y0|, c = |X0 ∩Y1| ,d = |X0 ∩Y0|. In the fuzzy case the sets Xi,Yi are defined by
means of a t-norm ⊗ and a t-conorm ⊕. Let Xi(o) ∈ [0,1] the degree of membership
of element o ∈ O in the i-th cluster of X . Analogously Yi(o) ∈ [0,1] is the degree of
membership of element o ∈ O in the i-th cluster of Y

• X1(o,o′) =
k⊕

i=1

Xi(o)⊗Xi(o
′) • X0(o,o′) =

k⊕

1≤i�= j≤k

Xi(o)⊗Xj(o
′)

• Y1(o,o′) =
l⊕

i=1

Yi(o)⊗Yi(o
′) • Y0(o,o′) =

l⊕

1≤i�= j≤l

Yi(o)⊗Yj(o
′)

The four frequencies taking part in equation (1) are then formulated in terms of the
intersection of these sets using the sigma-count principle:

a = ∑
(o,o′)∈O×O

X1(o,o
′)⊗Y1(o,o

′) b = ∑
(o,o′)∈O×O

X1(o,o
′)⊗Y0(o,o

′)

c = ∑
(o,o′)∈O×O

X0(o,o
′)⊗Y1(o,o

′) d = ∑
(o,o′)∈O×O

X0(o,o
′)⊗Y0(o,o

′)
(2)

This is not the only generalization of the Rand index. We can find in the literature the
approaches of Frigui et al. [21], Brouwer [11], Hüllermeier and Rifqi [23] and Anderson
et al. [2]. In [3,2] the reader may find a more extensive comparison of the cited indices.
We will resume the main differences between them:

– Campello was interested in comparing a fuzzy partition with a non-fuzzy one, but
its proposal is formulated for comparing two fuzzy partitions.

– Frigui et al. present generalizations for several indices including the Rand index.
They also restrict the approach when one of the partitions is a crisp one. When
using product for the t-norm and sum for the t-conorm for the Campello’s approach
we obtain this particular case [21].

– Brouwer presents another generalization by defining a relationship called bonding
that describes the degree to which two objects are in the same cluster. Then, bond-
ing matrices are built using previous relation and the cosine distance [11].

– Hüllermeier and Rifqi’s approach is defined for every two fuzzy partitions by defin-
ing a fuzzy equivalence relation on the set of objects O. This fuzzy relation is then
used for defining the degree of concordance or discordance between two objects
o,o′ ∈ O. The distance obtained using the resulting index satisfies the desirable
properties for a pseudo-metric and in some special cases it is a metric [23].

A very similar index was proposed by several authors: the so-called Jaccard coeffi-
cient [24] where the participation of the quantity d is suppressed in Campello’s index.

The Fowlkes-Mallows index proposed in [20] can be defined as in equation (3) ob-
taining a value of 1 when clusters are good estimates of the groups.

IF(A,B) =
a√

(a+ b)(a+ c)
(3)
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Previous indices, as well as the Adjusted Rand index of Hubert and Arabie [22], the C
statistics [25] and the Minkowski measure [26] can be defined in terms of the four fre-
quencies a,b,c,d and they are related to Rand index. All these indices allow uniquely
the evaluation of hard (crisp) clustering partitions, but some authors [13,14,2] have ex-
tended all of them in a unified formulation. The first attempt of Campello [13] relies
solely on the redefinition of the four frequencies using basic fuzzy set concepts, but it
has the shortcoming that one of the partitions must to be hard for keeping the important
property of reaching their maximum (unit value) when comparing equivalent partitions.
A more recent approach [14] settles this shortcoming by defining a fuzzy transfer dis-
tance between two fuzzy partitions. In addition, Campello also addresses the problem
of how to compare two partitions from different subsamples of data.

Anderson et al. [2] developed a method to generalize comparison indices to all possi-
ble cases concerning two different partitions: crisp, fuzzy, probabilistic and possibilistic
and for every index that can be expressed in terms of the four mentioned frequencies.

A different proposal by Di Nuovo and Catania [27], called DNC index, is based on a
defined measure called degree of accuracy which is intended to measure the degree of
association of a partition with its reference partition representing the real group.

A quite different approach is that developed by Runkler [31] which is based on the
similarities between the resultant subsets by the partitions. The subset similarity index
is computed in terms of the similarities between all the partitions subsets. This index is
reflexive and invariant under row permutations which are desirable properties.

3 Crisp and Fuzzy Data Mining Tools

3.1 Association Rules

Given a set I (“set of items”) and a database D constituted by set of transactions (“T-
set”), each one being a subset of I, association rules [1] are “implications” of the form
A ⇒ B that relate the presence of itemsets A and B in transactions of D, assuming
A,B ⊆ I, A∩B = /0 and A,B �= /0.

The ordinary measures proposed in [1] to assess association rules are confidence
(the conditional probability P(B|A)) and support (the joint probability P(A∪B)). An
alternative framework [8,16] measures accuracy by means of Shortliffe and Buchanan’s
certainty factors [33], showing better properties than confidence, and helping to solve
some of its drawbacks. Let supp(B) be the support of the itemset B, and let Conf(A⇒B)
be the confidence of the rule. The certainty factor of the rule is defined as

CF(A � B) =

⎧
⎪⎨

⎪⎩

Conf(A⇒B)−supp(B)
1−supp(B) if Conf(A ⇒ B)> supp(B

Conf(A⇒B)−supp(B)
supp(B) if Conf(A ⇒ B)< supp(B)

0 otherwise.

(4)

The certainty factor yields a value in the interval [-1, 1] and measures how our belief
that B is in a transaction changes when we are told that A is in that transaction.
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3.2 Formal Model for Mining Fuzzy Rules

Many definitions for fuzzy rule can be found in the literature, but in this work, we will
apply the formal model developed in [17,19], which allows us to mine fuzzy rules in a
straightforward way extending the accuracy measures from the crisp case. Its formal-
ization basically underlies in two concepts: the representation by levels associated to a
fuzzy property (RL for short) and the four fold table associated to the itemsets A and B
in database D, noted by M = 4 f t(A,B,D).

A RL associated to a fuzzy property P in a universe X is defined as a pair (ΛP,ρP)
where ΛP = {α1, . . . ,αm} is a finite set of levels verifying that 1 = α1 > · · · > αm >
αm+1 = 0 and ρP : ΛP → P(X) is a function which applies each level into the crisp
realization of P in that level [32]. The set of crisp representatives of P is the set ΩP =
{ρP(α) |α ∈ ΛP}. The values of ΛP can be interpreted as values of possibility for a
possibility measure defined for all ρP(αi) ∈ ΩP as Pos(ρP(αi)) = αi. Following this
interpretation we define the associated probability distribution m : ΩP → [0,1] as in
equation (5) which give us information about how representative is each crisp set of the
property P in ΩP.

mP(Y ) = ∑
αi |Y=ρ(αi)

αi −αi+1 (5)

For each Y ∈ ΩP, the value mP(Y ) represents the proportion to which the available
evidence supports claim that the property P is represented by Y . From this point of
view, a RL can be seen as a basic probability assignment in the sense of the theory of
evidence, plus a structure indicating dependencies between the possible representations
of different properties.

The four fold table associated to the itemsets involved in a rule A ⇒ B detaches the
number of transactions in D satisfying the four possible combinations between A and B
using the logic connectors ∧ (conjunction) and ¬ (negation). So, M = 4 f t(A,B,D) =
{a,b,c,d} where a is the number of rows of D satisfying A∧B, b the number of rows
satisfying A∧¬B, c represents those satisfying ¬A∧B and d those satisfying the last
possibility ¬A∧¬B [30,18]. Note that |D|= a+b+ c+d = n. The validity of an asso-
ciation rule is assessed by using M by means an operator ≈ (interestingness measure)
called 4ft-quantifier. In particular, known measures of support and confidence are 4ft-
quantifiers defined as follows:

Supp(A ⇒ B) =≈S (a,b,c,d) =
a

a+ b+ c+ d

Conf(A ⇒ B) =≈C (a,b,c,d) =
a

a+ b

(6)

and we can use them to define the certainty factor ≈CF (a,b,c,d) in terms of the four
frequencies of M (see [18] for its shorter form).

Using these two models we have proposed [19] a framework for fuzzy rules that
ables us to extend the interestingness measures for their validation from the crisp to the
fuzzy case. Summarizing the model, we can represent the fuzzy sets appearing in the
fuzzy rule by the associated RLs (ΛÃ,ρÃ), (ΛB̃,ρB̃) and for every level in ΛÃ ∪ΛB̃ we
define the associated four fold table as Mαi = (ai,bi,ci,di) whose values are computed
using the previous RLs (see [19] for more details).
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Using Mαi and the probability distribution of equation (5) we extend the accuracy
measures for fuzzy rules from the crisp case [19]:

∑
αi∈ΛÃ∪ΛB̃

(αi −αi+1)(≈ (ai,bi,ci,di)) (7)

The model is a good generalization of the crisp case, allowing the use of equation (7)
in the fuzzy definition of measures in equation (6) as, respectively, FSupp(A ⇒ B),
FConf(A ⇒ B), and FCF(A ⇒ B) (see [19] for a complete discussion).

3.3 Approximate Dependencies

Let RE = {At1, . . . ,Atm} be a relational scheme and let r be an instance of RE such that
|r|= n. Also, let V,W ⊂ RE with V ∩W = /0. A functional dependency V →W holds in
RE if and only if

∀t,s ∈ r i f t[V ] = s[V ] then t[W ] = s[W ] (8)

Approximate dependencies can be roughly defined as functional dependencies with ex-
ceptions. The definition of approximate dependence is then a matter of how to define
exceptions, and how to measure the accuracy of the dependence [10]. We shall follow
the approach introduced in [15,9], where the same methodology employed in mining
for association rules is applied to the discovery of approximate dependencies.

Since a functional dependency ‘V →W ’ can be seen as a rule that relates the equal-
ity of attribute values in pairs of tuples (see equation (8)), and association rules relate
the presence of items in transactions, we can represent approximate dependencies as
association rules by using the following interpretations of the concepts of item and
transaction:

– An item is an object associated to an attribute of RE . For every attribute Atk ∈ RE
we note itAtk the associated item.

– We introduce the itemset IV to be IV = {itAtk |Atk ∈V}
– Tr is a T-set that, for each pair of tuples < t,s >∈ r× r contains a transaction ts∈ Tr

verifying itAtk ∈ ts ⇔ t[Atk] = s[Atk] It is obvious that |Tr|= |r× r|= n2.

Then, an approximate dependence V →W in the relation r is an association rule IV ⇒
IW in Tr [15,9]. The support and certainty factor of IV ⇒ IW measure the interest and
accuracy of the dependence V →W .

3.4 Fuzzy Approximate Dependencies

In [7] a definition integrating both approximate and fuzzy dependencies features is
introduced. In addition to allowing exceptions, the relaxation of several elements of
equation (8) is considered. In particular, we associate membership degrees to pairs
< attribute,value > as in the case of fuzzy association rules, as well as the equality
of the rule is smoothed as a fuzzy similarity relation.

Extending the crisp case above, fuzzy approximate dependencies in a relation are
defined as fuzzy association rules on a special fuzzy T-set obtained from that relation.
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Let IRE = {itAtk |Atk ∈ RE} be the set of items associated to the relational schema RE .
We define a fuzzy T-set T̃r as follows: for each pair of rows < t,s > in r× r we have a
fuzzy transaction ts in T̃r defined as

∀itAtk ∈ T̃r, ts(itAtk ) = min(Atk(t),Atk(s),SAtk (t(Atk),s(Atk))) (9)

This way, the membership degree of a certain item itAtk in the transaction associated
to tuples t and s takes into account the membership degree of the value of Atk in each
tuple (Atk(t)) and the similarity between them (SAtk ). The latter represents the degree
to which tuples t and s agree in Atk. According to this, let X ,Y ⊆ RE with X ∩Y = /0
and X ,Y �= /0. The fuzzy approximate dependence[7] X →Y in r is defined as the fuzzy
association rule IX ⇒ IY in T̃r.

Analogously to the crisp case, we measure the importance and accuracy of the fuzzy
approximate dependence X → Y as the support and certainty factor of the fuzzy associ-
ation rule IX ⇒ IY (see section 3.2).

4 Correspondence Analysis in Terms of Data Mining Tools

Correspondence analysis [6] describes existing relations between two nominal
variables, by means of a contingency table, obtained as the cross-tabulation of both
variables. It can be applied to reduce data dimension, prior to a subsequent statistic
processing (classification, regression, discriminant analysis, . . .). In particular, it can be
helpful in the integration or matching of different partitions over a set of objects.

4.1 Crisp Correspondences

In [5], we introduced an alternate methodology to classic correspondence analysis, cen-
tered in the interpretation of a set of rules and/or dependencies. For that, we represent
the possible correspondences between objects as a relational table, where the value of
a cell for a given object (row) and partition (column) means the class in the partition
where the object is.

Let O be a finite set of objects, and A = {A1,A2, . . . ,Ap}, B = {B1,B2, . . . ,Bq}
two partitions of O, i.e., Ai,B j ⊆ O and Ai,B j �= /0, Ai1 ∩Ai2 = /0 ∀i1, i2 ∈ {1, . . . , p} and
B j1 ∩B j2 = /0 ∀ j1, j2 ∈ {1, . . . ,q}. Also,

⋃
Ai∈A Ai =

⋃
B j∈B B j = O.

We represent partitions A and B by means of a table, rA B (see table 1), and we
shall use the notation for relational databases. Each row (tuple) and column (attribute)
of rA B will be associated to an object and a partition, respectively. This way, we assume
|rA B |= |O|.

We shall note to the tuple associated to object o, and XP the attribute associated to
partition P . The value for tuple to and attribute XP , to[XP ], will be the class for o
following P , i.e., to[XP ] ∈ P .

Let us remark that we are interested not only in perfect correspondences, but also in
those with possible exceptions. Hence, we are concerned with measuring the accuracy
of correspondences between partitions.

Definition 1 ([5]). Local correspondence. Let Ai ∈ A and B j ∈ B. There exists a
local correspondence from Ai to B j when Ai ⊆ B j.
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Table 1. Table rA B

Object tuple XA XB

o1 to1 A1 B2
o2 to2 A2 B2

o3 to3 A1 B1
· · · · · · · · · · · ·

The analysis of local correspondences can be performed by looking for association
rules in the table rA B . Rules [XA = Ai]⇒ [XB = B j] and [XB = B j]⇒ [XA = Ai] tell
us about possible local correspondences between classes Ai and B j.

Definition 2 ([5]). Partial correspondence. There exists a partial correspondence from
A to B, noted A � B, when ∀Ai ∈ A ∃B j ∈ B such that Ai ⊆ B j.

Definition 3 ([5]). Global correspondence. There exists a global correspondence be-
tween A and B, noted A ≡ B, when A � B and B � A .

The analysis of partial correspondences can be performed by looking for approximate
dependencies in rA B [5]. If the dependence XA → XB holds, there is a partial corre-
spondence from A to B. The certainty factor of the dependence measures the accuracy
of the correspondence. As we are interested in using the same measure to assess global
correspondences, this leads to define the certainty factor of A ≡ B as the minimum
between CF(A � B) and CF(B � A ), since it is usual to obtain the certainty factor
of a conjunction of facts as the minimum of the certainty factors of the facts.

4.2 Fuzzy Correspondences

Consider the case of establishing correspondences between diseases and symptoms.
A certain disease can be described by several symptoms, at a given degree, and also a
symptom can be related to different diseases. Since the original correspondence analysis
[6] is not able to manage such cases in which partitions boundaries are not so clear,
we extended the alternate methodology discussed in section 4.1 in order to manage
correspondences between fuzzy partitions [12].

Let O = {o1, . . . ,on} be again a finite set of objects. Let Ã = {Ã1, . . . , Ãp} and
B̃ = {B̃1, . . . , B̃q} be two fuzzy partitions over O. Let T̃

Ã B̃
(Table 2) be the fuzzy

transactional table associated to O, each transaction representing an object, that is,
|T̃

Ã B̃
|= |O|. Given o∈ O, Ãi ∈ Ã and B̃ j ∈ B̃, we noted for Ãi(o) (respectively, B̃ j(o))

the membership degree of o in Ãi (respectively, B̃ j). Each object must belong to at least

one class of each partition, that is, ∀o ∈ O,∃P̃i ∈ P̃/P̃i(o) > 0, and each class must
contain at least one object, that is, Ãi, B̃ j �= /0.

As we manage fuzzy partitions, we can relax the condition of disjoint classes within
a partition. Also, we do not consider the case of partitions being necessarily normalized.

Definition 4 ([12]). Fuzzy local correspondence. Let Ãi ∈ Ã and B̃ j ∈ B̃. There exists
a fuzzy local correspondence from Ãi to B̃ j, noted Ãi ⇒ B̃ j, if Ãi ⊆ B̃ j, that is, ∀o ∈ O,
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Table 2. Fuzzy transactional table T̃
Ã B̃

Object Ã1 . . . Ãp B̃1 . . . B̃q

o1 Ã1(o1) . . . Ãp(o1) B̃1(o1) . . . B̃q(o1)

o2 Ã1(o2) . . . Ãp(o2) B̃1(o2) . . . B̃q(o2)

o3 Ã1(o3) . . . Ãp(o3) B̃1(o3) . . . B̃q(o3)

· · · · · · · · · · · · · · · · · · · · ·

Ãi(o) ≤ B̃ j(o). This time, we can obtain fuzzy local correspondences in terms of fuzzy
association rules.

When analyzing fuzzy partial and global correspondences, we must manage not classes,
but partitions. It would be necessary to define a membership degree of an object in a
partition, that is, Ã (o). This defines a multidimensionality problem, already addressed
in [12], and it is a pending task currently under researching. For sake of simplicity,
we will reduce to the case in which an object is associated to only one class in every
partition, for example, that with the highest membership degree.

We shall represent partitions Ã and B̃ by means of a fuzzy relational table, r̃
Ã B̃

(Table 3). Each row (object) is related to a column (partition) with a certain member-
ship degree. The value corresponding to tuple to and attribute X

Ã
, to[XÃ

], will be the

class for o according to partition Ã , that is, to[XÃ
] ∈ Ã . We shall note as X

Ã
(o) the

membership degree of o in to[XÃ
]. As discussed before, we shall note this as Ã (o).

Table 3. Fuzzy relational table, r̃
Ã B̃

Object X
Ã

X
B̃

to1 Ãi1,Ã (o1) B̃ j1,B̃(o1)

to2 Ãi2,Ã (o2) B̃ j2,B̃(o2)

to3 Ãi3,Ã (o3) B̃ j3,B̃(o3)

· · · · · · · · ·

Definition 5 ([12]). Fuzzy partial correspondence. There exists a fuzzy partial corre-
spondence from Ã to B̃, noted Ã � B̃, when ∀Ãi ∈ Ã ∃B̃ j ∈ B̃ such that Ãi ⊆ B̃ j,

that is, ∀o ∈ O/to[Ã ] = Ãi implies to[B̃] = B̃ j and Ã (o)≤̇B̃(o).

≤̇ defines a vectorial order relation that, for this particular case, corresponds to a classic
order relation.

Definition 6 ([12]). Fuzzy global correspondence. There exists a fuzzy global corre-
spondence between Ã and B̃, noted Ã ≡ B̃, when Ã � B̃ and B̃ � Ã .

Fuzzy partial and global correspondences relate fuzzy partitions, and both can be ob-
tained by means of fuzzy approximate dependencies.
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5 Our Proposal. Discussion

In this section, we give an alternate approach to Rand index which is valid for both crisp
and fuzzy partitions, in terms of the measures employed in the tools described in section
3, and using the tabular representation described in section 4. Hence, let O be again a
finite set of objects, |O|= n, with A = {A1,A2, . . . ,Ap} and B = {B1,B2, . . . ,Bq}, two
different partitions over O.

Analogously to the approach described in [15,9] for approximate dependencies, let
T be a transactional table where each row represents an ordered pair of objects (o,o′) ∈
O×O, |T |= n(n−1)

2 . Let IA (resp., IB) be an item that indicates that both objects o,o′
belong to the same class in partition A (resp., B). According to this, we can redefine
the Rand index parameters, a,b,c,d in terms of the support measure as:

– a = |T | · supp(IA ∩ IB),
– b = |T | · (supp(IA )− supp(IA ∩ IB)),
– c = |T | · (supp(IB)− supp(IA ∩ IB)), and
– d = |T | · (1− supp(IA ∪ IB)) = |T | · (1− supp(IA )− supp(IB)+ supp(IA ∩ IB)).

Thus, we can rewrite the Rand index as,

IR(A ,B) =
a+ d

a+ b+ c+ d
=

|T | · (supp(IA ∩ IB)− (1− supp(IA ∪ IB)))

|T | =

= 1− (supp(IA )+ supp(IB)− 2supp(IA ∩ IB))

(10)

Let us notice in first place, how, from this expression, it is trivial that IR(A ,B) =
IR(B,A ), since only support is involved in equation 10. Moreover, it is easy to see that
these parameters are proportionally equivalent to those of the four fold table used in the
model described in section 3.2, allowing us to relate IR(A ,B) in some way with the
measures of support, confidence, and certainty factor (see definitions for 4ft-quantifiers
≈S (a,b,c,d), ≈C (a,b,c,d), and ≈CF (a,b,c,d), respectively).

Following this, and taking into account our approach for correspondence analysis
(section 4.1), we can establish a direct relation between Rand index and the measure-
ment of partial and global correspondences between two different partitions (by means
of approximate dependencies). Even more, we can define a similar measure to analyze
not only these types of correspondences, but also local correspondences (by means of
association rules).

As for the case of fuzzy partitions, our model for fuzzy correspondences (section 4.2)
also allows to obtain measures as informative as the Rand index, again considering both
partitions (in terms of fuzzy approximate dependencies) as well as classes (as relations
expressed as fuzzy association rules).

Then, according to equation (10), we can redefine the Rand index in terms of the sup-
port measure, allowing us to distinguish several interpretations of this measure, based
on the data mining tool used as source. Let us consider the following family of indices:

– IAR(Ai,B j), for comparing classes Ai ∈ A and B j ∈ B, from association rules,
– IAD(A ,B), for comparing partitions A and B, from approximate dependencies,
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– IFAR(Ãi, B̃ j), for comparing fuzzy classes Ãi ∈ Ã and B̃ j ∈ B̃, from fuzzy associa-
tion rules, and

– IFAD(Ã ,B̃), for comparing fuzzy partitions Ã and B̃, defined in terms of fuzzy
approximate dependencies.

Let us remark that our approach allows not only to take into account these proposed
measures, but also the already well-defined and popular measures of support, confi-
dence and certainty factor. A very interesting issue could be a deeper study of the com-
bined information obtained by all these values.

From our point of view, these definitions open a new framework in the problem of
partition comparison, specially in those cases where the boundaries between classes are
unclear, able to be managed by means of fuzzy partitions. In [5], we briefly discussed
some interesting properties as, for example, that of how our approach can be applied to
the study of relations between more than two partitions. The analysis of the relevance
of this and some other properties is a pending task, and future works will be devoted to
their study and development.

5.1 A Brief Example

In order to illustrate our proposal, but due to lack of space, we are showing a little exam-
ple of our methodology, extending the results over the same dataset used in [12]. Here,
fuzzy correspondence analysis between different partitions over a set of 211 agricul-
tural zones is addressed and discussed. The first fuzzy partition was obtained as widely
discussed in [4] from users (farmers) knowledge, and classified the examples into 19
classes. Let userclass = {Ã1, . . . , Ã19} be this classification. A scientific classification
was previously presented in [28]. Here, a total of 21 land types, called soil maps units,
are found, only 19 being suitable for olive trees cultivation. Let sciclass = {B̃1, . . . , B̃21}
be this other classification.

Fuzzy local correspondences between classes were computed between userclass and
sciclass, and those more interesting (CF > 0.65) are shown in table 4. Each cell in the
table shows the CF for the fuzzy local correspondence (fuzzy association rule) of the
type B̃ j ⇒ Ãi (as discussed in [12], the inverse fuzzy local correspondences were found
to be not interesting regarding CF). It must be remarked that these results were validated
and properly interpreted by soil experts.

Table 5 shows the IFAR value for the same correspondences in table 4. Let us recall
that I(A ,B) = I(B,A ) for any two partitions (or classes, as it is the case). That is,
this index tells us about the relation between A and B, but gives no information about
the direction of this relation. From our point of view, this relation is not necessarily
symmetric, since one partition class can be partially included in other partition class,
but the opposite might not hold. In this sense, these first results suggest that CF measure
seems to be more valuable than IFAR. Hence, a more exhaustive and complete analysis
of the relation between these measures, considering additional sets of examples, appears
to be necessary, and will be properly addressed in a future extension of this work.
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Table 4. Fuzzy local correspondences between sciclass (rows) and userclass (columns) classes,
B̃ j ⇒ Ãi (CF > 0.65)

A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A14 A15 A16 A17

B1 0.722 0.783 0.687 0.672 0.690
B3 0.870 0.859 0.793 0.660 0.689 0.655 0.771 0.783 0.759
B5 0.684 0.733 0.795 0.744 0.686 0.736
B6 0.895 0.913 0.792 0.675 0.661 0.784 0.803 0.813
B8 0.886 0.932
B9 0.650 0.719 0.687 0.712 0.675
B10 0.653 0.718 0.728 0.715 0.705 0.711
B11 0.691 0.764 0.743 0.721 0.653 0.676 0.670 0.813 0.666
B13 0.700 0.662 0.687
B15 0.761 0.760 0.842 0.737 0.687 0.681 0.683 0.674 0.664
B16 0.744 0.853 0.812 0.756 0.729 0.734 0.769 0.688 0.696 0.808
B20 0.803 0.868 0.871 0.667 0.802 0.742 0.700 0.706 0.811 0.770

Table 5. Rand index IFAR(Ãi, B̃ j) for fuzzy local correspondences between sciclass (rows) and
userclass (columns) classes

A1 A2 A3 A4 A5 A6 A7 A8 A10 A11 A12 A14 A15 A16 A17

B1 0.241 0.292 0.292 0.341 0.416
B3 0.354 0.331 0.283 0.299 0.402 0.438 0.333 0.336 0.398
B5 0.346 0.341 0.326 0.354 0.346 0.363
B6 0.297 0.277 0.234 0.271 0.366 0.289 0.291 0.358
B8 0.288 0.270
B9 0.317 0.305 0.339 0.357 0.346
B10 0.289 0.241 0.286 0.381 0.294 0.346
B11 0.293 0.281 0.244 0.285 0.422 0.420 0.290 0.307 0.357
B13 0.287 0.427 0.347
B15 0.332 0.311 0.293 0.315 0.316 0.365 0.316 0.380 0.434
B16 0.292 0.280 0.242 0.281 0.376 0.419 0.293 0.337 0.288 0.364
B20 0.235 0.284 0.428 0.281 0.341 0.287 0.626 0.568 0.560 0.411

6 Further Works and Concluding Remarks

Many measures based on the Rand index have been proposed and developed for the
study of partitions comparison. A subset of them can be applied also in those cases in-
volving fuzzy partitions. In this work, we have applied a previously developed method-
ology for correspondence analysis, in terms of fuzzy data mining tools, to the problem
of partition comparison, expressed in the form of a measure such as the Rand index.
Our approach offers the advantage of being capable of managing both crisp and fuzzy
partitions, and, in addition, it allows to compare not only different partitions, but also
classes inside these partitions. We have shown an example combining an accuracy mea-
sure as CF with the Rand index. Moreover, we have seen how CF, in comparison to
Rand index, allows to determine the direction in which the relation between partitions
(or classes) is stronger.

Finally, some interesting properties arise from the proposed measures, and a deeper
and more complete study and development will be the main topic in future extensions of
this work. Practical works covering the discussion of our methodology applied to real
world problems, as fuzzy image segmentation (for the comparison of different meth-
ods), and classification in medical cases, are also in progress..
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