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Embryomorphic Engineering:
Emergent Innovation Through
Evolutionary Development
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Abstract Embryomorphic Engineering, a particular instance of Morphogenetic
Engineering, takes its inspiration directly from biological development to create
new robotic, software or network architectures by decentralized self-assembly of
elementary agents. At its core, it combines three key principles of multicellular
embryogenesis: chemical gradient diffusion (providing positional information to the
agents), gene regulatory networks (triggering their differentiation into types, thus
patterning), and cell division or aggregation (creating structural constraints, thus
reshaping). This chapter illustrates the potential of Embryomorphic Engineering in
different spaces: 2D/3D physical swarms, which can find applications in collective
robotics, synthetic biology or nanotechnology; and nD graph topologies, which can
find applications in distributed software and peer-to-peer techno-social networks.
In all cases, the specific genotype shared by all the agents makes the phenotype’s
complex architecture and function modular, programmable and reproducible.

This chapter is a condensed review version of references [16–22].
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11.1 Evolutionary Development

Morphogenetic Engineering (ME), the topic of this book, concerns the design, or
rather “meta-design”, of the self-organizing abilities of the elements of complex sys-
tems toward functional architectures. This meta-design, however, should not exclu-
sively rely on human inventiveness as in traditional engineering disciplines but may
also involve an important automation part, essentially via an evolutionary search. In
that sense, by combining not only self-organization and architecture but also evolu-
tion, ME is very close to the tenets of evolutionary development, a recent and rapidly
expanding field of biology nicknamed “evo-devo” [6, 8, 10, 11, 30, 40, 48, 58, 68].

11.1.1 Evo-Devo in Biology

In the variation/selection couple of evolutionary biology, “selection” has received
most of the honors while “variation” remained the neglected child. Darwin discov-
ered the evolution of species, based on random mutations and nonrandom natural
selection, and established it as a central fact of biology. During the same period,
Mendel brought to light the laws of inheritance of traits. In the twentieth century, his
work was rediscovered and became the foundation of the science of genetics, which
culminated with the revelation of DNA’s role in heredity by Avery and its double-
helix structure by Watson and Crick. Integrating evolution and genetics, the “Modern
Synthesis” of biology has successfully demonstrated the existence of a fundamental
correlation between genotype and phenotype and between their respective changes:
mutation in the first is causally related to variation in the second. Yet, 150 years after
Darwin’s and Mendel’s era, the nature of the link from genes to organismal forms,
i.e., the actual molecular and cellular basis of the mechanisms of development, are
still unclear. How does a one-dimensional genome specify a three-dimensional ani-
mal? [24]. How does a static, linear DNA unfold in time (regulation dynamics) and
space (cellular self-assembly)? What is the part also played by epigenetics? These
questions constitute the missing link of the Modern Synthesis and the main challenge
of evo-devo.

While the attention was focused on selection, it is only during the past decade that
analyzing and understanding variation (as the generation of phenotypic innovation)
by comparing the developmental processes of different species, at both the embry-
onic and the genomic levels, became again a major concern of biology. Researchers
realized that the genotype-phenotype pairing could not forever remain an abstraction
if they wanted to understand the unique power of evolution to produce countless
innovative structures—and, concerning Artificial Life and bio-inspired engineering,
ultimately transfer this understanding to self-organized technological systems. To
quote Kirschner and Gerhart [40, p. ix]:

When Charles Darwin proposed his theory of evolution by variation and selection, explaining
selection was his great achievement. He could not explain variation. That was Darwin’s
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dilemma. . . . To understand novelty in evolution, we need to understand organisms down
to their individual building blocks, down to their deepest components, for these are what
undergo change.

Evo-devo casts a new light on the question still little addressed by today’s predom-
inant gene-centric view of biology: To what extent are organisms also the product of
complex physicochemical developmental processes not necessarily or always con-
trolled by complex underlying genetics? Before and during the advent of genetics, the
study of developmental structures had been pioneered by the “structuralist” school
of theoretical biology, which can be traced back to Goethe, D’Arcy Thompson, and
Waddington. Later, it was most actively pursued and defended by Kauffman [38, 39]
and Goodwin [30] under the banner of self-organization, argued to be an even greater
force than natural selection in the production of viable diversity.

Recent dramatic advances in the genetics and evolution of biological development
have paved the way toward explaining morphological self-organization and sketching
an encompassing “generativist” theory of embryogenesis. The objective is to unify
organisms beyond their seemingly “endless forms most beautiful” (in the words of
Darwin [7]) by unraveling the generic mechanisms that make them variations around
a common theme [68]. The variations are the specifics of the genetic and epigenetic
information; the theme is the developmental dynamics that this information steers. It
comprises the elementary laws by which the genome produces the very proteins that
can further interpret it, controlling cell division, differentiation, adhesion and death,
and ultimately producing an anatomy. On this keyboard, evolution is the ultimate
player.

11.1.2 Evo-Devo in Artificial Life

Looking at the full evolutionary and developmental picture should also be a pri-
mary concern of systems engineering and computer science when venturing into the
new arena of autonomous, distributed architectures. Evolutionary Computation (EC)
techniques such as genetic algorithms or genetic programming, which were inspired
by evolutionary biology in its traditional modern-synthesis form, have like their nat-
ural model principally focused on selection through virtual “genomic operators”,
“fitness functions” and “reproduction rates”. As a consequence, the great majority
of these approaches rely on more or less direct and abstract mappings from artificial
genomes to artificial individuals, while including only little or no morphogenesis.

Therefore, one important goal of a new field of “Alife evo-devo” is to provide
the computational foundation for a virtual re-engineering of the “strongly morpho-
genetic” complex systems spontaneously produced by nature, such as biological
development. To this aim, one must design a programmable and reproducible two-
way indirect mapping between the local rules of self-assembly followed by the ele-
mentary agents at the microscopic level (the genotype �), and the collective structure
and function of the system at the macroscopic level (the phenotype �). Calculating
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the transformation from � to � corresponds to developing an organism—while solv-
ing the inverse problem of finding an appropriate � given a desired � (or family of
similar�’s), would be the challenge of an evolutionary search, whether goal-oriented,
open-ended, or a mix of the two.

Mirroring the evo-devo paradigm in biological systems, new EC avenues need to
stress the importance of fundamental laws of developmental variations as a prereq-
uisite to selection on the evolutionary time scale of artificial systems [62]. From the
EC viewpoint, it means an implicit or indirect mapping from genotype to phenotype.
Fine-grained, hyperdistributed architectures similar to multicellular organisms (i.e.,
many light-weight agents, as opposed to a few heavy-weight agents) might be in a
unique position to provide the “solution-rich” space needed for successful selection
and spontaneous innovation through developmental modularity and composition.

11.1.3 From Embryogenesis to Embryomorphic Engineering

Putting in practice the above theoretical intentions, this chapter offers an overview of
a recent framework called Embryomorphic Engineering, founded in 2006 by René
Doursat [16, 17] (who coined the term after “Neuromorphic Engineering”) to explore
the causal and programmable link from genotype to phenotype that is needed in many
emerging computational disciplines, such as artificial embryogeny [5, 46, 62], and
apply it to innovative uses. Its endeavors as a bio-inspired computing technology
follow those of biological evo-devo, and for this reason it could be equivalently
referred to as “Evo-Devo Engineering”. Embryomorphic Engineering works on two
levels in parallel: it consists of simultaneous genetic engineering (�) and functional
shape engineering (�), based on a common playground made of a multitude of
small agents capable of self-assembling into a particular organism. These agents are
guided by the genetic instructions they carry, which parametrize and modulate the
fundamental laws of biomechanical-like assembly and biochemical-like signaling
that they obey, creating appropriate context-sensitive rules.

The remainder of the text illustrates the potential of Embryomorphic Engineering
in different spaces: 2D/3D physical swarms, which can find applications in collective
robotics, synthetic biology or nanotechnology; and nD graph topologies, which can
find applications in distributed software and peer-to-peer techno-social networks. In
all cases, the specific genotype shared by the agents makes the phenotype’s complex
architecture and function modular, programmable and reproducible:

• Section 11.2 describes MapDevo (Modular Architecture by Programmable Devel-
opment), the original and foundational 2D model of embryonic development
based on self-assembly, pattern formation, and genetic regulation (Fig. 11.1).
Section 11.3 examines hand-made mutations of the genotypes of MapDevo organ-
isms and their corresponding phenotypes, paving the way toward an evolutionary
version of programmable development. It is followed in Sect. 11.4 by a study of
functional—not merely morphological—architectures, called fMapDevo, through
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Fig. 11.1 The iterative 3-stage MapDevo growth cycle

a model of animated embryomorphic organisms immersed in a 3D physical envi-
ronment.
• After those 2D/3D models, which remained close to their biological inspiration

based on multicellular development, Sect. 11.5 presents ProgNet (Programmable
Network Growth), an extension of MapDevo to nD graph topologies via a model
of autonomous network construction. There, nodes execute the same program in
parallel, communicate and differentiate, while links are dynamically created and
removed based on “ports” and “gradients” that guide nodes to specific attachment
locations. As the network grows, nodes switch different rules on and off, creating
chains, lattices, and other composite topologies. Finally, Sect. 11.6 introduces
ProgLim (Program-Limited Aggregation), a particular implementation of ProgNet
in cellular automata, and Sect. 11.7 briefly concludes the chapter.

11.2 MapDevo: Modular Architecture by Programmable
Development

The spontaneous making of an entire organism from a single cell is the epitome of
a self-organizing and programmable complex system. Through a precise spatiotem-
poral interplay of genetic switches and chemical gradients, an elaborate form is cre-
ated without explicit architectural plan or engineering intervention. Embryomorphic
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agent-based modeling and simulation attempt to understand and exploit these fun-
damental morphogenetic mechanisms.

On the one hand, research in self-assembling (SA) systems, whether natural or
artificial, has traditionally focused on pre-existing components endowed with fixed
shapes [69]. Biological development, by contrast, dynamically creates new cells that
acquire selective adhesion properties and forms through differentiation induced by
their neighborhood [72]. On the other hand, biological pattern formation (PF) phe-
nomena [28, 42, 45, 50, 63, 73] are generally construed as orderly states of activity
on top of a quasi-continuous and fixed 2D or 3D background of cellular substrate.
Yet again, the spontaneous patterning of an organism into regions of gene expression
arises within a multicellular medium in perpetual expansion and reshaping. Finally,
both phenomena (SA and PF) are often thought of in terms of stochastic events—
whether mixed components that randomly collide during SA, or spots and stripes
that crop up unpredictably from instabilities during PF. Here too, these notions need
significant revision if they are to be extended and applied to embryogenesis. Cells are
not randomly mixed but pre-positioned where cell division occurs. Genetic identity
regions are not randomly distributed but highly regulated in number and position.

This section describes MapDevo (Modular Architecture by Programmable Devel-
opment), the original and foundational 2D model of Embryomorphic Engineering
first published in [16–18]. It is a spatial computational simulation of programmable
and reproducible morphogenesis that combines SA and PF under the control of a
nonrandom gene regulatory network (GRN) stored inside each cell of a swarm. The
differential properties of cells (division, adhesion, migration) are determined by the
regions of gene expression to which they belong, while at the same time these regions
further expand and segment into subregions due to the self-assembly of differenti-
ating cells. To follow an artistic metaphor [10], SA is similar to “self-sculpting”
and PF to “self-painting”. The model can be construed from two different vantage
points: either pattern formation on moving cellular automata, in which cells divide
and spatially rearrange under the influence of their own activity pattern; or collective
motion in a heterogeneous swarm, in which cells gradually differentiate and modify
their interactions according to their positions and the regions they form.

In the next subsections, the motion of a homogeneous swarm of cells (pure SA)
and the patterning by gradient propagation on a static swarm (pure PF) are introduced
separately. Then, these two components are combined to form reproducible growing
patterns (SA+ PF). The genetic control inside every cell guiding these arrangements
is also explained. Finally, this combination is repeated in modules (SAk + PFk)
inside a larger, heterogeneous system to create complex morphologies by recursive
refinement of details.

Self-assembly by Division and Adhesion (SA) The original MapDevo model
consists of a 2D swarm of cells with dynamically changing neighbor interactions
calculated by a Delaunay-Voronoi tessellation (Fig. 11.2). Each cell follows two
major laws of cellular biomechanics in a simplified format: (i) cell division, coded
by a uniform probability p for any cell to split into two, and (ii) cell adhesion, repre-
sented by elastic forces derived from a quadratic potential V with resting length re,
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Fig. 11.2 Deployment of a homogeneous swarm (SA). a Cell-to-cell interaction potential V similar
to elastic springs. b Relaxation of a 400-cell swarm from an initially compressed layout. c Same
swarm viewed from its underlying mesh of pairwise interactions, obtained by Delaunay triangulation
and pruning of links longer than r0. d Genetic SA parameters inside every cell (from [18])

hard-core radius rc, and scope of visibility r0, similar to collective motion models [31,
66] but with zero velocity (no self-propulsion). These parameters are grouped into a
genotype GSA. Laws of motion are derived from a spring-damper system with neg-
ligible mass/inertia effects. Under potential V , starting from a compressed swarm,
cells quickly relax to a resting state that forms a quasi-regular hexagonal mesh.

Propagation of Positional Information by Gradients (PF-I) Pieces of a jigsaw
puzzle are defined not only by their position and shape but also by the “image”
that they carry. In our self-organized swarm, this translates into state variables that
determine the PF activity inside each cell. The model distinguishes between two
kinds of PF-specific state variables (i.e., signals that cells continuously exchange
and process): gradient variables (PF-I) and pattern variables proper (PF-II).

Gradient values (PF-I) propagate from cell to cell to establish positional informa-
tion across the swarm [71]. For example, each cell contains a counter variable gW .
The source cell of this gradient, denoted W , is characterized by gW = 0. It passes
value 1 to neighboring cells, which in turn tell their neighbors to set gW to 2, and so
on (Fig. 11.3). To give this isotropic propagation a specific direction, another local
rule instructs each cell to retain only the smallest of the current counter value and the
received values. The result is a roughly circular wave pattern of increasing gW coun-
ters centered on source W . Together with W , three other gradients, E , N and S, con-
tribute to form a 2D coordinate system via equatorial (midline) axes X = NS⊥ and
Y = WE⊥, which contain the cells where counter values cross, respectively: |gY =
gN−gS| ≤ 1 and |gX = gW−gE | ≤ 1. Note that the four sources W , E , N , S position
themselves, too, by “hopping” away from each other (i.e., passing a flag representing
source N to any neighbor with a higher S-gradient value, and vice-versa; same for W
and E). First defined by Lewis Wolpert [71], “positional information” is a fundamen-
tal concept of biological development, and its natural chemical versions (morphogen
diffusion and messenger-based signaling) are often translated into discrete coun-
ters in artificial systems like this one, such as in Amorphous Computing [12, 49]
and Spatial Computing [3, 4].
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Fig. 11.3 Propagation of positional information (PF-I). a Circular gradient of counter values origi-
nating from source cell W (circled in red; end points circled in blue). b Same gradient values viewed
through a cyclic color map. c Opposite gradient coming from antipode cell E . d Set of midline cells
Y = WE⊥ whose W and E counters are equal ±1. e Quasi-planar gradient gX = gW − gE . f, g
Full coordinate compass with axis X = NS⊥ ≈ WE (adapted from [18])

Programmed Patterning by Gene Expression Levels (PF-II) Pattern values (PF-II)
correspond to gene expression levels that are calculated on top of the (gX , gY ) gra-
dient values to create different cell types (which in turn affect the SA behavior;
see SA + PF integration below). This calculation relies on a gene regulatory net-
work (GRN) inside each cell, whose weights constitute the genetic parameters of
the PF process and are denoted by GPF (Fig. 11.4). The inputs of the GRN are
the morphogen/second-messenger proteins whose concentrations are encoded in the
gradient values gX and gY . Thus the core architecture of the virtual organism is a
network of networks, i.e., an irregular 2D lattice of identical GRNs locally coupled
to each other via “chemical signaling” nodes (here, gX and gY ) [13, 47, 53].

The patterning process represents the emergence of heterogeneity, i.e., the seg-
mentation of the swarm into “identity regions” corresponding to high expression
levels of particular genes Ik of the GRN. A well-known example is the early striping
of Drosophila [8] controlled by a 5-layer hierarchy of segmentation genes along the
anteroposterior axis (maternal genes, gap genes, primary/secondary pair-rule genes,
and segment polarity genes). The present model relies on a 3-layer caricature of the
same principle along the two intersecting axes X and Y : (1) the bottom (input) layer
of the GRN groups the two positional variables (morphogen concentrations) gX and
gY ; (2) the middle layer groups “boundary” genes Bi , which segment the embryo into
roughly horizontal and vertical half-planes of strong and weak expression levels via
2D step functions σ ; (3) the top (output) layer groups the identity genes Ik derived
from positive and negative products of the Bi ’s, i.e., various intersections of the Bi

half-planes.

Simultaneous Growth and Patterning (SA + PF) After describing the self-
assembly of a non-patterned swarm (SA) and the patterning of a fixed swarm (PF),
the embryomorphic SA and PF behaviors are combined to create growing patterns at
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Fig. 11.4 Programmed patterning (PF-II). a Same swarm viewed under different color maps
revealing the regions where cells’ internal variables gX , gY , Bi and Ik are highest (virtual equiv-
alent of in situ hybridization in biology). b Consolidated view of all identity regions Ik for
k = 1...9. c The GRN, denoted GPF, used by each cell to calculate its expression levels, here:
B1 = σ(−1/3− gX ), B3 = σ(1/3− gY ), I4 = B1 B3(1− B4), etc. (adapted from [18])

every stage (Fig. 11.5). Cells continually adjust their positions according to the elas-
tic SA constraints, while exchanging PF signals over the same dynamic links. This
dual dynamics is guided by the combined genotype G = (GSA, GPF). Daughter cells
inherit all the attributes of mother cells, including G and the current internal PF vari-
ables (gradient counters and gene levels). As for the SA variables (coordinates and
adhesion/signaling links of the lattice), they are recalculated from a position close to
the original cell. Both sets of variables are updated as the newborn cell immediately
starts contributing to the SA forces and the traffic of PF gradients, which maintain
the pattern’s consistency at all times in the swarm.

Modular, Recursive Patterning (PFk) Natural embryological patterns, however, do
not develop in one shot but in numerous incremental stages [10]. An adult organ-
ism is produced through modular, recursive growth and patterning. In Drosophila,
regions of the embryo that acquire leg, wing or antenna identity (called “imaginal
discs”) start developing local coordinate systems of morphogen gradients to support
the prepatterning and construction of the planned organ [8]. Correspondingly, the
present embryomorphic model includes a pyramidal hierarchy of network modules
able to generate patterns in a recursive fashion (Fig. 11.6). First, the base network
G0

PF establishes the main identity regions as above, then subnetworks Gk
PF triggered

by the identity genes Ik of G0
PF further partition these regions into smaller, special-

ized compartments at a finer scale. This “trigger” is based on usual gene regulation
mechanisms, whereby proteins produced by Ik bind to the regulatory sites of genes
Bk

i in the upper layer and are necessary to promote their expression. Fractal pattern-
ing has also been explored in generative algorithms such as “L-systems” [52, 61].
These algorithms, however, are most often self-similar and rely on symbolic rules and
explicit geometry. In contrast, MapDevo is a dynamical system of physicochemical



284 R. Doursat et al.

Fig. 11.5 Simultaneous growth and patterning (SA + PF). a Swarm growing from 4 to
400 cells by division. b Swarm mesh, highlighting gradient sources and midline axes.
The gradients and the whole pattern are continually maintained by source migration,
e.g., N moves away from S and toward WE⊥ (same with the other three sources).
c Cell B created by A’s division quickly contributes to SA forces and PF traffic.
d Combined genomes inside each cell (adapted from [18])

Fig. 11.6 Modular, recursive patterning (PFk ). a A 9-region swarm, as in Fig. 11.4b. b Cells at
the border between two domains are highlighted with yellow circles. c These border cells become
new gradient sources (red circles) inside certain identity regions at a lower scale. d Missing border
sources arise from the ends (blue circles) of other gradients. e, f Subpatterning of the swarm inside
I4 and I6. g Corresponding hierarchical GRN: GPF = {G0

PF, G4
PF, G6

PF} (from [18])

interactions among a multitude of units (a distinction also made in cognitive science
between Artificial Intelligence and Neural Networks).

Modular, Anisotropic Growth (SAk) So far missing from the model is a true
topological deformation dynamics, or “morphodynamics”, that can confer non-
trivial shapes to the organic system beyond mere blobs. To this aim, cells must
be able to diversify their SA characteristics, depending on their PF type and
spatial position—thus closing the feedback loop between genetics and geome-
try [11]. In particular, they have to exhibit nonuniform, anisotropic cell division
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Fig. 11.7 Modular, anisotropic growth (SAk ). a Genetic SA parameters are augmented with
repelling V values r ′e and r ′0 used between the growing region (green) and the rest of the swarm
(gray). b Daughter cells are positioned away from the neighbors’ center of mass. c Offshoot growth
proceeds from an “apical meristem” made of gradient ends (blue circles). d Cyclic coloring of the
gradient underlying this growth (from [18])

(varying p) and differential adhesion (varying V ). For example, in our artificial
model, the growth of limb-like structures can be achieved by a coarse imita-
tion of meristematic plant offshoots (Fig. 11.7). In this process, only the tip or
“apical meristem” of the organ is actively dividing at any time (whereby cells
forming the tip self-identify as being the local maxima of the gradient generated
by the base of the limb). Moreover, potential V is defined to be attractive only
among cells within the limb region, while it becomes repelling (i.e., r0 ≤ re,
see Fig. 11.2a) between the limb and other areas. Just like inhomogeneous divi-
sion, differential adhesion is an essential ingredient of complex shape formation
[34, 44].

Modular Growth and Patterning (SAk + PFk) Putting everything together, full
morphologies can develop and self-organize from a few cells (Fig. 11.8). These
morphologies are complex, programmable and reproducible: they are architecturally
complex because they can be made of any variety of modules and parts that are not
necessarily repeated in any periodic or self-similar way; they represent programmable
phenotypes because they emerge from a same given genotype carried by every cell
of the swarm; they are reproducible, because their structure and shape are not left to
chance but tightly controlled by the genotype.

Naturally, the exact positions of the cells at the microscopic level are still random,
but not the positions of the mesoscopic and macroscopic regions that they form.
Moreover, the modularity of the phenotype is a direct reflection of the modularity
of the genotype. The hierarchical SA and PF dynamics recursively unfolds inside
the different regions and subregions that it creates. Each module Gk = (Gk

SA, Gk
PF)

can be reused by exact duplication, but can also diverge from other blocks through
different internal genetic SA and PF parameters, potentially giving each region a
different morphodynamic behavior and a different gene activity landscape. Duplica-
tion of gene modules followed by divergence of these copies is the basis of serial
homology, a major evolutionary mechanism in nature exemplified by vertebrae, teeth,
or digits [8]. Here, the integration between SA and PF is controlled by the identity
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Fig. 11.8 Modular growth and patterning (SAk+PFk ). a Example of a three-tier modular genotype
giving rise to the artificial organism on the right. b Three iterations detailing the simultaneous limb-
like growth process (Fig. 11.7) and patterning of these limbs during execution of the middle tier
(modules 4 and 6). c Main stages of the complex morphogenesis process, showing full patterns after
execution of the bottom, middle and top tiers (from [18])

genes Ik : their corresponding nodes in the GRN switch on the execution of subor-
dinate modules Gk (Fig. 11.6g), i.e., their gene expression activity (parametrized
by Gk

PF) to create new local segmentation patterns, and their mechanical behavior
(parametrized by Gk

SA) to create new morphodynamical processes.

11.3 Toward an Evolutionary MapDevo Through Variation

This section presents experiments involving hand-made mutations of the genotypes
of MapDevo systems and their corresponding phenotypes (first published in [19]).
For now, these systems are purely developmental and do not serve a specific purpose.
There is no organism fitness or selection-based evolutionary search. These important
aspects are included in ongoing projects, which will be previewed in Sects. 11.4
and 11.6. Here, we exclusively focus on variation to illustrate the link between
genotype and phenotype, and the programmable and predictable effect that changes
in the former can have on the latter via self-organization—in which modularity is an
essential condition of future evolvability [6, 58, 67].

The figures of this section show several simulation examples of modular embryo-
genesis and how certain mutations in the genotype correlate with quantitative or
qualitative changes in the phenotype. The organism of Fig. 11.9a is taken as the ref-
erence or “wild type”. Its genotype is composed of two layers with one module each:
a base module establishing the body plan (lower module) and a specialized module
in charge of growing a simple limb-like appendage (upper module). The latter is exe-
cuted twice, in the left and right regions of the body, switched on by identity genes
I4 and I6 (like in Fig. 11.6a). As just described in Sect. 11.2, each module consists of
two types of genomes: a self-assembly genome GSA, encoding how cells divide and
spread spatially, and a pattern formation genome GPF, encoding how cells acquire
their types. To simplify the figures, the GRN that constitutes GPF is not displayed
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Fig. 11.9 Simulation trials showing quantitative variations. a–c Varying limb thickness by modi-
fying the GRN weights and thresholds. d–f Varying length and size of limbs and body by stopping
cell division earlier or later (from [19])

in its entirety; instead, only the type of checkered pattern that it produces (explained
below) and the module-switching identity genes are sketched.

Quantitative Variation of Limb Thickness by GRN Weights (PF) In Fig. 11.9b,
the wild-type organism has been affected by a “thin-limb” mutation of the body
plan. Although not shown, some weights and thresholds of the base GPF have been
modified in such a way that they now create a checkered pattern with a narrower
central row (displacing the Bi gene domains of Fig. 11.4a). This gives less space
for the limb buds to grow, hence making them thinner. The reverse, “thick-limb”
mutation is shown in Fig. 11.9c, with coefficient 2. This is a good example of the
compactness of the developmental genotype [26, 62] and its large-scale effect on the
phenotype: slightly varying the sensitivity of a couple of genes can already result in
significant morphological changes.

Quantitative Variation of Limb Length by Division Signals (SA) By modifying
the division rate and/or the stop conditions of proliferation, the size of various parts of
the embryo can also be modulated. For example, in Fig. 11.9d and e, cell proliferation
is regulated in the limbs. Here, it is achieved by stopping division when the gradient
values of the tip cells (blue circles in Fig. 11.7) reach a specific value g′, respectively
sooner (g′ = 10) and later (g′ = 40) than the wild type (g = 15). In Fig. 11.9f,
both body plan and limbs stop growing beyond gradient value g′ = 8, producing a
phenotypic shape that is proportionally smaller than the wild type. Note that similar
effects can also be achieved by decreasing or increasing the probability of division
p, while keeping the stop gradient values constant (see Fig. 11.10c).

Structural Change of Limb Position by Module Switching In Fig. 11.10, the
modularity of the limb component is demonstrated through various mutations rem-
iniscent of experiments on biological organisms such as Drosophila. The identity
genes marking the regions (“imaginal discs”) responsible for the growth of a specific
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Fig. 11.10 Simulation trials showing structural variations. a–c Changing limb configuration by
switching the limb-triggering genes and/or duplicating the limb module (from [19])

Fig. 11.11 More structural
variations. d, e Adding limbs
by body plan expansion
(from [19])

appendage [8, 10] can be literally turned on or off in new regions with respect to the
wild type of Fig. 11.9a. For example, in Fig. 11.10a, a virtual case of “antennapedia”,
i.e., the ectopic growth of a leg where there should be an antenna, is obtained by
connecting a new identity region to the limb module, here region I2 instead of region
I6. This means rewiring the GRN of GPF to reflect the fact that the regulatory sites of
the limb genes on the DNA have mutated and now accept gene I2’s proteins as pro-
moters instead of gene I6’s proteins. In the three-limb mutation of Fig. 11.10b, these
regulatory sites have been duplicated before mutating, accepting gene I2 in addition
to gene I6 (not just in replacement), so that the limb module is now executed three
times in three different regions instead of twice.
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Structural Duplication and Divergence, or “Serial Homology” Later in the course
of evolution, similar copies of the same organ can diverge and acquire specialized
characteristics, as Fig. 11.10c illustrates. In this scenario, three copies of the entire
limb module were produced by duplication as in Fig. 11.10b. Afterwards, these
copies mutated independently from each other, e.g., by adopting different cell divi-
sion rates p′, which created shorter or longer limbs. Serial homology is the name
given to this major evolutionary process resulting from duplication followed by
divergence [7, 40]. Biological organisms often contain numerous repeated parts in
their body plan. This is most striking in the segments of arthropods (several hun-
dreds in millipedes; see the simulated “biomorphs” of [14]) or the vertebrae, teeth
and digits of vertebrates. After duplication, these parts tend to diversify and evolve
more specialized structures (lumbar vs. cervical vertebrae, canines vs. molars, etc.).
Homology exists not only within individuals but also between different species, as
classically shown by comparing the forelimbs of various tetrapods from the bat to the
whale. Thus homology should also be explored as an important principle of artificial
self-developing systems.

Structural Addition of Limbs by Body Plan Expansion In the scenario of
Fig. 11.11d and e, new limbs are generated not by reusing the same body plan differ-
ently (Fig. 11.10a and b) or by duplicating the limb module (Fig. 11.10c), but rather
by expanding the GRN of the base GPF in order to create new regions of gene identity
that can host additional limb growth. Here, the embryo’s geography has expanded
from a 3 × 3 = 9-type checkered pattern to a 5 × 3 = 15-type (Fig. 11.11d) and a
9× 3 = 27-type pattern (Fig. 11.11e). The SA part of the body plan is also slightly
modified to accommodate these new regions. It assumes an oval shape resulting from
a nonuniform distribution of the division rate p that elongates the body along the Y
axis (see Fig. 11.3), i.e., greater toward the N and S poles and lower in the middle.

Structural Addition of Digits by Modular Hierarchy Finally, along the same prin-
ciples, Fig. 11.12 shows a few simulation trials of three-tier organisms. Figure 11.12a
is the new wild type. After the usual development of two limbs from the 3× 3 body
plan, extra “digits” now grow from these limbs, guided by the top module of the hier-
archical genotype. To make room for these digits, limbs have expanded their internal
pattern from 1×1 to 2×4 (see previous paragraph). Figure 11.12a presents a double
bilateral symmetry, with respect to both horizontal and vertical axes. Figure 11.12c is
a further mutation of Fig. 11.12b, in which region I6’s limb has accelerated its growth
and expanded its checkered pattern to support the development of two new digits,
whereas, on the contrary, region I4’s limb has continued to regress back to a prim-
itive “stump”. Figure 11.13 paints a possible phylogenetic tree that includes all the
species simulated in this section (dashed branches suggest “convergent” speciation
pathways).

Naturally, beyond these proof-of-concept simulation trials, a more systematic
exploration is needed. Further work needs to be done on how an embryomorphic
system can spontaneously evolve, i.e., how it can be randomly varied and non-
randomly selected based on its success in performing certain tasks. Toward this
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Fig. 11.12 a–c Adding digits to the limbs via a third tier in the modular hierarchy of the genotype
(from [19])

Fig. 11.13 A phylogenetic
tree (from [19])

objective, different selection strategies are possible, whether focusing on prespecified
forms, prespecified functions, or allowing open outcomes.

When selecting for form, a hard reverse engineering problem must be addressed:
given a desired phenotype, what is the genotype that can produce it? While determin-
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istic phenotype-to-genotype “compilation” is possible in limited cases [49], parame-
ter search is generally difficult. With a fitness criterion rewarding only a specific
target shape, solutions in genomic space are likely to be few and far between, if
not reduced to a unique spot. In this situation, a classical approach is to define a
“shape distance” as an increasing function of favorable, stepwise mutations. It is
conjectured here that this kind of gradual search might actually benefit, not suffer,
from the high genotype dimensionality of an embryomorphic model, compared to
the direct genotype-phenotype mappings of most genetic algorithms. Hierarchical
GRNs might be better at providing the fine-grained mutations required by the “gentle
slope” search toward increasingly sophisticated innovation [14, 51]. Complex sys-
tems inherently have greater variational power, as they allow combinatorial tinkering
on highly redundant parts.

However, beside gaining self-repair properties, why constrain a self-assembling
system to produce a predefined shape? More benefits might come from such systems
by selecting them for function while leaving complete freedom of form. Gradual
optimization could rely on a distance of performance to predefined goals, instead of
shapes, allowing the most successful candidates to reproduce faster and mutate. Func-
tional selection under free form has often been tried in evolutionary robotic systems
[41, 43], but there it was based on non-developmental, direct genotype-phenotype
encodings. Again, it is hypothesized here that a larger number of microscopic agents,
such as in multicellular embryogenesis, would be more favorable to a successful
functional search due to their collective combinatorial abilities.

Finally, in a third scenario, specifications can be diversified and relaxed to the point
of being open to surprise and harvesting unexpected but useful organisms from a
“free-range menagerie” (see for example “evolutionary swarm chemistry” [57]). Ulti-
mately, reconciling the antagonistic objectives of spontaneity and purpose will prob-
ably hinge on two complementary aspects: (a) finer-grained variation-by-mutation
mechanisms yielding a larger number of search paths and (b) looser selection criteria
yielding a larger number of fitness maxima. With more search paths covering more
fit regions, evolution is more likely to find good matches.

11.4 Functional MapDevo by Animation in 3D

While the task of “meta-designing” laws of artificial development inspired from biol-
ogy is already challenging, it only constitutes the first part of the Embryomorphic
Engineering effort. Once a self-developing infrastructure is mature, what other com-
puting and behavioral capabilities can it support? What do its “cells” (agents) and
“organs” (regions) actually represent and achieve in practice? In biological organ-
isms, although cell physiology often partakes in development (e.g., electrical signals
of neurons guiding synaptogenesis), there seems to be a broad distinction between
developmental genes and the rest of the genome. In computing systems, these two
modes could also be separated into two different sets of state variables. After reach-
ing developmental maturation, and while still fulfilling maintenance and self-repair
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tasks, morphogenetic SA and PF activity (division, position information and pat-
terning signals) would give way to another type of activity subserving functional
computation. Obviously, the type of computation entirely depends on the nature of
the agents: processor-carrying nano-units, software agents, robot parts, mini-robots,
synthetic bacteria, and so on.

In fact, the problem is the opposite in many computing domains: there is a demand
for precise self-formation capabilities in distributed systems made of existing func-
tional agents. A variety of morphogenetic-like approaches have been proposed for
such applications. For example, Amorphous Computing has set the stage for a myr-
iad of micro-processors containing the same instructions to self-organize without an
exact blueprint map or functional reliability, unlike traditional VLSI [1, 12, 49]. Self-
assembling components can also represent mobile sensors and actuators in complex
self-managing networks [3, 4]. In software applications (servers, security), a soci-
ety of small-footprint software agents could diversify and self-deploy to achieve a
desired level of application functionality and service (e.g., “immune” security [33]).
It is also an important challenge in complex “techno-social networks” made of myr-
iads of devices, software agents, and/or human users, which use only local rules and
peer-to-peer communication to achieve a collective function [23] (see Sect. 11.5). In
collective robotics, too, whether articulated parts of reconfigurable devices [29, 35,
41, 43], or mobile formations of mini-robots [9, 32, 70], there is a need for complex
but controllable morphologies.

This section describes preliminary work toward such a goal through a model
of animated MapDevo organisms immersed in a 3D physical environment, called
fMapDevo [21]. The developmental process follows the exact same principles as the
2D model of Sect. 11.2 (SA by elastic forces, PF-I by gradient propagation, PF-II
by gene expression). In addition, after development, mature organisms are able to
generate movement by contracting adhesion links between “muscle” cells, while
other cells have differentiated into “bones” and “joints” to support and articulate the
body’s structure. Finally, by interacting with a virtual physical world, made of a rigid
floor, simple objects and a gravitational field, creatures can exhibit locomotion and
primitive behavior. This project constitutes an original demonstration of a genuinely
evo-devo Alife system, in which self-organization is not only programmable but
functional and evolvable. We summarize below the main features and novelties of
this project compared to MapDevo.

Body Growth in 3D Space We use the Open Dynamics Engine (ODE) to imple-
ment the embryomorphic development and behavioral dynamics of the organisms in
3D. Like the 2D version, cells are modeled as point-like elements (here represented
by small spheres, Fig. 11.14) and neighborhood relationships are calculated by a 3D
Delaunay triangulation (Fig. 11.14e) from which long links are removed above a cut-
off distance. As before, mechanical SA forces are elastic links between neighboring
cells, and in the first stage—the growth of the body—cell division is characterized by
a uniform probability and random orientation (visualized with vectors, Fig. 11.14f).
Gradient propagation PF-I (Fig. 11.14g) is triggered by three pairs of source cells,
North-South, West-East, and Top-Bottom (Fig. 11.14a), which place themselves as
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Fig. 11.14 Simulation of body growth in 3D space. a The 6 original source cells inside a small ball
of cells after a few divisions at iteration t = 25. b–d Successive growth states at iterations t = 150,
400 and 700: 27 cell-type regions have formed under a 3×3×3 checkered gene expression pattern.
e Detail of the mesh of neighborhood links calculated by 3D Delaunay triangulation. f Detail of the
random division vectors in each cell: norms represent probabilities, orientations are perpendicular
to cleavage planes. g East gradient gE from the E source, displayed in red–white shading. h A thick
equatorial plane (in red) corresponding to |gW − gE | ≤ 3

Fig. 11.15 Simulation of single limb development in 3D. a–d Successive states. a′–c′ Correspond-
ing division field: the body has halted its growth (nullifying all division vectors inside), while in the
limb the division probability is 0 everywhere except at the local North tip (gN ≤ 3), where its ori-
entation is South→North. e Detail of the division field at the tip. f The three pairs of self-positioned
sources inside the limb (showing axes, not actual links), with South at its root and North at its tip

usual by hopping away from each other, i.e., navigating the opposite gradients uphill.
Regional differentiation PF-II (Fig. 11.14b–d) results from the execution of a genetic
program, whose output depends on the input gradients in each cell. In this model,
however, the program is not necessarily a GRN but can be in symbolic format, such
as logic rules (e.g., “if |gW − gE | ≤ 3 then switch on the red gene”, Fig. 11.14h).

Modular Limb Growth, Homology and Divergence In a second stage, limb growth
(Fig. 11.15a–d) proceeds in the same way as the 2D version, by relying on a het-
erogeneous field of cell division probability and orientation (Fig. 11.15a′–c′), which
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Fig. 11.16 Fully developed 4-legged organism. a Standard sphere-based multicellular view from
underneath. b Corresponding division vector field, null in the limbs except at their tips. c Genetic
program G executed by all cells, comprising three modules: a body module (uniform field of division
probability, 27 cell types), a short-limb module (tip-area division field, 2 subtypes, high link cutoff),
and a long-limb module (small link cutoff). Each limb module is triggered in two different regions
of the body, creating a total of four legs. d Profile view of the creature when positioned on the floor

is calculated as a function of the local gradients inside the limb. In the example
below, cell division is zero everywhere except at the North tip, where its orientation
is South→North (Fig. 11.15e, f). As in the 2D model, the same “homologous” limb
module of the genotype can be reused to develop several limbs from different “imag-
inal” regions of the body (Fig. 11.16). Then, evolutionarily “divergent” versions of
that structure can be created by varying, for example, the link cutoff distance: a high
value makes cells more likely to remain linked as neighbors, hence cluster together
due to the elastic attraction and create more compact, shorter limbs. Conversely, a
lower cutoff value tends to detach more cells from each other, hence let them spread
out and make longer limbs. In Fig. 11.16, the developed organism possesses one
pair of short limbs and one pair of long limbs. In sum, each module of the organism
(body, limbs, etc.) represents an autonomous domain of space in which local gradi-
ents are mapped to various fields of developmental and structural parameters, such
as division vectors, cell types, link cutoff value (and stiffness coefficient: see next),
via a local genetic program (Fig. 11.16c).

Bones, Joints, Muscles: Structural Differentiation and Dynamics In the embry-
omorphic paradigm, the genotype-guided development of an organism not only
provides a reproducible overall shape, but can also equip this shape with built-
in structural features that confer it specific mechanical properties. In Figs. 11.16
and 11.17, for example, a few cells at the root of the limbs (where they attach to
the body) have differentiated into “muscles”, while others have become “bones” and
“joints” inside the limbs. Computationally, this amounts to adding various Boolean
fields—functions of the local gradients, like the division and type fields—to each
genetic module (Fig. 11.16c). Here, the muscle field corresponds to a cylindrical
section of the limb’s root, e.g., where gS ≤ 5 (pink regions in Fig. 11.16a and d to be
contrasted with the purple tips), while the bone field is 1 only along some thin South-
North path on each limb and inside a small cluster at the center of the body. Link
types are then simply deduced by connecting neighboring cells of identical types: for
example, the bone links are formed exclusively between bone cells (white edges in
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Fig. 11.17 Structural differentiation and dynamics. a The grown organism contains a skeleton made
of differentiated “bone” cells and rigid links connecting them (displayed in white). b Experiment
where all other links (the “flesh” in red) have been dissolved, showing the stability of the naked
bone structure under gravitational pull. c Opposite experiment where bone differentiation was turned
off: the organism spreads on the floor like a starfish. d–g Locomotion and ball-kicking behavior,
achieved by stimulating and contracting the “muscle” regions (pink roots of the limbs) in specific
subregions at specific time intervals—a coordination and control program that would be typically
the task of a central nervous system

Fig. 11.17a, b). In this case, for a link to turn into “bone” means to become rigid, i.e.,
acquiring a virtually infinite spring coefficient, so that it maintains a fixed spatial rela-
tionship between its two extremities. The net effect is that a connected bone structure
forms a “skeleton” that can support the whole organism and keep it standing on the
floor under gravitational pull. The skeleton’s stability can be revealed by “dissolving
the flesh” around it as in Fig. 11.17b. Its usefulness can also be demonstrated by
turning off bone differentiation, after which the softened organism collapses on the
floor in a spread-out posture resembling a starfish (Fig. 11.17c).

Behavioral Performance and Evolution Finally and most importantly, once the
mechanical features of cells and links have been established by development, the
organism is immersed in a physical environment where it can exhibit locomotion
and other types of behavior. In Fig. 11.17d–g, it is shown walking on the floor and
kicking a ball. Without going into details here, this is essentially achieved by con-
tracting the muscle regions (pink roots of the limbs) periodically and nonuniformly
through “stimulus” fields applied to specific subregions at specific time intervals—a
coordination and control program that would be typically the task of a central nervous
system, itself subject to evolutionary changes. For more information on this model,
the reader is referred to upcoming publications such as [21].

In sum, the fMapDevo model offers a complete morphogenetic machine that can
transform by development a genotype G (Fig. 11.16c) into a functional phenotype
(Fig. 11.16d). Metaphorically, G is the music roll of this mechanical organ, through
which evolution can play different original tunes, i.e., produce different innovative
architectures.
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11.5 ProgNet: Programmable Network Growth

After the foundational 2D/3D embryomorphic models of the MapDevo family
(Sects. 11.2–11.4), which remained close to their biological inspiration based on
multicellular development, this part presents an extension to “nD” graph topologies.
In this original project of programmable network self-construction and dynamics,
called ProgNet (first published in [22]), neighborhood relationships between nodes
are no longer necessarily a consequence of their proximity in Euclidean space. Yet,
the overall challenge remains the same: design or evolve a ruleset that the individual
agents of a multi-agent system can follow to independently create connections with
each other, such that the end result is an intended functional architecture.

With information and communication technologies (ICT) pervading everyday
objects and infrastructures, today’s Internet, so far playing the role of a communica-
tion highway, is envisioned to become in the near future an “Internet of Things”, i.e.,
a vast and hybrid complex network that will seamlessly integrate the physical and
the virtual worlds. It will enable the spontaneous creation of collaborative societies
of otherwise separate systems, both mobile and static, referred to as “cyber-physical
ecosystems” (CPE) [64]. Examples will include self-reconfiguring manufacturing
plants, self-stabilizing energy grids, self-deploying emergency taskforces [65], and
self-growing autonomic applications [15]. What they will all have in common is
a myriad of devices, software agents, and human users, dynamically building and
reconfiguring their own network structures on the sole basis of local rules and peer-
to-peer communication [23].

In this context, the ability to form specific connections by “programmed attach-
ment” (as opposed to random connections by “preferential attachment” [2]) in a
decentralized, self-organized way, would be of great benefit to a number of real-
world situations where networking accuracy and reliability is important. Here, agents
are called “nodes” and represent, for example, human users equipped with wireless
devices such as personal digital assistants (PDAs), or software agents acting as prox-
ies for physical machines and other resources that need to function together.

The basic mechanisms of self-constructing networks in ProgNet are explained in
the following subsections from an abstract viewpoint. We start with elementary chains
and continue with more complicated, composite architectures, including branching
and stochastic redundancy. Nodes come in one by one and attach to the growing
structure toward the goal of building a particular topology. They communicate with
each other and execute the same program, but also gradually differentiate according
to local and limited positional information in the form of discrete “gradients”, similar
to MapDevo. The self-assembly program carried by each node includes routines for
the exchange of messages, the opening and closing of attachment ports and the
dynamical creation or removal of links. Ports, gradients and other state variables
guide new nodes to specific locations in the developing network. As the network
expands and node positions change, nodes adapt by switching different rule-subsets
on or off—analogous to gene promotion/repression in DNA—thus triggering the
growth of specific structures.
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Fig. 11.18 Self-assembly of a simple chain. a The five main steps leading to a 5-node chain.
Through the link creation routine L , incoming nodes attach to either open ports, X or X ′ (in dark
blue), of the forming chain. When a link is created, its ports become “occupied” (in light blue)
and gradient values are updated in all nodes (see b). When the chain length is 5, all open ports are
closed (in gray; see c). b Detailed substeps of the value-passing gradient update routine Gr . c Port
management routine P , the core and only evolvable component of genotype G in each agent: here,
the ports of a node are instructed to close when x + x ′ = 4, i.e., length is 5 (adapted from [22])

Constructing Simple Chains Chains are the simplest self-assembling structures.
In this first scenario, nodes possess two ports, X and X ′, and two corresponding
gradient values x and x ′ (Fig. 11.18). Ports can be “occupied” (linked to other node
ports) or “free” (not linked), while free ports can be “open” (available for a link)
or “closed” (disabled). New nodes that just arrived in the system’s space, or nodes
that are not yet connected, have both ports open and gradients set to 0. A new node
j can create a link with an existing node i only through a pair of complementary
open ports, here X and X ′, with one link per port. Thus the only two possible links
between i and j are X ′j ↔ Xi or X ′i ↔ X j . Upon attachment, gradient values
are immediately updated according to the following rules: (a) a free port always
maintains its value at 0 (gradient source), and (b) assuming that it was link X ′i ↔ X j

that was created, value x is sent out in the direction X ′i → X j with an increment of
+1 so that x j = xi + 1, while x ′ is sent out in the opposite direction X ′i ← X j so
that x ′i = x ′j +1 (swap i and j if the other link was created instead). This is similar to
the gradient propagation rule of the embryomorphic model presented in Sect. 11.2.

Figure 11.18 shows the self-assembly of a short chain. A new node can connect
to any available open and complementary port at random, including the most recent
and oldest nodes of the chain: all potentially valid links (here, two at any time) have
an equal probability of being formed. The gradient counters keep track of the nodes’
positions in the chain. This allows, for example, to build chains of a fixed length n by
closing any remaining open ports as soon as x + x ′ = n− 1. Again, as mentioned in
Sect. 11.2, discrete counter increments are also the method of choice for spreading
positional information in other spatially extended paradigms [3, 4, 12, 49]. In the
present model, the role of the gradient source can be transferred to another node,
thereby shifting gradient chains in successive corrective waves, as nodes continu-
ally communicate with each other to adjust their counters. Figure 11.18b shows an
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Fig. 11.19 Sketch of a programmed branching scenario. a, b Beginning of chain a (ports and links
in blue). c Branch b starts to grow (orange). d Two alternative next steps. e Chain b stops growing
at length 3. f Final developed structure, including a 4-node branch c (green). g This exact network
is prescribed by the port management program P carried by each node (from [22])

example of a step-by-step decomposition of a gradient update after a new node has
connected to the chain (dashed circle to the left).

In sum, all nodes carry the same program, genotype G, which comprises three
main routines: gradient update (Gr ), port management (P), and link creation (L):

• The gradient update routine, denoted Gr to distinguish it from G, was explained
above: it consists of generic code that provides nodes with the positional informa-
tion that they need to make further decisions, and is used in all network structures
(see next sections).

• The port management routine P (Fig. 11.18c) contains the heart of the logic
specific to the topology of a target architecture—chain, lattice, or any complicated
composite graph. For example, in the case of a 5-node chain, P simply commands
a node to shut its ports whenever x + x ′ = 4 (the “open” and “close” commands
apply only to free ports, and are ignored by occupied ports).

• Finally, the link creation routine L (Fig. 11.18a) is also generic logic that prompts
new nodes to pick one of the open ports of the network at random to make a new
connection.

Routines Gr and P are executed only by the nodes that are already involved in the
network, paving the way for newcomer nodes to execute routine L . In the remainder
of the text, we focus on P , as it is the only variable and evolvable part of the genotype
G (while Gr and L are stereotyped and fixed).

Branching and Modular Structures by Local Gradients More complicated struc-
tures can then develop by composing multiple chains and lattices. To allow the
creation of modules with their own identities and local positional information, one
can find again inspiration from biology, in particular the concepts of modularity and
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Fig. 11.20 Simulation trials of programmed branching structures. a A main chain (horizontal,
here) branches off into two smaller chains at points where the x gradient values respectively reach
2 and 4. Nodes show here a unique ID number, which is not playing any role in the attachment
dynamics, while ports (represented by small rectangles attached to the nodes) contain the gradient
values. Every node carries all three pairs of ports (blue, orange, green) but uses only 1, 2 or 3
single ports (resp. at chain extremities, middles, and junctions). b Another example of chain (in
blue) branching off into a red chain at x = 3 and a green chain at x = 5. Here, the layout follows
a force-based algorithm and integer gradient values are visualized by color shading (from [20]). c
Example of a complex programmed network integrating a branching chain structure with cluster
formations (from [22])

homology that are central in evo-devo [8, 40, 48] (see Sect. 11.3). Modules are similar
to “limbs” that have distinct morphologies and geographies. They are implemented
here by distinguishing between chain segments with independent coordinate systems
based on different “tags” a, b, c, etc. To start with a simple example, a new chain
can branch off from the middle of another chain (Fig. 11.19). The gradient ports
in the initial chain of the system are denoted by (Xa, X ′a), while the ports of the
branches will be (Xb, X ′b), (Xc, X ′c), etc. Accordingly, routine L is modified so that
links cannot be created between ports with different tags.

In the elementary scenario of Fig. 11.19, when the third node has attached (i.e.,
when xa = 2), the P routine commands that a new pair of ports (Xb, X ′b) be created
on that node and only port X ′b be opened (Fig. 11.19c). Afterwards, new nodes
can attach to either open port, X ′a (lengthening the initial chain) or X ′b (starting the
new branch; Fig. 11.19d). Under the right set of constraints, generally imposing
unidirectional attachment (e.g., always to X ′), the order of node attachment does
not influence the final structure. Actual simulation trials of self-organized branching
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Fig. 11.21 Chain of node clusters. a Detailed 3-cluster chain: internal (orange) links connect the
C ports of nodes with same (x, x ′) values, while (blue) links between clusters form the chain. A
new node (gray) connecting through C adopts the cluster’s values. b Simulation with 5 clusters and
about 20 nodes per cluster (from [22])

structures are shown in Fig. 11.20, including a composite structure in which nodes
are “thickened” into clusters by adding a C port, as explained below (Fig. 11.21).

Robustness by Cluster Redundancy The previous examples involved exact struc-
tures of connections that were programmed at node-level by a (quasi) deterministic
algorithm. Despite minimal randomness in the choice of locations for new attach-
ments, there was a unique possible final outcome: a chain or a branched structure
planned in advance. While we want to preserve this essential property of program-
mability (the focus of this work and of Morphogenetic Engineering in general), it
is also important to reintroduce an element of variability and redundancy in the
system—albeit at a smaller scale. In biological development, the position and num-
ber of individual cells is very imprecise, while the tissues and organs they form are
reliably placed. Similarly, programmed network self-assembly can also afford to be
irregular at the microscopic level of the nodes, while retaining an orderly arrangement
at the higher, mesoscopic levels of groups of nodes.

One way to implement this idea is to simply “thicken” chains and lattices
(Fig. 11.21) by replacing single nodes with clusters of nodes. This can be done
through one additional port, C (as in “cluster” or “clique”) that allows multiple
nodes with identical gradient coordinates to form random connections with each
other. In chains, the C port represents an extra “nonlinear” dimension on top of the
(X, X ′) pairs of ports. Another new feature is that nodes are now allowed to make
multiple connections per port, whether X, X ′ or C (Fig. 11.21a). As a result, nodes
tend to cluster into families according to their gradient values. Thus a new node gen-
erally faces two types of attachment possibilities: it can either thicken or lengthen the
chain. Similar to cellular proliferation in morphogenetic tissues and organs, this pro-
liferation of nodes within a structured network introduces redundancy and “failover”
safety. Overall, however, it remains a deterministic structure (guided by the genotype
of attachment rules P) on top of fine-grained stochasticity.

Adaptive Growth In sum, ProgNet proposes abstract principles of self-made net-
works capable of forming precise topologies in a purely endogenous manner. It
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Fig. 11.22 Illustration of various types of phenotypic adaptation in a programmable network growth
model. a Stereotyped development: a certain genotype (port routine P) gives nodes a strong bias
toward self-assembling into a certain shape, here a spider-like formation made of one ring and six
legs. b Developmental “polyphenism”: similar to a plant, the same P could give rise to variants of the
above shape modified by external conditions from the environment, such as obstacles or attractors.
c “Polymorphism”: slight parametric variants of P may produce other structural variants, such as
size of ring, number of legs, or ring location. d “Speciation”: drastically different genomes create
drastically different structures—although there is no real qualitative difference with c: it is only a
matter of degree and time scale of evolution

establishes generic rules for the emergence of non-random (except for possible redun-
dancies at the microscopic level), programmable graph structures that are neither
repetitive nor imposed by external conditions. Beyond the engineering of stereotypi-
cal genotype-phenotype mappings, however, network growth must also be adaptive.
It is critical to be able to rely on dynamic structures that can co-develop with a rapidly
changing situation by remaining open to influences and modifications coming from
the environment in which they are expected to function (Fig. 11.22). This can occur
on multiple taxonomic levels: on the long time scale through speciation reflecting
“new” genotypes (Fig. 11.22d), on the shorter time scale through polymorphism
of a “single” species (Fig. 11.22c), or even on one individual’s time scale through
developmental polyphenism (Fig. 11.22b):

• Evolutionary Polymorphism: Varying the Genotype A genotype may provide
internal parameters controlling different “traits” of the final structure: slight vari-
ants of the former produce slight variants of the latter (Fig. 11.22c). This is similar
to the classical laws of population genetics within the same species, schematically
corresponding to the concepts of “alleles” or single-nucleotide polymorphisms
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(SNPs) in DNA. Varying and combining genotypic parameters gives rise to a fam-
ily of different “breeds”—like Mendel’s peas or Darwin’s pigeons. Note, however,
that the distinction between polymorphism and speciation (Fig. 11.22d) is not clear
cut: it is only a matter of degree and time, as the same evolutionary mechanisms
are at work in both cases.
• Developmental Polyphenism: Varying the Phenotype Under an invariant geno-

type, however, development can also be modified by environmental conditions
(Fig. 11.22b). External cues surrounding one individual during its growth can also
play an important role in its final structure. This is the level of the phenotype, for
which natural analogies can be found more readily in the vegetal kingdom: plants
and trees can be pruned, bent, arranged, or sculpted, whether by human interven-
tion (bonsais, espaliers, topiaries, etc.) or by natural conditions (wind, rocks, soil,
light, etc.).

11.6 ProgLim: Program-Limited Aggregation

A number of real-world networks combine non-spatial graph topologies (e.g., con-
necting software agents or organizations) with Euclidean graph topologies (e.g.,
connecting people and equipment on the field) at different degrees. For example,
many cyber-physical systems inherently have a dual spatial/non-spatial nature, as
they often include a physical infrastructure at a lower communication level, together
with a virtual overlay network at a higher application level [65]. The abstract mech-
anisms of programmed attachment in the above ProgNet framework create purely
non-spatial graphs, which can still be viewed in 2D by using a force-based layout
algorithm [27]. But if nodes represent agents and devices interacting in real space,
the dynamics, not just the visualization, should also be modified to take into account
the effects of metric distance on node aggregation.

In the particular embodiment of ProgNet presented here, called ProgLim (for
“Program-Limited Aggregation”), we revert to the 2D plane and restrict nodes to
discrete positions on a grid. By simplifying the network’s space, we can gain better
control and understanding of its embryomorphic dynamics. Here, each node can
have at most four neighbors, and create up to two horizontal links, left and right,
and two vertical links, up and down. They are the equivalent of square pixels in a
2D cellular automaton (displayed in yellow on a black background in the figures
below), whose four ports X , X ′, Y and Y ′ are located at the centers of their four
edges (Fig. 11.23a). As before, incoming nodes aggregate to the structure one at a
time by choosing any currently free edge at random. The next subsections give a brief
overview of ProgLim, which includes preliminary experiments combining evolution
and polyphenism (for more details, see upcoming publications such as [20]).

Acquiring Polyphenism by Evolution In ProgNet, node attachment was only based
on port availability driven by positional gradient values: a network grew in vac-
uum, while environment-induced polyphenism remained theoretical (Fig. 11.22b).
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Port Routine :
Line

open X , X ′
close Y , Y ′

Port Routine P 2 : Regular Row
of Rectangles

h = 10, w = 5, n = 4
if (x′ = 0) then open X ′
if (x % w = 0) then open Y ′
if (y > 0) then close X ′
if (y = h) then open X ′
if (x ≥ nw) then close X ′
if (y ≥ h) then close Y ′

(a)

(b)

P1

Fig. 11.23 Two simple stereotyped network examples on a 2D grid. All structures are made of
yellow square nodes. a Open-ended line: the corresponding genotype (port routine P1) simply
consists of two unconditional port-opening actions, left and right, keeping the bottom and top ports
closed. b Row of adjacent rectangles, growing toward the right and the top (with two intermediate
stages shown in inset): in this case, genotype P2 is more complicated, as it involves opening and
closing the right and top ports (X ′ and Y ′) under certain conditions based on the gradient states and
three parameters: w for the width (number of pixels) of each rectangle, h for their height, and n for
their total number

In ProgLim, we can more easily experiment with the ability of the growth dynamics
to be perturbed and diverted by obstacles—here, taking the form of “rocks” ran-
domly scattered on the grid (Fig. 11.24). In practice, this is achieved by inserting
pixel-state conditions in the port-opening rules, in addition to gradient-state condi-
tions. Generally, in an empty (fully black) environment, the same genotype (port
routine P) reliably creates the same network. In a cluttered environment, however,
rocks (gray pixels) can block ports and impede growth. This is why variants of the
genotype that are able to literally “work around” those obstacles and create networks
similar to a desired wild type can be very useful. Contrary to an inflexible ruleset
P , an adaptive ruleset Q can continue development in restrictive environments by
providing bifurcations based on neighboring pixel states in the port-opening logic.
As explained below, “rock sensing” is purely local, i.e., pixel-based influences only
involve the states of the four nearest neighbors.

With the goal of finding adaptive genotypes Q, instead of designing them by hand,
we apply an evolutionary algorithm to P . For this, we need to define a target structure
that the network should ideally realize while at the same time dealing with obstacles.
Precisely because of environmental perturbations, it will not reproduce the exact same
configuration (especially on a discrete 2D grid). Yet, certain criteria can be designed
to come as close as possible to the initially intended network. We demonstrate this
principle below on two simple structures: an open-ended line formation (Fig. 11.23a)
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and a row of adjacent rectangles (Fig. 11.23b). These two examples are especially
interesting because they illustrate two different goals: a line can be construed as a
tool to discover the environment in a particular direction, while a row of rectangles
can be construed as a case of modular self-organization.

Rulesets and Mutations To let structures evolve and find good solutions, rulesets
P are represented in standardized format using a grammar, and a list of possible
mutation operators are defined. In short, each rule is written “if (clause1 [and|or]
clause2) then action”, where clause1 is based on gradient states only, clause2 is based
on neighboring pixel states only (i.e., whether specific ports of the central pixel are
hindered or not), and action manages one of the four ports as follows: “[open|close]
[X |X ′|Y |Y ′]”. Each clause can be replaced by Boolean constants “true” or “false”.
Five types of mutations are considered: (i) inserting a random rule (possibly with a
new constant value), (ii) deleting a rule, (iii) modifying a component of a rule (clause
1, clause2, [and|or], action), (iv) reordering a rule (switching its rank in the priority
list), and (v) changing a constant (in the rectangle example: w, h, or n).

Fitness and Evolutionary Algorithm The goal function or “fitness” reflects the
overall structure that we want to achieve:

• In the example of the open-ended line, the fitness is equal to L2/N , where L is the
horizontal extension of the chain (which might be less than the number of nodes if
the line is diagonal, see below) and N is the total number of nodes. The intention is
that the chain should stretch out as much as possible in one preferential direction
without twisting and turning.
• In the row of rectangles, the fitness is the number of completed compartments,

i.e., for which a closed border (possibly irregular) can be detected.

For a start, we use a primitive “(1 + 1)” evolutionary algorithm, i.e., not based on a
population but on a single individual. At every time step t , one of the five mutation
operators (i)-(v) is applied at random to the current ruleset Pt , generating a new
ruleset P ′. If the fitness of the new structure developed from P ′ is higher than the
fitness of the structure developed from P , then Pt+1 = P ′; otherwise, Pt+1 = P with
probability 1 − p, or P ′ with probability p, where p is a probability of accepting
a lesser fitness and varies as 1/log(t) (a classical stochastic scheme akin to the
“Monte Carlo” or “simulated annealing” methods, which can avoid being stuck in
local optima).

Different numbers of trials per mutation and numbers of time steps necessary
to find a good ruleset have been tested (discussed below). However, many mutated
rulesets led to potentially infinitely growing networks, therefore we also imposed a
global maximal number of nodes Nmax at which development stopped. This corre-
sponds to a situation of “limited resources” keeping swarms small in practice. This
change has important consequences when Nmax is lower than the total number of
nodes N necessary to build a complete structure. In that case, the network ends in
some arbitrary intermediate stage that depends on the order of node aggregation—
although the final structure is often deterministic and, ultimately, should not depend
on that order.
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Por Routine P3:
Fixed Line (likeP1)

open X , X ′
close Y , Y ′

Port Routine P4:
Polyphenic Line

open X
if (r(X) = 1) open Y ′
if (r(X ′) = 1) close Y ′

(a)

(b)

Fig. 11.24 Evolution of the fixed line into a polyphenic line. a The same ruleset as P1, this time in
an environment littered with “rocks” (gray pixels), produces a straight line whose growth is rapidly
blocked at both extremities. b After a few dozen mutations and selection steps, one of the evolved
rulesets, P4, is able to unblock the line growth (toward the left) by opening the top port Y ′ whenever
a rock is encountered by the left port X

(a) (b) (c)

Fig. 11.25 Evolution of the row of rectangles. a The development of the original ruleset P2 is
blocked by every rock on its way. b After a few hundred selected mutations, the structure can
bypass the obstacles in certain directions and reform irregular compartments. The evolved ruleset
P5 is also relatively simplified compared to P2. c Another 100 mutations later, the structure is able
to grow farther out under an even more reduced ruleset P6

Results As expected, the (1 + 1) evolutionary algorithm does not easily produce
good solutions: the majority of mutations are deleterious or neutral, bringing the
structure in a domain of genomic space where most “neighboring” genomes (one
mutation away) have a low fitness. This happens usually because an action critical to
the successful growth of the structure (e.g., “open X ′” in Fig. 11.23) was accidentally
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deleted from the ruleset, making it very difficult to recover that specific action through
a reverse accident. Regardless, evolution is still very much possible, and even in this
simple evolutionary framework, a number of decisive breakthroughs were observed:

• After a few dozen mutations, the fixed line’s ruleset of Fig. 11.24a (the same as
Fig. 11.23a in a cluttered space) has transformed into the three rules of Fig. 11.24b,
which give the chain formation the necessary flexibility to bypass obstacles. In this
case, it grows only toward the left by aggregating pixels to port X (first rule) but
also to the top port Y ′, which is opened whenever a rock is encountered on its
path (second rule, in which r(X) = 1 means “left pixel is gray”). Interestingly,
the third rule is useless because, due to the direction of growth, there will never
be a rock on the right-port side X ′. Yet, that rule was resistant to further mutation
or deletion for over 200 time steps, eventually remaining neutral.

• Concerning the row of rectangles, just as with the line, every rock blocks the
initial ruleset’s growth and the structure cannot be completed (Fig. 11.25a). After
hundreds of selected mutations, however, the algorithm manages to grow past some
obstacles and form new compartments (Fig. 11.25b). Interestingly, its interaction
with the environment is not very complex (only the last two rules contain pixel-
state conditions, plus a new constant) while the environment-independent part
has been reduced to four rules, which are very different from the original. Another
observation is that the constants did not evolve much, probably because in a random
environment like this one there are no regularities that could be exploited to grow
faster. After a hundred more mutations, the algorithm is able to surmount almost
every obstacle (Fig. 11.25c). The ruleset has become even simpler, in particular the
two previous terminating rules (third and fourth) have disappeared. The evolved
structure is now relying on the rocks themselves and the limited total number of
nodes to stop its own extension.

These preliminary experiments demonstrate that effective mutated genotypes can
be rather short, even shorter than the original wild-type ones. We can also note
that among the first rules to disappear during evolution were the ones closing ports
and limiting growth in certain directions. In a cluttered environment, indeed, such
rules are no longer needed as the rocks themselves can provide the necessary spatial
frame. Moreover, the best rulesets usually contain rules that depend either on the
gradients or on the environment but not both conditions at the same time. In fact,
when new rules (brought by the insertion operator) were restricted to be exclusively
environment-dependent, the fitness increased faster. Rules can also become “neutral”
(as the third rule of P4) in the sense that they never apply to any node in practice, thus
do not interfere with the structure’s growth. However, as it is generally well known
in evolutionary computation methods, neutral elements also constitute an important
reservoir of future useful mutations. Finally, the above evolutionary algorithm can
obviously be improved in many ways (by screening mutations, by including a full-
fledged population dynamics and crossover between individuals, etc.) to refine the
search and obtain optimal rules while staying closer to the originally intended shape.

In summary, by reframing ProgNet within a regular 2D grid, the ProgLim project
makes it easier to highlight the evolutionary potential of self-organizing program-
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mable networks. In particular, it shows that stereotyped and brittle embryomor-
phic processes (Fig. 11.22a) can evolve to become more robust and polyphenic
(Fig. 11.22b) under environmental pressure.

11.7 Conclusion

Embryomorphic Engineering is inherently interdisciplinary, as it closely follows
biological principles at an abstract level, but does not attempt to model detailed
data from real genomes or organisms. Thus, it sits at crossroads between different
domains, from developmental and systems biology to artificial life, in particular
spatial computing, evolutionary programming and swarm robotics. Following the
tenets of Morphogenetic Engineering described in this book, it constitutes an orig-
inal attempt to “endow a physical system with information” or, from the opposite
viewpoint, “embed an informational system in physics” (see Introduction chapter).
It does so by combining (1) mechanical self-assembly (SA) and (2) computational
pattern formation (PF), (3) under the control of a genomic program (G):

• In MapDevo, these principles are modeled by dynamical processes, respectively:
(1) cell adhesion (through elastic forces), (2) morphogen diffusion (through integer
counters), and (3) gene expression (through a GRN).
• In ProgNet and ProgLim, they take the form of logical instructions, respectively:

(1) the link attachment routine L , (2) the gradient propagation routine Gr and
(3) the port-opening routine P .

Only few previous theoretical models of biological development or bio-inspired
artificial life systems have combined these principles in various ways. The evo-devo
works of [25, 34, 54], or with lesser morphogenetic abilities those of [49, 60], are
among these early notable achievements. Other interesting studies have explored the
combination of two out of three:

• SA and PF, no G: self-assembly by cell adhesion and signal-based pattern forma-
tion, but using predefined cell types without internal genetic variables [44].
• PF and G, no SA: non-trivial pattern formation by information-driven signaling,

but on a fixed lattice without self-assembling motion [12, 13].
• SA and G, no PF: heterogeneous swarms of genetically programmed, self-

assembling agents, but in empty space without mutual exchange of differentiation
signals [55, 56].

More recently, new models of gene-controlled animats based on body-brain
co-evolution and co-development have also shown a promising path toward a fully
integrated artificial evo-devo approach [36, 37, 59].

Ultimately, abstracting farther away from biological development, an important
goal of Embryomorphic Engineering is to contribute to the design of new self-
organizing systems able to replace omniscient architects with large-scale decentral-
ized collectivities of agents—the whole topic of this book. Many research works have



308 R. Doursat et al.

investigated the possibility of obtaining self-formation properties from a variety of
complex computing components: nano-units, bacteria, software agents, robot parts,
mini-robots, and so on (see the other chapters). Since functionality is distributed
over a great number of components, it would be an insurmountable task to assemble
and instruct each of them individually. Rather, in a way similar to biological cells,
these components should be easily mass-produced, initially as identical copies of
each other, and only acquire their specialized positions and functions by themselves
within the system, once mixed together.
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