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a b s t r a c t

Data mining techniques managing imprecision are very useful to obtain meaningful and
interesting information for the user. Among some other techniques, fuzzy association rules
have been developed as a powerful tool for dealing with imprecision in databases and
offering a good representation of found knowledge. In this paper we introduce a formal
model for managing the imprecision in fuzzy transactional databases using the restriction
level representation theory, a recent representation of imprecision that extends that of
fuzzy sets. This theory introduces some new operators, keeping the usual crisp properties
even when negation is involved.

The model allows us to mine fuzzy association rules in a straightforward way, extending
the accuracy measures from the crisp case. In addition, we introduce several ways of rep-
resenting and summarizing the obtained results, in order to offer new and very interesting
semantics. As an application, we present how to extract fuzzy association rules involving
both the presence and the absence of items using the proposed model, and we also perform
some experiments with real fuzzy transactional datasets.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

As a tool for knowledge discovery and representation in ambiguous, ill-defined scenarios, fuzzy association rules have
been developed and applied in numerous situations since their appearance in the 90s. First works used the theory of fuzzy
subsets proposed by Zadeh [45], summarizing imprecise values with a clear semantic into groups and, later, using them for
representing the different types of imprecision found in a stored database. Some advantages of the use of fuzzy sets are, on
the one hand, softening bounds and, on the other hand, giving a formal representation for the most semantically significant
and meaningful knowledge for the user. In [20,21], we can find a description of some of the most important works in the field
of fuzzy association rules.

This work is intended to set a logical basis for the representation and evaluation of fuzzy association rules. Its foundation
comes from the GUHA (General Unary Hypothesis Automaton) model [17] presented in [26] for association rules and also
analyzed and complemented in [12]. It is based on two basic notions: a four fold contingency table (4ft-table for short) rep-
resenting the frequencies of appearance of the itemsets involved in the rule, and the 4ft-quantifier which represents the
measure used in the evaluation of association rules. This formalization using the GUHA model offers a good framework to
study the properties of the validation measures and sets a starting point for developing new approaches in association rule
. All rights reserved.
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mining. In particular we are interested in its development for fuzzy rules keeping the main properties of crisp rules. This has
been carried out using the restriction level representation (RLR) theory [30].

The RLR theory is suitable when we have to operate with vague concepts and we need, or want to keep, the ordinary bool-
ean properties. It is also useful when translating crisp procedures and for fuzzy properties formulation. In our case, we are
interested in preserving the properties of the crisp measures used for the rule evaluation when extending them for mining
fuzzy association rules. Specially, we use the RLR theory for generalizing the GUHA model for association rules to incorporate
the case of fuzzy rules. The GUHA model gives us the suitable formalization for extending every interestingness measure
expressed in terms of the frequencies of appearance of the itemsets involved in the rule through the RLR theory. A first pro-
posal was presented in [10]. We showed how to use the GUHA model for representing information about the frequencies
when mining fuzzy rules. This paper is intended to be an update to that work. We present new approaches for validating
the results and we develop an algorithm for mining fuzzy rules based on the model philosophy and on the RLR theory obtain-
ing very promising results.

In addition, some recent works in association rule mining cover the problem of discovering associations which involve not
only the joint occurrence of items but also the absence of them [7,32,33,44]. The main problem is that the upward closure
property of frequent itemsets is not satisfied when the absence is considered. The usual apriori-based algorithms cannot be
easily adapted to mine rules containing absent items. Nevertheless, some approaches have been developed on crisp associ-
ation rule mining [42,43,38], proposing new methods by imposing some specific requirements. And, as far as we know, there
exist very few approaches for extending the problem of considering absent items when mining fuzzy rules [18,19]. In this
work, we present how to deal with this special type of fuzzy rules by using our developed model. We also apply the proposed
algorithm for mining fuzzy rules with absent items over both real and synthetic fuzzy databases.

The paper is organized as follows: Section 2 reviews the concepts necessary for the comprehension of this paper: concepts
about crisp and fuzzy association rules, a brief summary of the GUHA model for the representation of crisp association rules
and the approach for representing imprecise properties by means of restriction levels introduced in [30]. In Section 3 we
develop our proposal for representing and evaluating fuzzy association rules using a combination of the GUHA model and
the RLR theory. Section 4 shows how the model can be applied when mining fuzzy rules with absent items. In Section 5
an algorithm for mining fuzzy rules following the model philosophy is described and analysed. Section 6 shows the exper-
imental results using our algorithm for mining fuzzy rules involving both the presence and the absence of items in some real
and synthetic databases. We finish with some conclusions and possible lines for future research.

2. Background concepts

2.1. Association rules

Given a set I (‘‘set of items’’) and a database D constituted by set of transactions, each one being a subset of I, association
rules [1] are ‘‘implications’’ of the form A ? B that relate the presence of itemsets (sets of items) A and B in transactions of D,
assuming A,B # I, A \ B = ; and A,B – ;.

The ordinary measures proposed in [1] to assess association rules are confidence (the conditional probability P(BjA)) and
support (the joint probability P(A [ B)). An alternative framework was proposed in [5,6] where the accuracy is measured by
means of Shortliffe and Buchanan’s certainty factors [34], in the following way:

Definition 1 [9]. Let supp(B) be the support of the itemset B, and let Conf(A ? B) be the confidence of the rule. The certainty
factor of the rule, denoted as CF(A ? B), is defined as
CFðA! BÞ ¼
ConfðA!BÞ�suppðBÞ

1�suppðBÞ ConfðA! BÞ > suppðBÞ;
ConfðA!BÞ�suppðBÞ

suppðBÞ ConfðA! BÞ 6 suppðBÞ:

8<
: ð1Þ
The certainty factor yields a value in the interval [�1,1] and measures how our belief that B is in a transaction changes
when we are told that A is in that transaction. Positive values indicate that our belief increases, negative values mean that
our belief decreases, and 0 means no change. Certainty factor has better properties than confidence, and helps to solve some
of its drawbacks [6,9]. In particular, it helps to reduce the number of rules obtained by filtering those rules corresponding to
statistical independence or negative dependence.

Some works [7,32,33,44] also deal with association rules where the absence of items in the transactions is taken into ac-
count. The formalization of this idea have been made by means of a negation operator which represents the complement of
the occurrence of an item in a transactional database, that is, its absence. Formally, in these situations the set of items I has
both positive (i1, . . . , im) and negative (:i1, . . . ,:im) items, where :ik means that ik is not present in a transaction. Therefore, a
negative association rule is a rule that contains a negative item (i.e. a rule for which either its antecedent and/or its conse-
quent can contain a conjunction of both present and absent items).

This idea must not be misled with other approaches where negative associations are mined by assessing their accuracy
with a particular interestingness measure. That is the case of Au and Chan [4], who define a negative association if the ad-
justed difference is lower than a fixed value. Tsumoto presents in [40] another type of negative association. A negative rule is
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the contrapositive of a rule that is supported by all the positive examples in the database. Excluding these works, which use
the value of the interestingness measure, a negative association rule will be that incorporating the negation of one or several
items, where the negation represents the absence of the item in the rule.

2.2. Fuzzy association rules

In [9], the model for association rules is extended in order to manage fuzzy values in databases. The approach is based on
the definition of fuzzy transactions as fuzzy subsets of items.

Definition 2 [9]. Let I = {i1, . . . , im} be a finite set of items. A fuzzy transaction is a non empty fuzzy subset ~s# I.
For every item i 2 I and every transaction ~s, an item i will belong to ~s with grade1 ~sðiÞ where ~sðiÞ is a real number in the

interval [0,1]. Let A # I be an itemset. The membership grade of A to the fuzzy transaction ~s is defined as ~sðAÞ ¼mini2A~sðiÞ.
According Definition 2 a crisp transaction is a special case of fuzzy transaction where every item in the transaction has

membership grade equal to 1 or 0 depending on if they are in the transaction or not.

Example 1. Consider the set of items I = {i1, i2, i3, i4, i5} and the set of fuzzy transactions given by Table 1. In particular, we can
see that ~s6 is a crisp transaction. Some membership grades could be: ~s1ðfi3; i4gÞ ¼ 0:9; ~s1ðfi2; i3; i4gÞ ¼ 0:2 and
~s2ðfi1; i2gÞ ¼ 1.
Definition 3 [9]. Let I be a set of items, eD a set of fuzzy transactions and A,B � I two disjoint itemsets, i.e. A \ B = ;. A fuzzy
association rule A ? B is completely satisfied in eD if and only if, ~sðAÞ 6 ~sðBÞ for all ~s 2 eD, that is, the membership grade of B is
higher than the membership grade of A for all fuzzy transactions ~s in eD.

This definition holds the meaning of crisp association rules because if we need A # ~s to be satisfied, we also need to satisfy
B # ~s. In our case this can be translated to ~sðAÞ 6 ~sðBÞ. In this way, since a crisp transaction is a special case of fuzzy trans-
action, a crisp association rule will be a special case of fuzzy association rule.

2.3. Formal model for crisp association rules

The logic model we are going to use is based in a method developed in the sixties by Hájek et al. [17]. This method is
named GUHA (General Unary Hypotheses Automaton) and it features a good logic and statistical base which contributes
to a better understanding of two important aspects of association rules: their nature and the properties of the interest mea-
sures used for their evaluation. In the following we will refer to this model as GUHA model although the used notation is not
the same as that developed by the authors nor that found in posterior works [26,28].

The starting point is a binary database D where rows and columns represent transactions and items respectively. As a
particular case, the items could be pairs of the form hattribute,valuei or hattribute, intervali, and the value of a transaction
tk in the position j will be 1 if the item ij is satisfied in that transaction or 0 otherwise.

For this model, an itemset will be an aggregation of items using the usual logic connectors: ^, _, :. An association rule will
be an expression of the type u � w where u and w represent itemsets derived from D, and the symbol � called 4ft-quantifier
is an evaluation or condition for the fulfilment of the association rule which will depend on the interest measure used and on
the four fold table, 4ft-table for short, associated to the itemsets u and w. An example of association rule could be
i1 ^ i3 � i2 ^ :i4.

For any pair of itemsets u and w the so called 4ft-table may be constructed from the database D as follows:
1 For
This table will be noted byM¼ 4ftðu;w;DÞ ¼ ha; b; c; di where a, b, c and d will be non-negative integers satisfying that a
is the number of objects (i.e. the number of rows of D) which contain at the same time the itemsets u and w, b the number of
objects satisfying u and not w, and analogously for c and d. It is obvious that the inequality a + b + c + d > 0 is always satisfied.

When the fulfilment of the condition imposed by a quantifier � comes from a four fold table, we will say that � is a 4ft-
quantifier. The association rule u � w will be true in the database D (or in the matrixM) if and only if the condition(s) asso-
ciated to the 4ft-quantifier � are satisfied for the four fold table 4ft(u,w,D).

Depending on the type of 4ft-quantifier we can express different kinds of associations between the itemsets u and w. In
[26] we can find some examples. The classical framework of support and confidence can be modeled by means of the impli-
cation 4ft-quantifier, )I, as follows:
)Iða; b; c;dÞ ¼
a

aþ b
ð2Þ
sake of simplicity we note ~sðiÞ as l~sðiÞ where l~s : I ! ½0;1� is the membership function associated to the fuzzy set ~s on the referential I = {set of items}.



Table 1
Set of fuzzy transactions eD1.

i1 i2 i3 i4 i5

~s1 1 0.2 1 0.9 0.9
~s2 1 1 0.8 0 0
~s3 0.5 0.1 0.7 0.6 0
~s4 0.6 0 0 0.5 0.5
~s5 0.4 0.1 0.6 0 0
~s6 0 1 0 0 0
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imposing the following conditions:
2 Do
)Iða; b; c; dÞP minconf and
a
n

P minsupp; ð3Þ
where 0 < minconf,minsupp < 1 are the thresholds for the minimum confidence and minimum support respectively, and
n = a + b + c + d is the total number of transactions in the database D. By means of these impositions we collect two important
facts from the association rule extraction. The first one is the computation of the 4ft-quantifier value (calculated from the 4ft-
table) which measures the strength of the association, and the second one is the fulfilment of the previous conditions (im-
posed by the thresholds) that transforms the association rule u � w in a logic predicate that can be true or false depending
on the satisfiability of the inequalities given by the thresholds. So, an association rule will be satisfied in D, noted by Va-
l(u � w) = true if and only if, the conditions associated to quantifier � are satisfied for the corresponding 4ft-table:
M¼ 4ftðu;w;DÞ.

We have recently analyzed some of its important properties in the ambit of association rule extraction [12], emphasizing
the following:

� It unifies the representation and the evaluation of association rules by means of two concepts: 4ft-table and 4ft-quanti-
fiers2 where 4ft stands for four fold table. The 4ft-table collects the information necessary to manage the association rule, and
the 4ft-quantifier will represent the measurement for assessing the association rule.
� By analyzing the type of 4ft-quantifier which is defined in terms of the 4ft-table, we can study the properties of the asso-

ciation we will obtain using that 4ft-quantifier. This is deeply developed in [12] where we establish the existent relation
between the principles for a good interestingness measure and the type of 4ft-quantifier.
� The model can be generalized to take into account several types of associations, not only association rules [28]. In par-

ticular, we have generalized the model to consider sets of rules with a significant meaning for the user like exception
and anomalous rules [11].

In [12] we also explain in depth the existing relation between the 4ft-quantifiers and the interestingness measures used
in the evaluation and validation of association rules. In fact, the certainty factor (Definition 1) can be seen as a 4ft-quantifier
which fulfils all the principles for a good interestingness measure [12].

2.4. Representation by restriction levels

The basic idea of the RLR theory [30] is that vague properties defined on a set of objects X can be described by a collection
of crisp representatives each one being a crisp realization under a certain restriction. The so called restriction levels (RL) are
represented by values in the unit interval meaning possible levels of relaxation of the property where 1 corresponds to the
most restrictive, 0 means no restriction at all and the restriction level 0.5 is halfway between being totally strict and no strict
at all.

Definition 4 [30]. A RL-set K is a finite set of restriction levels K = {a1, . . . ,am} verifying that 1 = a1 > a2 >� � �> am > am+1 = 0,
m P 1.

The RL-set of an atomic property represented by means of a fuzzy set A is defined as follows.

Definition 5 [30]. Let A be a fuzzy set defined on the referential X. Then the RL-set associated to A is given by:
KA ¼ fAðxÞ jx 2 supportðAÞg [ f1g; ð4Þ
where A(x) is the membership grade of x to the fuzzy set A, and support(.) denotes the support of a fuzzy set.
The employed RL-set to represent an imprecise property is obtained by the union of the RL-sets associated to the atomic

properties defining that property.
not mislead with the concept of fuzzy quantifier.
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A RL-representation associated to an imprecise property in X is defined by a pair (K,q) where K is a RL-set and
q : K! PðXÞ is a function which applies each restriction level into a crisp realization in this level. For example, the RL-rep-
resentation of an imprecise atomic property defined by a fuzzy set A will be the pair (KA,qA), where KA is given by Eq. (4) and
qA(a) = Aa = {x 2 XjA(x) P a} for all a 2KA.

Given an imprecise property P represented by (KP,qP), the set of crisp representatives of P is the set [30]
XP = {qP(a)ja 2KP}.

Definition 6 [30]. Let (K,q) be a RL-representation with K = {a1, . . . ,am} verifying that 1 = a1 > a2 >� � �> am > am+1 = 0. Let
a 2 (0,1] and ai,ai+1 2K satisfying that ai > a > ai+1. Then we define
qðaÞ ¼ qðaiÞ: ð5Þ

If we look to this definition, this extension for values that there are not in the RL-set of the function q, is the natural exten-

sion if we think of a fuzzy set A and its a-cuts. Using this definition the concept of equivalence between two RL-represen-
tations is straightforward.
Definition 7 [30]. Let (K,q) and (K0,q0) be two RL-representations on X. We will say that both representations (and the
corresponding properties) are equivalent, noted by (K,q) � (K0,q0), if and only if, "a 2 (0,1]
qðaÞ ¼ qða0Þ: ð6Þ

Summarizing, only a finite RL-set is necessary for defining a RLR, but the representation extends to any other RL in (0,1].

The usual boolean operations are extended to RLRs by applying them on the representatives of the same RL of the argu-
ments independently. In particular, we present here the logic operations of disjunction, conjunction and negation. The basic
ideas of how they are defined can be found in [30].

Definition 8. Let P,Q be two imprecise properties with RL-representations (KP,qP), (KQ,qQ). Then, P ^ Q, P _ Q and :P are
imprecise properties represented by (KP^Q,qP^Q), (KP_Q,qP_Q) and (K:P,q:P) respectively, where KP^Q = KP_Q = KP [KQ,
K:P = KP and, for all a 2 (0,1],
qP^Q ðaÞ ¼ qPðaÞ \ qQ ðaÞ;
qP_Q ðaÞ ¼ qPðaÞ [ qQ ðaÞ;
q:PðaÞ ¼ qPðaÞ;

ð7Þ
where Y is the usual complement of a crisp set Y.
Basic boolean properties that cannot be verified simultaneously by any standard fuzzy set theory (FST) hold simulta-

neously for RLRs. We want to remark that fuzzy sets are closed with respect to some of these RLR operations in the sense
that the corresponding RLR yields the usual nested a-cut representation and hence the result is a fuzzy set. However, this
is not necessarily true when negation is employed. In fact, given B a non-crisp fuzzy set, the RLR of :B is not a fuzzy set
as next example shows (see [30] for a more complete explanation and examples).

Example 2. Let A, B be the following two fuzzy sets: A = 1/x1 + 0.8/x2 + 0.5/x3 + 0.4/x4, B = 0.9/x1 + 0.6/x3 + 0.5/x4 defined over
the referential X = {x1, . . . ,x5}. We take their associated RL-sets (KA,qA), (KB,qB) and we perform some operations involving
negation obtaining that (KA^:B,qA^:B) is not the RL-set of any fuzzy set because the crisp sets are not nested when decreasing
the restriction level ai (see Table 2).
2.5. Interpretation in terms of evidence

Given a RL-representation (KA,qA) for an atomic property A, the values of KA can be interpreted as values of possibility for
a possibility measure defined for all qA(ai) 2XA as
PosðqAðaiÞÞ ¼ ai: ð8Þ
Table 2
RL-sets associated to A, B, :B and A ^ :B.

ai qA(a) qB(a) q:B(a) qA^:B(a)

1 {x1} ; X {x1}
0.9 {x1} {x1} {x2,x3,x4,x5} ;
0.8 {x1,x2} {x1} {x2,x3,x4,x5} {x2}
0.6 {x1,x2} {x1,x3} {x2,x4,x5} {x2}
0.5 {x1,x2,x3} {x1,x3,x4} {x2,x5} {x2}
0.4 {x1,x2,x3,x4} {x1,x3,x4} {x2,x5} {x2,x5}
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Following this interpretation we define a basic probability assignment in the usual way:

Definition 9. Let (K,q) be a RL-representation with crisp representatives X. The associated probability distribution m:
X ? [0,1] is
mðYÞ ¼
X

ai j Y¼qðaiÞ
ai � aiþ1: ð9Þ
The basic probability assignment mF gives us information about how representative is each crisp set of the property F in
XF. For each Y 2XF, the value mF(Y) represents the proportion to which the available evidence supports claim that the prop-
erty F is represented by Y. From this point of view, a RL-representation can be seen as a basic probability assignment in the
sense of the theory of evidence, plus a structure indicating dependencies between the possible representations of different
properties.

2.6. RL-numbers

On the basis of RL-representations and operations, we introduced in [29] the RL-numbers as a representation of imprecise
quantities. This approach offers two main advantages: (1) RL-numbers are representations of imprecise quantities that can
be easily obtained by extending usual crisp measurements to fuzzy sets. (2) Arithmetic and logical operations on RL-numbers
are straightforward and unique extensions of the operations on crisp numbers, verifying the usual properties of crisp arith-
metic and logical operations. In addition, the imprecision does not necessarily increase through operations, and it can even
diminish. The following definitions and properties are from [29]:

Definition 10. A RL-real number is a pair ðK;RÞ where K is a RL-set and R : ð0;1� ! R.

We shall note RRL the set of RL-real numbers. The RL-real number Rx is the representation of a (precise) real number x iff
8a 2 KRx ; RRx ðaÞ ¼ x. We shall denote such RL-real number as Rx or, equivalently, x, since in the crisp case, the set KRx is not
important. Operations are extended as follows:

Definition 11. Let f : Rn ! R and let R1, . . . ,Rn be RL-real numbers. Then f(R1, . . . ,Rn) is a RL-real number with
Kf ðR1 ;...;RnÞ ¼
[

16i6n

KRi
ð10Þ
and, 8a 2 Kf ðR1 ;...;RnÞ
Rf ðR1 ;...;RnÞðaÞ ¼ f ðRR1 ðaÞ; . . . ;RRn ðaÞÞ: ð11Þ

It is obvious that operations defined in this way are consistent extensions of crisp operations. We want to remark that

operations not defined for certain combinations of real values are not defined for RL-numbers that verify that combination
in at least one restriction level. This is the case of division by 0, i.e., R/R0 is defined if and only if 0 R XR0 .

Dubois and Prade introduce the notion of gradual element, in particular, gradual number in [15] as missing concepts in the
theory of fuzzy sets and their use has been mainly investigated for the representation of vague quantities. In [30] we have
done an extensive study about the similarities and differences between the use of fuzzy, gradual or RL numbers concluding
that they are different but complementary. Fuzzy numbers are fuzzy concepts defined on the domain of the numbers, vague
intervals define restrictions on the numbers, whilst gradual/RL-numbers are true vague numbers. All are useful, but for dif-
ferent purposes; they have the same usefulness as intervals and numbers, respectively, in the crisp case. More specifically we
propose the following:

� RL-numbers are the correct choice for extending measures (cardinality, probability of fuzzy events, etc.) to the case of
fuzzy information represented by either fuzzy sets, in particular, or RLRs in general. Any such measure on a fuzzy set
should yield a RL-number when the (possibly fuzzy) set/event we want to measure is well known (possibly by a repre-
sentation as a fuzzy set).
� Fuzzy numbers (intervals) are an useful, correct, intuitive way to define fuzzy restrictions with semantics of fuzzy interval

like ‘‘around’’ or ‘‘approximately between x and y’’. This is useful in two different situations: (1) when the imprecise quan-
tity we want to represent is ill-known and (2) when providing meaningful information to a human (fuzzy intervals are
better suited than RL-numbers for this purpose).

3. Formal model for mining fuzzy association rules

3.1. Introduction and related works

Fuzzy rules represent in a comprehensive way the information obtained from a database. Nevertheless, their evaluation
by means of appropriate quality measures is not a straightforward step [13], specially if we assume the semantics associated
to the fuzzy rule. At this respect several approaches have been developed:
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Sudkamp establishes quality measures for fuzzy rules basing on a classification for a transaction into three types: exam-
ples, counterexamples and irrelevant examples [36], and he proposes to compute the measures of confirmation and confi-
dence for fuzzy rules depending on the membership degree of a transaction into each type.

Dubois et al. [14] propose a method to obtain the quality measures for fuzzy rules in a systematic way basing on a clas-
sification of transactions into examples, counterexamples and irrelevant examples associated to a rule. In the fuzzy case,
the corresponding partition will be fuzzy but its definition will depend on the semantics we want to capture in the rule.
According to this approach, several types of fuzzy rules can be defined depending on the chosen focus: a set conjunction
approach or an implication approach. Both approaches coincide in the crisp case but must be differentiated in the fuzzy
one.

De Cock et al. also propose a study of the fuzzy rule semantics by defining the associated positive and negative examples
of a fuzzy rule [8].

We want to establish a formalization for fuzzy association rules which enables to extend in a straightforward way
the measures used to assess their accuracy. Moreover, we want to keep the main properties of such measures from
the crisp to the fuzzy case. In particular, we use the model presented in Section 2.3 and the RLR theory, which brings
us the possibility to use every crisp mining algorithm for the fuzzy case by means of a parallelization process (see Sec-
tion 5).

The key idea of our approach has some similarities with the previous cases since the formal model gives a classification of
the transactions into four different types (examples supporting A ^ B, A ^ :B, :A ^ B and :A ^ :B). The main difference is that
we do not measure in these sets. We first consider the tuples pertaining to each set in each restriction level and then we
aggregate the measure for each level depending on the difference between the levels using the basic probability assignment
in formula (9). In this way, in each restriction level we have a value for the satisfiability of the rule which will be then aggre-
gated in every level, being possible even to decrease its global value, when the interest measure range oscillates in the inter-
val [�1,1] (this is the case of the certainty factor).

3.2. Formal model for fuzzy rules. Our approach

This section is devoted to present the generalization of the formal model in Section 2.3 for fuzzy rules using the RLR the-
ory. Then we will present a framework for extending the interestingness measures for their validation from the crisp to the
fuzzy case by some examples.

Let A,B 2 I be two itemsets in a fuzzy database eD. We consider that eCA and eCB are the fuzzy sets defined in eD aseCAð~sÞ ¼ ~sðAÞ and eCBð~sÞ ¼ ~sðBÞ respectively. Following the RLR theory presented in Section 2.4 their respective RL-represen-
tations noted by ðKeA ;qeAÞ; ðKeB ;qeBÞ, are given by Eqs. (4) and (5).

Note that the set {A ^ B, A ^ :B, :A ^ B, :A ^ :B} is a partition of the fuzzy database eD (in the same way as {u ^ w, u ^ :w,
:u ^w, :u ^ :w} is a partition in the crisp case). So, we can take their associated fuzzy sets defined in eD joint with their
respective RL-representations noted by ðKeA^eB ;qeA^eBÞ; ðKeA^:eB ;qeA^:eBÞ, and so on. We remark that the obtained RL-sets will con-
tain the same set of restriction levels, that is, all of them will be equal to KeA [KeB .

For every a 2KY, qY(a) is a crisp set, then we can compute its cardinality noting it, as usual, by jqY(a)j. To generalize the
concepts of four fold table and 4ft-quantifier, we define for every restriction level ai 2 KeA [KeB the associated 4ft-table
Mai

¼ 4ftðeCA; eCB; eD;aiÞ as follows:
where ai, bi, ci and di are non-negative integers such that ai ¼ qeA^eBðaiÞ
��� ���; bi ¼ qeA^:eBðaiÞ

��� ��� and analogously with ci and di. The
4ft-quantifiers are computed for every restriction level using the 4ft-table in the particular level. It is worth to mention that
for all ai 2 KeA [KeB the following equality is fulfilled
ai þ bi þ ci þ di ¼ n ¼ jeDj: ð12Þ
Until now we have obtained for each restriction level ai a 4ft-tableMai
and the value of the 4ft-quantifier in that level, noted

�(ai,bi,ci,di).
Using the representation the formal model offers us, we are able to generalize every interest measure from the crisp to the

fuzzy case, in particular, every 4ft-quantifier by means of the basic probability distribution (see Definition 9) as follows:
X
ai2K~A[K~B

ðai � aiþ1Þ � ðai; bi; ci;diÞð Þ: ð13Þ
The following theorem shows that the formal model for fuzzy rules is a good generalization of the crisp case.

Theorem 1. Let A and B be two itemsets in a crisp database D. Then the fuzzy formal model previously defined coincides with the
crisp one presented in Section 2.3.
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Proof. To prove it, we first define the itemsets A and B seen as fuzzy itemsets: eCAðtÞ ¼ tðAÞ; eCBðtÞ ¼ tðBÞ 2 ½0;1� where t is a
transaction in D and t(A), t(B) 2 {0,1} is the following indicator function:
tðAÞ ¼
1 if A 2 t;

0 if A R t:

�
ð14Þ
Aanalogously for B. The associated RL-sets to eCA and eCB are KeA ¼ KeB ¼ f1g. And their associated RL-representations are:
ðKeA ;qeAÞ and ðKeB ;qeBÞ where
qeAð1Þ ¼ A1 ¼ ft 2 D j tðAÞP 1g ¼ ft 2 D jA 2 tg;

qeBð1Þ ¼ B1 ¼ ft 2 D j tðBÞP 1g ¼ ft 2 D jB 2 tg:
ð15Þ
Similarly, we compute the RL-representations for the sets eCA ^ eCB; eCA ^ :eCB; :eCA ^ eCB; :eCA ^ :eCB. We can see that the
4ft-table for the restriction level a = 1 coincides with the 4ft-table for the crisp itemsets A and B (see Section 2.3)
With respect to the interest measures for fuzzy rules, it is immediate to see that the generalization of 4ft-quantifiers defined
in Eq. (13) coincides with the one defined for the crisp case:
X

ai2KeA[KeB
ðai � aiþ1Þ � ðai; bi; ci; diÞð Þ ¼ ð1� 0Þ � ða1; b1; c1;d1Þð Þ: � ð16Þ
In the following we present the fuzzy extension for the particular cases of support and confidence measures.
Definition 12 (Itemset support). Let A # I be an itemset and ðKeA ;qeAÞ the associated RL-representation to the fuzzy set eCA ineD. The support of A in the fuzzy transactional database eD is defined as follows
FsuppðAÞ ¼
X

ai2KeA
ðai � aiþ1Þ

qeAðaiÞ
��� ���
jeDj

0
@

1
A: ð17Þ
Taking the right part of the formula (17) and using the 4ft-table associated to itemsets A and B we can see that for the
restriction level ai
qeAðaiÞ
��� ���
jeDj ¼ ai þ bi

ai þ bi þ ci þ di
ð18Þ
is the itemset support of A when the database is crisp. In addition, ai + bi + ci + di is constant for every restriction level being
the number of fuzzy transactions of eD that will be noted by n as in the crisp case.

The support and the confidence of a fuzzy rule A ? B are defined in a similar way.

Definition 13 (Rule support). Let A,B # I be two disjoint itemsets and ðKeA ;qeAÞ; ðKeB ;qeBÞ the RL-representations associated
to the fuzzy sets eCA and eCB in eD. Then, the support of the fuzzy rule A ? B in eD is defined as
FSuppðA! BÞ ¼ FsuppðA ^ BÞ ¼
X

ai2KeA[KeB
ðai � aiþ1Þ

qeA^eBðaiÞ
��� ���
jeDj

0
@

1
A: ð19Þ
Definition 14 (Rule confidence). Let A,B # I be two disjoint itemsets and ðKeA ;qeAÞ; ðKeB ;qeBÞ the RL-representations associated
to the fuzzy sets eCA and eCB in eD. Then, the confidence of the fuzzy rule A ? B in eD is defined as
FConfðA! BÞ ¼
X

ai2KeA[KeB
ðai � aiþ1Þ )Iðai; biÞð Þ ¼

X
ai2KeA[KeB

ðai � aiþ1Þ
qeA^eBðaiÞ
��� ���
qeAðaiÞ
��� ���

0
B@

1
CA: ð20Þ
Previous definition has the inconvenience of presenting indeterminations of the form ‘‘00’’ when qeAðaiÞ
��� ��� ¼ 0. This happens

when there does not exist transactions satisfying at the same time the antecedent and the consequent. So, to preserve the
Definition 3 of fuzzy rule we will take the value 1 for that indetermination.



Table 3
Fuzzy sets eCA and eCB .

~s1 ~s2 ~s3 ~s4 ~s5 ~s6

eCA
1 0.8 0.5 0 0.4 0

eCB 0.9 0 0.6 0.5 0 0

Table 4
Associated RL-representations to eCA; eCB ; :eCA and :eCB .

ai qeA qeB q
:eA q

:eB
1 f~s1g ; f~s2; ~s3; ~s4; ~s5; ~s6g eD1

0.8 f~s1; ~s2g f~s1g f~s3; ~s4; ~s5; ~s6g f~s2; ~s3; ~s4; ~s5; ~s6g
0.6 f~s1; ~s2g f~s1; ~s3g f~s3; ~s4; ~s5; ~s6g f~s2; ~s4; ~s5; ~s6g
0.4 f~s1; ~s2; ~s3; ~s4g f~s1; ~s3; ~s4g f~s5; ~s6g f~s2; ~s5; ~s6g
0.2 f~s1; ~s2; ~s3; ~s4g f~s1; ~s3; ~s4g f~s5; ~s6g f~s2; ~s5; ~s6g
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It is worth to mention that the defined measures for the support and the confidence in the fuzzy case are the same as
those proposed in [9] where it is used a semantic approximation based on the evaluation of quantified sentences using
the GD-method and the relative fuzzy quantifier Q(x) = x to evaluate the sentences.

In the following, we present two examples. The former shows in a detailed way, by means of a toy fuzzy database, the
process of computing the support and the confidence of fuzzy rules using the proposed formal model. The last example
shows how to extend the certainty factor measure presented in [6] which is a stronger measure than confidence, and that
we will use later in the experimental evaluation.

Example 3. Let I = {i1, i2, . . . , i6} and eD1 be the fuzzy database in Table 1. We take the itemsets A = {i1, i3} and B = {i4} whose
associated fuzzy sets eCA and eCB are in Table 3 with RL-representations ðKeA ;qeAÞ and ðKeB ;qeBÞ. In Tables 4 and 5 we show the
resulting RL-representations from applying the negation to both fuzzy sets and their conjunction for the RL-set
K = {1,0.8,0.6,0.4,0.2}. Now, we follow with the computation of support and confidence of some fuzzy rules in eD1 using
the proposed model. First, we compute the 4ft-tables Mai ¼ 4ftðeCA; eCB; eD1Þ for every restriction level in K (Table 6)3 and
then, using Eqs. (19) and (20) we calculate the support and the confidence of the rule A ? B being 0.266 and 0.5 respectively.

Taking the itemsets C = {i1, i5} and E = {i4} the support of the fuzzy rule C ? E is 0.2, and its confidence is equal to 1. This is
due to ~siðCÞ 6 ~siðEÞ for all i = 1,2, . . . ,6 following Definition 3. If we use the formula for the confidence given in (20) we get the
same result but having into account that when the indetermination ‘‘00’’ appears we consider it as 1, as we commented after
Definition 14. Other association rules found in eD1 are given in Table 7.

Several works have pointed out some drawbacks of the support/confidence framework to assess association rules (see for
instance [35]). In general, the same problems occur when dealing with fuzzy association rules. In this paper we shall employ
the certainty factor for the validation of association rules (see Definition 1).

The following example shows how to generalize the certainty factor measure that, seen as a 4ft-quantifier, is noted by �CF

(due to its good properties the certainty factor belongs to the class of equivalence 4ft-quantifiers, see [12]).

Example 4. Let A,B � I be two disjoint itemsets in D and let 4ft(A,B,D) = ha,b,c,di be their associated 4ft-table. The 4ft-
quantifier �CF which represents the certainty factor is given as follows:
3 The
interval
�CFða; b; c; dÞ ¼

ad�bc
ðaþbÞðbþdÞ if ad > bc;

0 if ad ¼ bc;
ad�bc

ðaþbÞðaþcÞ if ad < bc:

8><
>: ð21Þ
To generalize this quantifier to the fuzzy case we only have to consider the 4ft-table for KeA [KeB (the union of the RL-sets ofeCX and eCY ) for each restriction level and then compute:
�CFðA! BÞ ¼
X

ai2KeA[KeB
ðai � aiþ1Þ �CFðai; bi; ci; diÞð Þ; ð22Þ
where the RL-representations of both itemsets must be normalized to fulfil Definition 3. In particular, for the fuzzy databaseeD1, and the previous itemsets, we show the associated certainty factors in Table 8.
oretically we can compute the 4ft-tables for each restriction level in KA [KB but in practice we will fixed the RL-set into a finite set of levels in the unit
because the possible different levels that can appear in a database could be very large.



Table 5
RL-representations associated to the possible conjunctions between the fuzzy setseCA; eCB ; :eCA and :eCB .

ai qeA^eB qeA^:eB q
:eA^eB q

:eA^:eB
1 ; f~s1g ; f~s2; ~s3; ~s4; ~s5; ~s6g
0.8 f~s1g f~s2g ; f~s3; ~s4; ~s5; ~s6g
0.6 f~s1g f~s2g f~s3g f~s4; ~s5; ~s6g
0.4 f~s1; ~s3; ~s4g f~s2g ; f~s5; ~s6g
0.2 f~s1; ~s3; ~s4g f~s2g ; f~s5; ~s6g

Table 6
4ftðMai

;A; B; eDÞ where ai 2K.

ai bi ci di

M1 0 1 0 5
M0:8 1 1 0 4
M0:6 1 1 1 3
M0:4 3 1 0 2
M0:2 3 1 0 2

Table 7
Some fuzzy rules in database eD1 considering K = {1,0.8,0.6,0.4,0.2}.

Rule Support Confidence

{i1, i2} ? {i3} 0.167 0.8
{i4} ? {i5} 0.2 0.767

Table 8
Certainty factor for some fuzzy rules in eD1 taking K = {1,0.8, 0.6,0.4,0.2}.

Rule Support Confidence Certainty factor

{i1, i3} ? {i4} 0.266 0.5 0.33
{i1, i5} ? {i4} 0.2 1 1
{i1, i2} ? {i3} 0.167 0.8 0.6
{i4} ? {i5} 0.2 0.767 0.48
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We want to remark that in the case of the itemsets A = {i1, i5} and B = {i4} we have to normalize their RL-representations
(to divide all the restriction levels by the highest one, in this case we divide by 0.9) to obtain the corresponding value 1 for
the certainty factor, since if ~siðAÞ 6 ~siðBÞ for all i = 1, . . . ,6 the association rule is totally accurate.
3.3. Alternatives for the validation of fuzzy rules using the formal model

The proposed formalization for fuzzy rules by restriction levels, allows the user to choose several options in order to man-
age the obtained results. In the previous section we have dealt with the standard option, i.e. we evaluate the accuracy of
fuzzy rules by a crisp number given by the value of the associated 4ft-quantifier (see Eq. (13)) but it is also possible to obtain
a detailed view of the results via restriction levels. Then, depending on the user interests several types of presentation for the
obtained results can be chosen. We elucidate the following ones:

1. Summarizing the results by a crisp number.
2. Obtaining a crisp result for each restriction level.
3. Summarizing the results using a RL-number.

The first option corresponds to the value of the 4ft-quantifier obtained by its generalization for fuzzy rules via Eq. (13).
This is the classic approach that have been taken into account in most of the approaches until now, where those fuzzy rules
that exceed the imposed thresholds for the support and the confidence (or other measure) are extracted from the data. In
Examples 3 and 4 we used this criteria, we showed the mined rules choosing the crisp value associated to the 4ft-quantifier.
Next sections present two new alternatives for showing the results to have different perspectives for managing the informa-
tion from the set of extracted rules.
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3.3.1. A set of crisp results
The proposed formal model parallelizes the process for obtaining fuzzy rules, as for each restriction level we compute the

value associated to the corresponding crisp rule where the level is seen as the evidence we have for the fulfilment of the rule.
Therefore, by imposing fixed thresholds in each restriction level we obtain a set of crisp rules at each level. In this way, the
user could be interested in obtaining the set of crisp rules satisfied with evidence greater than a fixed a, proceeding thence in
different ways.

� We can restrict the mining process in only those levels greater than a, that is, we search those rules exceeding the
imposed thresholds at levels ai greater or equal than the fixed level a defined by the user. This choice will accelerate
the mining process as we take only those rules whose evidence is Pa, but we lose information because rules with less
evidence but near a are discarded.
� We mine all rules in each restriction level satisfying the imposed thresholds, and we also compute the value of the 4ft-

quantifier which summarizes the accuracy of the fuzzy rule. Having both, we can center our attention in those levels
greater or equal than the fixed a but having the information of the total accuracy of the rule in the rest of the levels.

Example 5. Continuing the previous examples, we consider the fuzzy database eD1 in Table 1. If we set a = 0.6 we are saying
that we are interested in those rules with evidence greater than 0.6. The first option could be searching only those rules sat-
isfying the thresholds for support and confidence/CF in levels greater than 0.6. If we look at Table 9 we can see that rule
{i1, i3} ? {i4} does not have a high value in levels 0.6, 0.8 and 1 so, it would not be interesting for the user. Rule
{i1, i2} ? {i3} would be extracted at levels 0.6 and 0.8 but not at level 1.

The second option also gives to the user a summary measure for each rule that says if it would be extracted or not in
global. In our example the rule {i1, i3} ? {i4} is not interesting, and the rule {i1, i2} ? {i3} will be mined if the chosen 4ft-
quantifier is greater or equal than the fixed threshold, in our example if minconf = 0.6 or minCF = 0.8.

It is worth to mention that this second option also gives the possibility to explore at each level the set of mined rules,
having at the same time the summary value associated to each rule (see Table 9).

3.3.2. Summarizing results using RL
In order to manage the obtained results using restriction levels we present two different choices. The first one is to pres-

ent for each mined rule its associated values in each restriction level by considering RL-numbers. Imagine that the fuzzy rule
A ? B is mined in eD because its support and confidence given in (19) and (20) exceeds the minsupp and minconf thresholds
for fuzzy rules. If so, we can show to the user its associated support and confidence values in each considered restriction level
by the following RL-numbers:
RLSuppðA! BÞ ¼ Supp1ðA! BÞ=1þþSuppa2
ðA! BÞ=a2 þ � � � þ Suppam

ðA! BÞ=am; ð23Þ

RLConfðA! BÞ ¼ Conf1ðA! BÞ=1þþConfa2 ðA! BÞ=a2 þ � � � þ Confam ðA! BÞ=am; ð24Þ
where Suppa(A ? B) and Confa(A ? B) represent respectively the support and the confidence of A ? B at level a. The RLCF of
a rule could be defined analogously.

This option provides to the user the measurement values of each rule at each restriction level. On the other hand, if we are
more interested in knowing the mined rules at each restriction level, we offer the following methodology.

Another interesting issue of our method is that, in terms of the restriction levels evidence, we can summarize the ob-
tained set of fuzzy association rules too. We obtain all crisp rules in each restriction level and then we reduce the number
of existent rules by discarding those less interesting according to the associated thresholds at each restriction level. After this
pruning, we can interpret the resulting set of association rules in terms of evidence by using RL obtaining an expression of
the following type
Ruleset ¼ fi1 ! i3; i2 ! i4g=0:6þ fi1 ! i3; i2 ! :i4; i1 ! :i2g=0:5þ fi1 ! i2g=0:4; ð25Þ
where, between others, (25) shows that rules i1 ? i3 and i2 ? i4 exceed the imposed thresholds with evidence 0.6. It could be
also helpful for the user ranking the obtained rules at each level by the relevance measure used, for instance by certainty
factor, obtaining in this case that rule i1 ? i3 is more certain that i2 ? i4 with evidence 0.6. And of course, if the user is
Table 9
Measurement for rules {i1, i3} ? {i4} and {i1, i2} ? {i3} respectively seen by restriction levels joint with
their summary values.

a Supp Conf CF Supp Conf CF

1 0 0 0 0 0 �1
0.8 0.166. . . 0.5 0.4 0.166. . . 1 1
0.6 0.166. . . 0.5 0.25 0.166. . . 1 1
0.4 0.5 0.75 0.5 0.166. . . 1 1
0.2 0.5 0.75 0.5 0.333. . . 1 1
Summary 0.266 0.5 0.33 0.167 0.8 0.6
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interested in knowing the associated values for the accuracy measures they could be showed at the same time by only mod-
ifying the previous expression by the following one
Ruleset ¼ fi1 ! i3ð0:2;0:9Þ; i2 ! i4ð0:1;0:8Þg=0:6þ fi1 ! i3ð0:3;0:9Þ; i2 ! :i4ð0:1;0:6Þ; i1

! i2ð0:15;0:7Þg=0:5þ fi1 ! i2ð0:25;0:9Þg=0:4; ð26Þ
where the numbers in parentheses indicate the values for the accuracy measures used of the corresponding crisp rule in that
level, for instance (support, CF).

Let us notice that previous expressions are not actually fuzzy sets, but still can be very helpful in order to interpret the set
of results, as we relate the relevance degree and the basic probability assignment (formula (13)) for each rule or set of rules.
4. Application for managing the absence of items

Most of works in data mining search the joint occurrence of items in the database. This is the starting point in this area
although some other approaches have been developed employing new techniques. A new interesting research line currently
in progress is that of searching new and useful relations considering not only the presence but also the absence of items. At
this respect we can distinguish several approaches that we can divide into two different groups. The first class contains those
approaches that formalize the concept of absence by means of the complementary or the negation of items. In this case the
set of items I contains both positive and negative items (i1,: i1, . . . , im,:im) where :ik means that ik is not present in a trans-
action. The approaches belonging to the second class are those that search a group of rules with a predefined meaning con-
sidering for that the absence of items too. In this class we can stress some important types of rules like exception rules (a set
of three or two rules where the second one involves the absence of an item meaning that the second rule is an exception to
the first one) [37] or anomalous rules [11] (a set of three rules meaning that the second rule represents an anomalous behav-
ior that deviates from the usual one, represented by the first rule).

In this section we explain how to apply our approach for mining fuzzy rules considering both the presence and the ab-
sence of items in the line of the first class of approaches. Nevertheless, we have also accomplished some progress in the sec-
ond class when considering only crisp rules [11]. In the following, first we will review the efforts made until now in this field
and then we will present our proposal for managing the absence of items using the developed formal model for fuzzy rules.
4.1. Related approaches

As we mention at the end of Section 2.1, there also exist some works that mine the so called negative rules without taking
into account the negation of items. Examples of this type are the proposal in [4] where the rule is extracted if the adjusted
difference measure is lesser than a fixed value, and the proposal of Tsumoto [40] that extracts negative rules coming from the
contrapositive of a rule supported by all the positive examples in the data.

Some problems arise when considering the absence of items: the density of data is higher, the complexity may increase
significantly in terms of the number of data items and some prune strategies used to restrict the search space and to guar-
antee the efficiency in classical AR mining algorithms cannot be used. This is due to the fact that the absence of items does
not fulfil the upward closure property of frequent itemsets. For this reason, the authors have addressed the task of mining
negative association rules from different points of view:

� Obtain negative associations using a predefined taxonomy or graph-based structure.
� Define a new measure to obtain stronger negative rules. This type of approaches take advantage of the defined measure

and its properties to mine a set of stronger negative rules smaller than that obtained using only the support-confidence
framework.
� Consider only those negative items whose positive are frequent in the mining process. In general, the negative items have

very high support and they do not fulfil the upward closure property, so with this imposition the set of candidates to be in
a rule is pruned, and therefore the number of extracted rules is substantially reduced.

The first point differs from the other two because it is based on a predefined domain knowledge which is not available in
all cases. In this group we can find a novel approach presented by Savasere et al. [32,33] where the domain knowledge is
given in the form of a taxonomy which is then used to mine the negative associations, and the approach of Yuan et al.
[44] which employs a hierarchical graph-structured taxonomy containing classification information about the similarity be-
tween items.

In the second group we can highlight several approaches: Wu et al. [42] use a Piatetsky–Shapiro principle [25] for dis-
carding uninteresting rules joint with a minimum interestingness threshold for a better pruning of the frequent items gen-
erated. Yan et al. [43] mine positive and negative fuzzy rules using the support-confidence framework and they incorporate
in the process a new measure called degree of implication for measuring the relative fraction of transactions which are not
negative examples of the rule. Teng et al. [38] focus in searching substitution rules (which contain negative items) employing
the chi-square and the negative correlation measures.
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Approaches belonging to the last group consider only those negative items whose positive is frequent in the mining pro-
cess. To our knowledge this type of imposition was first used in [38] where the negative rules are mined among the set of
frequent positive items, measuring their negative correlation and then considering those satisfying the support and confi-
dence thresholds. This idea has been also employed in [2] by Antonie et al. where they first searched the frequent positive
items and then used the rho correlation measure to divide the mining process in two parts: if two items X, Y are positively
correlated, rules X ? Y or :X ? :Y can be found, and if X, Y are negatively correlated they search for the rules :X ? Y or
X ? :Y.

Han and Beheshti formalized this idea in [18,19] to mine fuzzy positive and negative rules by defining a valid negative
rule A ? :B such as the one that fulfils the following conditions:

(1) A [ B = ;,
(2) supp(A) P minsupp,
(3) supp(B) P minsupp,
(4) supp(A ? :B) P minsupp,
(5) Conf(A ? :B) P minconf.

The definitions for the rules :A ? B and :A ? :B are analogous.
Wang et al. [41] also propose some prune strategies by defining two new measures based on the fulfilment or not of (1)–

(5). Nevertheless, in this work the authors propose an algorithm that uses X and Y and their negations directly, where I only
contains positive items. In this case, the mined rules involve the disjunction of items, since for instance, if X = i1 ^ i2 then
:X = :i1 _ :i2. We have to be careful in these situations where the disjunction of items appears, as the user may not be inter-
ested in such kind of rules.

4.2. Our approach for managing the absence of items in fuzzy rules

The absence of items have been formalized by considering the negation operator : which, in this case, represents the
complement of the occurrence of an item. In our model for fuzzy rules, we have considered the logic operators ^, _, : be-
tween items that could be considered for mining them. In particular, the negation has an active role as it is used for com-
puting the four frequencies involved in the 4ft-tables Ma. Then we have in the 4ft-tables all the information needed for
both positive and negative items.

Let I = {i1, . . ., im,:i1, . . . ,:im} be a set of items and eD be a set of fuzzy transactions, where an item ij is satisfied in a trans-
action ~s 2 eD to a certain degree between 0 and 1, so this degree can be considered as the restriction level in which ij is ful-
filled. We want to remark that when dealing with a conjunction of two or more items, being negative at least one of them,
the subsequent restriction level set may not correspond necessarily to a fuzzy set, as we commented before.

We can see that the obtained measures for negative items using the proposed model are the ones that we should expect.
Let A,B � I be two itemsets with associated 4ft-table for each restriction level Mai

¼ 4ftðeCA; eCB; eDÞ ¼ hai; bi; ci; dii, then
4ftðeC:A; eCB; eDÞ ¼ hci; di; ai; bii:
suppai
ð:AÞ ¼ ci þ di

ai þ bi þ ci þ di
¼ ðai þ bi þ ci þ diÞ � ðai þ biÞ

ai þ bi þ ci þ di
¼ 1� suppai

ðAÞ; ð27Þ

ð)IÞai
ðci;di; ai; biÞ ¼

ci

ci þ di
¼ Confai

ð:A! BÞ: ð28Þ
In consequence, it is not necessary to compute extra frequencies when the negation of items is involved. Finally, let us notice
that, due to the followed representation, and opposite to the fuzzy sets case, it is not possible to find itemsets containing both
items i and :i since items cannot be in a transaction and absent at the same time (as we deal with crisp transactions in each
restriction level), as expected.

5. Algorithmic implementation using the formal model

The implementation is one of the crucial stages in the data mining area. Nowadays, research about new and fast algo-
rithms for large databases is constantly growing [16,39].

The proposed model for fuzzy association rule mining provides a unified framework for the extraction of different kinds of
association rules by only modifying the 4ft-quantifier. In particular we have applied the formal model to extract crisp excep-
tion and anomalous rules in [11] obtaining acceptable results. In the following, we present how to extract fuzzy rules by
means of a parallelization of a particular crisp mining process. Then, any crisp mining algorithm could be used for mining
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fuzzy association rules by applying it in every restriction level in a straightforward way. Afterwards, we compute the sum-
mary measures and present the results using one of the several methods we have proposed in Section 3.3.

5.1. Algorithm and implementation issues

The algorithm we propose uses a simple variation of Apriori, modifying it for dealing with a set of items represented
by means of BitSets. Previous works [23,27] have proposed another Apriori-based algorithm using a bit-string represen-
tation of items. In both cases, quite good results were obtained with respect to time. One advantage of using a bit-string
representation of items is that it speeds up logical operations such as conjunction or cardinality. Instead of strings of
bits, in our implementation we use the java class java.util.BitSet which contains the implementation of the object
BitSet and some useful operations. The BitSet object stores a set of bits (zero or one) in each position. The main idea is
to store the whole database into a vector of BitSets with size equal to the number of transactions and dimension equal
to the number of items. For each transaction, a bit in the BitSet will take the value 1 if an item (or itemset when dealing
with conjunction of items) is satisfied, or 0 if not. The general framework for mining fuzzy rules is described in Algo-
rithm 1 whose main steps are:

1. A database preprocessing for transforming it into K sets of BitSets, one for each restriction level.
2. The mining process which consists in a variation of Apriori (considering the support of items) where we compute the 4ft-

table and then the value for the 4ft-quantifier chosen by the user. This process is done in parallel for each restriction level.
3. We summarize the results following the preferred method by the user. In particular, this step takes the files gener-

ated in the previous step and then performs the suitable computations for showing the results using the user
preferences.

Algorithm 1. Mining Fuzzy Rules

Input: Fuzzy transactional database eD, set of RLs, minsupp, minCF
Output: Set of fuzzy association rules.
1. Database Preprocessing

1.1 Transform the fuzzy transactional database into k boolean databases (k being the number of RLs).
1.2 Store the database into k vectors of BitSets, one for each RL.

2. Mining Process For each RL mine rules with support and CF greater than minsupp and mincf
2.1 Search the set of candidates If ik is a frequent item, add it to candidates. Store BitSet vector indexes associated to

the frequent itemsets and their computed cardinalities.
2.2 Search frequent l-itemsets using the previous set of candidates (C)
2.3 Form the rules using C and compute their associated 4ft-table Store all the rules in a file joint with the 4ft-table.

3. Summarizing the obtained results
3.1 Read all the found rules in every restriction level a
3.2 Compute the corresponding summarized measures using Ma

In Algorithm 1 steps 1.1 and 1.2 are conjunctly processed in order to read the database only once. For each RL the created
BitSet vector will have dimension equal to the number of items in the database and each element of the vector will contain a
BitSet with the value one or zero in position i if the item appears or not in the ith transaction. For computing the itemsets
frequencies we use the cardinality function implemented in the BitSet java class. Then the computation of the frequencies in
the 4ft-table are easily done using the cardinalities of the antecedent X, the consequent Y and their conjunction X ^ Y as fol-
lows, that does not increase the computational cost of the algorithm:
a ¼ cardinalityðX ^ YÞ;
b ¼ ðaþ bÞ � a ¼ cardinalityðXÞ � cardinalityðX ^ YÞ;
c ¼ ðaþ cÞ � a ¼ cardinalityðYÞ � cardinalityðX ^ YÞ;
d ¼ ðaþ bþ c þ dÞ � a� b� c ¼ jeDj � a� b� c:
In our experiments, we have considered support and the certainty factor measure given in Eq. (21), but other types of mea-
sures can also be implemented immediately by means of appropriate quantifiers collecting the type of association the user
wants to extract from the data.

5.2. Complexity aspects

The proposed Algorithm 1 has three different parts, where the second one is the mining process. The overall complexity of
our approach will depend on the complexity of each part. In the Apriori case the complexity of the second part is O(n2i),
where n is the number of transactions and i the number of items. Our algorithm repeat the mining process for each restric-
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tion level. If we note with k the number of RLs, we have a theoretic complexity of O(kn2i). When necessary, the complexity
can be reduced to O(n2i) by a suitable parallelization in every restriction level.

The third step is the most time consuming as it depends on the number of formed rules in each level. We first collect the
different rules found in every level, and then we compute the measures used to resume the results.

Concerning space, the size of memory requirements for standard databases is acceptable. For a database with 61,810
transactions and 33 items the memory occupied by the vector of BitSets is around 1 MB. But as we need a different vector
for each RL, the consumed memory will be also increased.

The following section will show in practice the performance of our algorithm for the particular case of considering the
absence of items also in the mining process. In addition we apply our algorithm to some real and synthetic fuzzy databases.
6. Experiments considering the absence of items

There exist few approaches taking into account fuzzy negative rules. Works by Yan et al. [43] and Han and Beheshti [19]
seem to be the most important ones in this field, as far as we know. Our approach follows a totally new focus as it employs
the RLR theory to obtain a new type of fuzzy rules where the negation of items does not always match with that defined in
fuzzy sets theory.

We propose a simple modification of Algorithm 1 to consider the absence of items too. The main problem is that the ab-
sence of an item tends to be always frequent as its occurrence usually has low support. Han and Beheshti [19] proposed to
take only negative items whose positive is frequent [19] to reduce the total number of extracted rules. In order to see if this
condition is adequate or not we have taken into account two different approaches, one that only considers those items in
I0 = {i1, . . . , im,:i1, . . . ,:im} that are frequent and the other following the approach developed in [19] where we only consider
those negative items whose positive is frequent. For the former, we use the Algorithm 1 considering that ik 2 I0 and for the
latter, we consider that ik 2 I where I = {i1, . . . , ik} and we also impose in step 2.1 that if ik is frequent, we add ik and :ik to the
set of candidates. It is worth to mention that in the mining rule process a rule of the form ik ? :ik cannot be found as ik ^ :ik
is the null itemset and its cardinality is equal to zero and consequently its support too (remember that in a given restriction
level it is impossible that both ik and :ik appear simultaneously).

Concerning the complexity, as we consider the absence of items too, we increment the complexity to O(kn22i) where k is
the number of restriction levels, n the number of transactions and i the number of ‘‘positive’’ items. Again, by a suitable par-
allelization in each restriction level we can reduce to O(n22i).
6.1. Experimentation results

In our experiments we took a fixed RL-set K = {1,0.9, . . . ,0.2,0.1} with just 10 elements which is sufficient to obtain reli-
able fuzzy rules. In order to prove the performance of our algorithm we have carried out several experiments with the dat-
abases in Table 10. The first database has been used in [31] to obtain interesting information about olive agriculture in the
south of Spain. The second database is Auto-mpg from the known UCI machine learning repository [3], where we have fuzz-
ified continuous attributes using the following set of linguistic labels: low, medium and high. The following three Fresas dat-
abases were employed in [24] for query refinements in Information Retrieval (IR) where the difference between them is in
the binary case if we consider that an item is present or not in a document, in this case in a transaction; in the frequency case,
the item has a frequency grade in the unit interval where its frequency is divided by the maximum frequency in the collec-
tion of documents; and in the idf case we have considered the inverse document frequency measure mostly used in the IR
field. The Forest Cov-type databases are reduced versions originating from the database used in [22] where we have excluded
the binary attributes and we have fuzzyfied the remaining attributes using two different methods: into equi-depth intervals
and the k-means clustering for reducing their numeric domains to linguistic ones employing the labels low, medium, high.
The last database is a random choice of Soil database transactions in order to obtain a fuzzy database with a higher number
of transactions.
Table 10
Databases description employed in the experiments.

Fuzzy database Size Positive items Potential items

Soil 541 33 66
Auto-mpg 398 39 78
Fresas (binary) 99 837 1674
Fresas (frequency) 99 837 1674
Fresas (idf) 99 837 1674
Forest Cov-type (equidepth) 581,012 37 74
Forest Cov-type (k-means) 581,012 37 74
Synthetic from Soil DB 99,811 33 66



Table 11
Fuzzy rules obtained in Soil (left), Auto-mpg (middle) and Synthetic Soil (right) with only one item in both parts of the rule.

Approach ms mcnmcf # Rules sec # Rules sec # Rules sec

Conf without restriction 0.01 0.8 1106 10 1408 13 1106 10
0.9 1022 7 1402 12 1020 8

0.05 0.8 1083 10 1377 13 1083 10
0.9 996 8 1371 16 994 8

CF without restriction 0.01 0.8 26 1 9 1 31 1
0.9 22 1 7 1 27 1

0.05 0.8 24 1 9 1 29 1
0.9 21 1 7 1 26 1

Conf with restriction 0.01 0.8 72 1 13 1 72 1
0.9 54 1 7 1 52 1

0.05 0.8 45 1 13 1 44 1
0.9 28 1 7 1 26 1

CF with restriction 0.01 0.8 26 1 6 1 31 1
0.9 22 1 4 1 27 1

0.05 0.8 24 1 6 1 29 1
0.9 20 1 4 1 25 1
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To illustrate the complexity in time we discussed before and to show the performance of both proposals, we have carried
out an extensive battery of experiments in the mentioned databases in a 2.13 GHz Intel Core i3 notebook with 4 GB of main
memory, running Windows 7.

We have run diverse experiments in order to study the performance of our proposal from the following points of view:

1. Suitability of using confidence or certainty factor measures when mining negative rules.
2. Differences between the use of the imposition proposed by Han and Beheshti [18] for the confidence and the certainty

factor.
3. Study of time consumed in the third part of the algorithm depending on the number of mined rules.

For comparing the behavior of the algorithm employing the confidence and the certainty factor measures we have exe-
cuted the algorithm with both measures in all databases imposing only one item in both parts of the rule (antecedent and
consequent) for several threshold values as we show in Tables 11–13. We refer to the imposition proposed by Han and Behe-
shti [18] when we mention ‘‘with restriction’’ in Tables 11–13. In general we observed a high decrease in the number of ex-
tracted rules when employing the certainty factor. Let us notice that, in Table 13, the consumed time in the Conf approach
without imposing the restriction is so high with respect to the one in the CF approach, that we have not considered to include
it as it takes in these cases more than a day in their execution. Anyway, in this point we are more interested in comparing the
different approaches, and it is sufficient to know that the Conf approach without imposing the restriction is nonviable as it
extracts too many rules and the consumed time is also disproportionate.

In addition, relative to the second point, when carrying the same experiments imposing the condition proposed by Han
and Beheshti [18], i.e. the absence of items must have their positive frequent, we found that this imposition reduces the total
number of mined rules but it can leave behind some interesting rules, and sometimes by only imposing a measure stronger
than confidence it is enough to obtain a manageable set of rules. In particular, some of the rules that have not been found
when using that imposition but employing the certainty factor instead of confidence are the following:

‘‘IF height = medium
THEN :depth = high (FSupp = 0.119 & �CF = 0.781)

found in Soil database. A possible meaning is that when the height is medium it tends to occur that depth is medium or

low, that is, it is not high. This rule could be interesting, but as the item depth = high is not frequent, when imposing the
restriction of Han and Beheshti this rule was not found. In the Auto-mpg database, we obtain the following rule:

‘‘IF :cylinders = average
THEN :max_cylinders = 5 (FSupp = 0.525 & �CF = 0.999)

which shows a logical association rule, as :cylinders = average can be translated to cylinders = more than 3 or less

than 8 and :max_cylinders = 5 is equivalent to max_cylinders = 3 or 4 or 6 or 8, so if the number of cylinders is not the
average then the maximum number of cylinders tends not to be 5 (which is just the average of the set {3,4,5,6,8}).

However when considering rules with more than one item in the antecedent or in the consequent, the number of rules is
highly increased if we do not impose the mentioned condition as Table 14 shows.4 Summarizing the results to answer the
second point, we observed that it would be convenient to use some pruning strategy (like the one in [18]) in order to obtain a
4 The results obtained in the Auto-mpg database has similar values to those shown in Table 14 with quantities of the same order.



Table 12
Fuzzy rules obtained in Forest equidepth (left) and Forest k-means (right) with only one item in both parts of the rule.

Approach ms mcnmcf # Rules sec # Rules sec

Conf without restriction 0.01 0.8 1232 8 1297 9
0.9 1228 8 1228 8

0.05 0.8 1232 8 1297 8
0.9 1228 8 1228 9

CF without restriction 0.01 0.8 4 1 8 1
0.9 4 1 7 1

0.05 0.8 4 1 8 1
0.9 4 1 7 1

Conf with restriction 0.01 0.8 10 1 23 1
0.9 6 1 6 1

0.05 0.8 10 1 23 1
0.9 6 1 6 1

CF with restriction 0.01 0.8 4 1 8 1
0.9 4 1 7 1

0.05 0.8 4 1 8 1
0.9 4 1 7 1

Table 13
Fuzzy rules obtained in Fresas binary (left), Fresas frequency (middle) and Fresas idf (right) with only one item in both parts of the rule.

Approach ms mcnmcf # Rules sec # Rules sec # Rules sec

Conf without restriction 0.05 0.8 �719,000 �702,000 �701,000
0.9 �719,000 �701,000 �700,000

0.1 0.8 �702,000 �700,000 �700,000
0.9 �699,000 �699,000 �699,000

CF without restriction 0.05 0.8 22,436 4724 756 2011 469 1442
0.9 22,435 4754 749 1993 469 1477

0.1 0.8 12,815 922 577 461 408 383
0.9 12,814 928 570 457 408 375

Conf with restriction 0.05 0.8 1447 18 36 7 15 4
0.9 1291 18 22 7 10 4

0.1 0.8 53 1 13 1 8 1
0.9 30 1 6 1 6 1

CF with restriction 0.05 0.8 611 5 15 2 10 1
0.9 610 6 15 2 10 1

0.1 0.8 21 1 6 1 6 1
0.9 21 1 6 1 6 1

Table 14
Fuzzy rules obtained in the Soil DB with two items in the antecedent and/or the consequent of the rule.

Approach ms mc/mcf Database # Rules

Conf without restriction Soil �280000
0.05 0.9 auto-mpg �555000

Forest equidepth �388000
Forest k-means �385000

CF without restriction Soil 16,940
0.05 0.9 auto-mpg �44,000

Forest equidepth �23,000
Forest k-means �22,000

Conf with restriction Soil 317
0.05 0.9 auto-mpg 45

Forest equidepth 81
Forest k-means 20

CF with restriction Soil 283
0.05 0.9 auto-mpg 26

Forest equidepth 65
Forest k-means 5
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Fig. 1. Time in seconds depending of the number of extracted rules in several experiments with different threshold impositions.

Table 15
Experiment results for an Apriori algorithm with minsupp = 0 and minCF = 0.1.

Database Rules sec

Soil 4224 2.5
Auto-mpg 5928 4.2
Forest equidepth 5328 125.6
Forest k-means 5328 127.6
Fresas binary 2,798,928 376667.3
Fresas frequency 2,798,928 386246.9
Fresas idf 2,798,928 389938.3
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manageable set of rules in some cases, for instance for a high number of items (like the Fresas databases). In other cases it
would be sufficient to use a strong accuracy measure with appropriate properties like the certainty factor.

Regarding the last point, we have seen that the most consuming time part of our algorithm is its third part which sum-
marizes the obtained results. It strongly depends on the total number rules that must be processed for obtaining the sum-
mary. In Fig. 1 we show some of the times produced in our experimentation in function of the number of rules obtained in
the summary. When the number of rules to be processed exceeds 100000 in every level, the time is highly increased. As, in
real world cases, the user is usually interested in obtaining a reduced set of rules for being able to manage, then in these
cases we think that the obtained times are reasonable.

We have also performed some experiments in a Xeon Core2Duo (4 kernels) computer with 8 GB of RAM memory running
under Fedora 12 (64 bits architecture). We have implemented a basic Apriori algorithm to obtain the results for each restric-
tion level and afterwards we resume the results. We considered the support and the certainty factor accuracy measures with
associated thresholds 0 and 0.1 respectively in order to study the time requirements in a different algorithm. Results are
shown in Table 15.

7. Conclusions

We have presented an extension of the GUHA model to formalize fuzzy association rules using the RLR theory. This pro-
posal offers a unified view for managing fuzzy rules via restriction levels. It also gives a process for extending the validation
measures used in the extraction process from the crisp to the fuzzy case (Eq. (13)). In addition, we have developed several
alternatives for managing the obtained results using our model that allows the user to explore the extracted rules from dif-
ferent points of view. In particular, we have applied the model for managing the absence of items, proving that it does not
entail extra computations, and the involved measures are the logical extensions when the operator : is used.

We have proposed a general algorithm following the model philosophy and using the BitSet computation which acceler-
ates the logical computations between itemsets. This algorithm has been applied for mining fuzzy rules involving both the
presence and the absence of items obtaining reasonably time performance in some real and synthetic fuzzy databases. We
want to remark that although we have offered an algorithmic approach, the proposed formalization provides a method for
using every crisp rule mining algorithm for mining fuzzy rules by only parallelizing the mining process in each restriction
level and then summarizing the obtained results.

We have also compared our approach with that of Han and Beheshti [18] which imposes that the negation of an item
must have a frequent positive to consider it a candidate. We obtained that the imposition of a stronger measure than con-
fidence, the certainty factor in our case, could be an alternative to that imposition when rules with single items in antecedent
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and consequent are considered. The more items appear in one of the rule sides, the more the imposition drastically reduces
the number of extracted rules. At this respect improvements in this field are needed, opening a line for future studies: to
provide stronger measures, different impositions or distinct methods to obtain a suitable set of rules involving the ‘‘nega-
tion’’ of items.

Also in this way, we think that a promising line is to study a predefined group of rules involving the absence of items
having significant semantics for the user. Some efforts have been already done when mining exceptions or anomalous rules
[11]. Another interesting type of rule is that proposed in [38] which has a substitutive meaning by using the negation in the
rule consequent.
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