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A B S T R A C T

In recent years, many techniques have been proposed for automatic recognition of Activities of
Daily Living from smart home sensor data. However, classifiers usually use features created ad
hoc. In this work, the use of ontologies is proposed for the fully automatic generation of these
features. The process consists of converting the original dataset into an ontology and then
combine all the concepts and relations in that ontology to obtain relevant class expressions. The
high formalization of ontologies allows us to reduce the search space by discarding many
meaningless expressions, such as contradictory or unsatisfiable expressions. The relevant class
expressions are then used as features by the classifiers to build the classification model. To va-
lidate our proposal, we have used as reference the results obtained by four different classification
algorithms that use the most commonly used features.

1. Introduction

A very important process at the core of smart environments is the sensor-based activity recognition [1–3]. This kind of activity
recognition is based on recognizing the actions of one or more persons within an intelligent environment by using a flow of observed
events that depend only on the current activity. Common activities of interest are Activities of Daily Living (ADLs) such as “bath-
ing”,“sleeping” or “dinning”. Objects or furniture can generate sensor events indicating, for example, the use of a faucet, the opening
of a door, or the use of a light switch.

Approaches used for sensor-based activity recognition have been divided into two main kinds: Data-Driven (DDA) and
Knowledge-Driven (KDA) approaches. DDA, are based on machine learning techniques in which a preexistent dataset of user be-
haviors is required. A training process is carried out, usually, to build an activity model which is followed by a testing process to
evaluate the generalization of the model in classifying unseen activities [4]. The most remarkable features of the DDA are the
capabilities of handling uncertainty and temporal information. DDA approaches need large annotated datasets for training and
learning. In this context, it is interesting to mention the Open Data Initiative (ODI) [5] for Activity Recognition consortium that aims
to create a structured approach to provide annotated datasets in an accessible format.

With KDA, an activity model is built through the incorporation of rich prior domain knowledge obtained from the application
domain, using knowledge engineering and knowledge management techniques [6]. KDA has the advantages of being semantically
clear, logically elegant, and easy to get started. In the context of KDA, ontologies for activity recognition have provided successful
results [7]. In this kind of approach, interpretable activity models are built in order to match different object names with a term in an
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ontology that is related to a particular activity.
Ontologies can be seen as structured vocabularies that explain the relations among their terms (or classes). They are formed by

concepts and relations that can be combined to form more complex class expressions. Because of the high rigidity of the logic behind
ontologies, some hybrid approaches have been developed [8,9] that take advantage of the main benefits provided by DDA and the use
of ontologies. Thereby, ontological ADL models capture and encode rich domain knowledge and heuristics in a machine under-
standable and processable way.

A hybrid approach for activity recognition is presented in this paper, where ontologies are used to automatically generate the
features for the ADL classifiers. The features correspond to class expressions that have been created by combining the concepts and
relations in the ontology, according to a given set of rules. Contradictory or unsatisfiable class expressions can be detected and
discarded, greatly reducing the feature search space. Other similar proposals can be found in literature [10–12], but this is the only
proposal that performs the process in a fully automatic way. In addition, and unlike the rest, the proposal presented in this paper does
not incorporate external data to the knowledge base. It is based solely on the data available in the original dataset. The proposal
presented in this paper could be considered as an approach for the problem of feature learning. However, the goal of feature learning
is often to reduce the dimensionality of the dataset, selecting or aggregating features in order to produce low-dimensional versions of
the original datasets [13], whereas our proposal expands the set of existing features, looking for new relevant features that help us to
find hidden patterns in the dataset.

To evaluate the quality and efficiency of the methodology proposed in this work an experiment has been carried out, in which the
datasets proposed in [14–16] have been used. The results obtained by using the classic approach for the recognition of ADL have been
used as reference to measure the performance of our proposal. In this approach, the features are handcrafted, and usually represent
the state of the sensors during the activity. Therefore, each sensor provides a single feature to the algorithm that generates the
classification model. There is often more relevant information in the dataset, such as the order in which the sensors change. However,
this kind of information is not usually taken into account because it requires the development of ad hoc applications [17]. The
proposal presented in this paper automatically discovers relevant sequences of sensor changes as it generates more and more class
expressions.

The remainder of the paper is structured as follows: Section 2 reviews the binary sensor data within the smart environment used in
this proposal with the simple transformation into feature vectors. Furthermore, notions about ontologies are revised to understand
our proposal as well as related works. Section 3 proposes the methodology to extend the set of feature vectors by means of an
ontology. Section 4 presents an empirical study that analyzes our proposed methodology of extended feature vector in terms of
accuracy based on three popular datasets by using the ontology. In Section 5, the results obtained are analyzed and discussed. Finally,
in Section 6, conclusions and future works are presented.

2. Background

In this section, firstly, the process to transform a sensor data stream generated by a smart environment into classical feature
vectors used by DDA to recognize activities is reviewed. Furthermore, the three datasets used to evaluate our proposal are described.
Then, some relevant concepts related to ontologies are reviewed in order to understand our proposed methodology to extend the
feature vectors with the inferred knowledge by the ontology. Finally, related works are also presented at the end of this section.

2.1. From sensor data stream to feature vectors. Smart environment datasets

Usually, feature vectors generated by a smart environment are computed from the temporal sensor data stream that is discretized
into a set of time windows, denoting each time window by Wk, which is limited by each activity. The set of activities are denoted by

= … …A a a a{ , , , ., },i AN1 being AN the number of activities of the dataset.
Each feature vector is denoted by Fk and has +N 1S components, NS being the number of sensors in the dataset denoted by

= … …S s s s{ , , , ., }j N1 S . Therefore, each computed feature vector is defined by the following expression:

= … … +{ }F f f f f, , , , ,k k
j
k

N
k

N
k

1 1S S

being = …f j N; {1, , }j
k

S a binary value that indicates if the sensor si was fired at least once, 1, or was not fired 0 in this time window Wk

(see Fig. 1). The last component ∈+f AN
k

1S
indicates the activity carried out in the time window Wk.

In this paper, three popular activity recognition datasets of smart environments are used to evaluate our proposal, which are
described below.

The first dataset was proposed in [14]. This dataset is composed by binary temporal data from a number of sensors, which
monitored the ADLs carried out in a home setting by a single inhabitant. This dataset was collected in the house of a 26-year-old male
who lived alone in a three-room apartment. This dataset contains 245 activities that are annotated in the stream of state-change
sensors generated by 14 binary sensors. In this dataset, seven activities are classified: leave house, use toilet, take shower, go to bed,
prepare breakfast, prepare dinner and, finally, getting a drink.

The second dataset was proposed in [15] that represents a sensor data stream in the Washington State University smart apart-
ment. The data represents 20 participants performing eight ADL activities in the apartment. The activities were performed in-
dividually and sequentially. Each participant performed the same set of activities in any order. This dataset contains 178 activities
that are annotated in the stream of state-change sensors generated by 45 sensors, three temperature sensor were omitted in the
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evaluation due to the fact that they do not provide information on the recognition of activities. In this dataset eight activities are
classified: answer the phone, choose outfit, clean, fill medication dispenser, prepare birthday card, prepare soup, watch DVD and
water plants.

The third dataset was proposed in [16] that is located in the UC Irvine Machine Learning Repository. The dataset represents two
participants performing ten ADL activities in their own homes. The activities were performed individually and this dataset is com-
posed of two instances of data, each one corresponding to a different user and completed in 35 days. In this dataset, the number of
sensors are 12, although two of them are never fired in the case of the second participant. Ten activities are classified: breakfast,
dinner, leaving, lunch, showering, sleeping, snacking, spare time TV and grooming.

The classical feature vectors obtained with these datasets will be expanded through ontologies to improve the accuracy of the
results with DDA. In the next subsection, ontology basics are reviewed.

2.2. Ontologies

Ontologies are used to provide structured vocabularies that explain the relations among terms, allowing an unambiguous in-
terpretation of their meaning. Ontologies are formed by concepts (or classes) which are, usually, organized in hierarchies, the
ontologies being more complex than taxonomies because they not only consider type-of relations, but they also consider other
relations, including part-of or domain-specific relations.

In an ontology, the symbol ⊤ stands for the top concept of the hierarchy, all other concepts being subsets of ⊤. The subsumption
relation is usually expressed using the symbol A⊑B, meaning that the concept A is a subset of the concept B. Concepts can also be
specified as logical combinations of other concepts.

The semantic of operators for combining concepts is shown in Table 1, where C, C1, C2⊑⊤, R is a relation among concepts, ΔI is the
domain of individuals in the model and I is an interpretation function.

The main advantage of ontologies is that they codify knowledge and make it reusable by people, databases, and applications that
need to share information. Due to this, the construction, the integration and the evolution of ontologies have been critical for the
Semantic Web. However, obtaining a high quality ontology largely depends on the availability of well-defined semantics and
powerful reasoning tools.

Regarding Semantic Web, a formal language is OWL, which is developed by the World Wide Web Consortium (W3C). Originally,
OWL was designed to represent information about categories of objects and how they are related. OWL inherits characteristics from
several representation languages families, including the Description Logics (DL) and Frames basically. OWL is built on top of the
Resource Description Framework (RDF) and RDF Schema (RDFS). RDF is a data-model for describing resources and relations between
them. RDFS describes how to use RDF to describe application and domain specific vocabularies. It extends the definition for some of
the elements of RDF to allow the typing of properties (domain and range) and the creation of subconcepts and subproperties. The
major extension over RDFS is that OWL has the ability to impose restrictions on properties for certain classes.

One of the main advantages of the high formalization of OWL is the possibility of using automated reasoning techniques. In 2009,
the W3C proposed the OWL 2 recommendation in order to solve some usability problems detected in the previous version, keeping

Table 1
Semantic of OWL logical operators.

DL syntax Manchester syntax Semantics

I C1⊓C2 C1and C2 ⊓ = ∩C C C C( ) ( )I I I
1 2 1 2

U C1⊔C2 C1or C2 ∪ = ∪C C C C( ) ( )I I I
1 2 1 2

C ¬C not C ¬ = ∖C C( ) ΔI I I

S ∃R.C R some C ∃ = ∃ ∈ ∧ ∈R C x y x y R y C( . ) { . , }I I I

A ∀R.C R only C ∀ = ∀ ∈ → ∈R C x y x y R y C( . ) { . , }I I I

X ≤ nR.C R maxn C ≥ = ∈ ∧ ∈ ≤nR C x card y x y R y C n( . ) { { . , } }I I I

M ≥ nR.C R minn C ≤ = ∈ ∧ ∈ ≥nR C x card y x y R y C n( . ) { { . , } }I I I

Fig. 1. Partial sensor data stream of a dataset and its computed feature vector.
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the base of OWL. So, OWL 2 adds several new features to OWL, some of the new features are syntactic sugar (e.g., disjoint union of
classes) while others offer new expressivity, including: increased expressive power for properties, simple metamodeling capabilities,
extended support for datatypes, extended annotation capabilities, and other innovations and minor features.

2.3. Related works

We can find in the literature many ontologies for the description of ADLs. However, all of them are designed to be as expressive as
possible, defining a huge amount of classes and properties. This makes more difficult for our methodology to find relevant class
expressions, since the search space grows exponentially. The ontology proposed in [18], for example, contains one hundred and sixty-
five predefined activities and thirty-three different types of predefined events (“atomic activities”). It also incorporates other types of
entities that are specific for the dataset, such as the person performing the activity and his or her posture. Also, all properties are flat,
i.e., without any characteristic (inverse, functional...), because the reasoning about the order of events is done in an external rules
system. The same applies to the ontology proposed in [6], where there are properties to associate a sensor with the object in which it
is located and even its manufacturer. Their authors distinguish between simple and compound activities and they are organized in
hierarchies. There are also dozens of activities and properties already predefined in the ontology that do not correspond to the
activities in the datasets of the experiment described in Section 4. The ontology proposed in [19] is oriented towards the development
of an ADLs monitoring system which can interact with the users through mobile networks. It includes concepts and properties to
implement a message service between the user and the monitoring system. The ontology proposed in [20] is the most similar to the
one used in this paper. However, it defines concepts to indicate the type of sensor or its location, which are not used in the experiment
proposed in this work. Nonetheless, the biggest problem is the distinction made between basic and composite activities, because the
class expressions become more complex and more of them have to be generated in order to find relevant features. Besides, there is no
transitive property that allows to know all the events produced before or after a certain one. All the intermediate events have to be
explicitly given in the class expression to relate two non-consecutive events, increasing the complexity of such expressions.

In the context of feature generation, a framework that generates new features for a movie recommendation dataset is proposed in
[10]. They use that framework to construct semantic features from YAGO, a general purpose knowledge base that was automatically
constructed from Wikipedia, WordNet and other semi-structured Web sources. Then, they manually define a set of static queries in
SPARQL language that are used to add information to the original dataset, such as its budget, release date, cast, genres, box-office
information, etc. Despite being a proposal similar to ours, it is important to note that the set of features are generated in a fully
automatic process, thanks to the high formalization of ontologies, without the need for human interaction.

The authors in [11] also propose the use of ontologies to generate new features. They expand features from the original feature in
a breadth first search manner considering some rules for semantically correct paths. Only concepts on outgoing paths from the
original entity conforming to these patterns are considered as possible features in the further process. Although they plan to test their
proposal with two ontologies, they are actually dealing with the underlying RDF graph of those ontologies. They do not make use of
the inference mechanisms of ontologies nor the formal logic behind them. They just use the user defined relationships between
concepts in the RDF graph in order to relate the original concept with the concepts in its context.

Paulheim [12] also proposes another technique that employs user defined relations between concepts in the RDF graph of
ontologies for the automatic generation of features. Its main goal is the generation of possible interpretations for statistics using
Linked Open Data. The prototype implementation can import arbitrary statistics files, and uses DBpedia for generating attributes in a
fully automatic fashion. Furthermore, the author argues that their approach works with any arbitrary SPARQL endpoint providing
Linked Open Data. The use of the inference mechanisms of ontologies is also very limited in this work.

Another key difference of our proposal with respect to those in [10–12] is that they propose the use of external knowledge to
generate new features, whereas we only consider the information in the original dataset to do so.

The methodology proposed in this paper also shares some characteristics with Class Expression Learning (CEL) techniques. The
algorithms for CEL are mainly used in the field of ontology engineering [21]. They can be used to suggest new class descriptions that
are relevant to the problem while the ontologies are being developed. The objective of CEL algorithms is to determine new class
descriptions for concepts that may be used to classify individuals in an ontology according to some criterion. More formally, given a
class C, the goal of CEL algorithms is to determine a class description A such that A≡ C. Given a set of positive and negative examples
of individuals in an ontology, the learning problem consists on finding a new class expression or concept such that most of the
positive examples are instances of that concept, whereas the negatives instances are not.

The main difference with respect to our proposal is that the result of CEL algorithms is always a DL class expression whereas the
result of the proposed methodology is a set of DL class expressions, which do not always describe positive instances. Sometimes, the
features of negative instances provide valuable information to the classification model. In our case, the entire set of generated class
expressions are treated as features. The classifier may combine the DL class expressions as necessary, without the need for producing
the result in form of logical axioms that describe positive instances. This is the reason why the classifiers based on our proposal
perform better than the CEL algorithms. In addition, the rigidity of DL makes the classification model less tolerant to conflicting and
incoherent situations due to faulty sensing hardware or communication problems [22].

3. Methodology

This section describes the proposed methodology. The purpose of our methodology is to extend the feature vectors processed by a
smart environment to enrich these vectors through asserted and inferred knowledge in the ontology, improving the accuracy of
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classifiers based on DDAs used in the recognition of activities against the unextended feature vectors.

3.1. An ontology for the description of ADL

This section presents the ontology developed for the description of ADL. The aim of this ontology is to provide a basic set of
primitives that allow the representation of the information present in most datasets available in the literature. The set of primitives
should be comprehensive enough to be able to represent all the activities in such datasets but should also be as brief as possible to
facilitate the use of reasoners.

The ontology defines two basic disjoint concepts, Activity and Event, which respectively represent all the activities in the datasets
and the activation of the sensors during these activities. In fact, the Event concept represents any situation reported by a sensor. It can
also be used to represent the deactivation of a sensor or the report of its value at a certain instant. Each of the sensors in the dataset
requires the creation of at least one subconcept of the Event concept to represent the events produced by that sensor. The application
developed to convert datasets into ontologies creates two subconcepts for binary sensors. One of them represents the activation of the
sensor and the other, which is optional, its deactivation. In the first case the suffix “_set” is appended to the end of the name of the
concept, while the suffix “_clear” is appended in the second. When it comes to a numeric sensor the name of the concept is just the
name of the sensor. The class ⊑Frontdoor set Event, for example, represents the set of events corresponding to the activation of the
sensor on the front door for the dataset in [14].

Our proposal for representing activities is based on a list structure (see Fig. 2). However, the underlying RDF collections are
unavailable because they are used in the RDF serialization of OWL. Although rdf:Seq is not illegal, it depends on lexical ordering and
has no logical semantics accessible to a DL classifier [23].

In the literature, we can find some proposals for the representation of lists in OWL. In [24] a design pattern for representing them
is proposed. However, as it is defined as an extension of the Collection concept, the proposal introduces many concepts and relations
that are not strictly necessary, lowering the performance of reasoners. Concepts such as item or Bag and relations such as ‘has member’
are not necessary, for example. It also defines the concept Collection to be disjoint with the concept item, so it is not possible to
represent lists having other lists as items. This makes it impossible to define lists of activities.

Two general design patterns for representing lists are also proposed in [23]. Our proposal is similar to the pattern that models lists
directly as chains of individuals but, for the sake of clarity and standardization, we opted for using the properties names in the pattern
that models lists as data structures. We have also introduced some differences in our proposal for representing activities as lists of
events, which will be explained in detail bellow.

LetL be an activity comprising a set of events …e e e{ , , , }n1 2 and < a strict partial order, i.e. a binary relation that is irreflexive,
transitive and asymmetric, defined for each pair ∈ ×e e, ,i j L L where × is the cartesian product. Based on the previous defi-
nitions, the concepts Activity⊑⊤ and Event⊑⊤ are defined, as well as the following two properties:

⊑hasNext isFollowedBy

hasNext is defined as a functional, asymmetric and irreflexive property, establishing the order of events in the activity L ac-
cording to the < order. Due to the fact that it has been defined as a functional property just one event could follow another event.
The inverse property is also defined as functional, forcing an event to be directly preceded by a unique event. The full definition of
the < order is achieved by introducing the transitive property isFollowedBy as a superproperty of hasNext. Since this means that
hasNext implies isFollowedBy, any sequence of entities linked by hasNext will be inferred to be a chain linked by isFollowedBy. hasNext
is used to express that an event B immediately follows another event A. There is no other event between them. So event A has B as the
next event in the list (A hasNext B) or, in other words, event A is followed by event B (A isFollowedBy B). If another event C appears
after event B, event A is also followed by event C (A isFollowedBy C), but event A has not C as the next event on the list (not A hasNext
C).

The property hasItem establishes the membership of an event to the list. The class description hasItem some (Frontdoor_set and

Fig. 2. Ontology example.
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isFollowedBy some Dishwasher_set) is a way of describing the activity #Activity24 of the example in Fig. 2.
The properties startsWith and endsWith are used to identify the first and last events in the activities. Due to open world assumption

in OWL, reasoners cannot automatically infer the individuals that belong to these concepts. Therefore, it is necessary to annotate
these individuals when the activities are converted to the model proposed in this paper. The class description startsWith some
(Frondoor_set and hasNext some (Fridge_set and hasNext some Dishwasher_set)), for example, represents the activities that begin with the
activation of the sensor of the front door, which is immediately followed by the activation of the fridge sensor and then by the
dishwasher sensor, immediately after. The activity #Activity24 in Fig. 2 is an example of activity described by the above class
description.

In OWL the same individual could be referred to in many different ways (i.e. with different URI references). Due to this, it is
necessary to state that all the elements in the datasets are different individuals. For practical reasons, a functional property hasID is
used to identify all of the individuals in the model with a unique code. In this way, the addition of new entities to the ontology is
easier, without the need for asserting that all of them are different from the existing individuals.

⊤ ⊑ ∀ hasID Datatype long#

Due to the high formalization of ontologies, it is not necessary to make all relations in the datasets explicit. Many of them may be
inferred by the reasoner. Knowing that #Event15 hasNext #Event16, the reasoner may infer that #Event15 isFollowedBy #Event16,
since hasNext⊑isFollowedBy. In addition, if #Event16 hasNext #Event17, the reasoner may easily infer that #Event15 isFollowedBy
#Event17, since the property isFollowedBy has been declared as transitive.

When we want to refer to events that occur before another one we can make use of inverse properties, which have not been
explicitly defined for efficiency reasons. #Activity24 may also be described by the class description −endsWith hasNext Fridgeset,
which describes activities ending with an event preceded by an activation of the fridge sensor.

3.2. Functional architecture

All the components of the methodology proposed in this paper and how the information flows among them are explained in this
section and depicted in Fig. 3.

The system starts from a dataset with a set of labeled activities. First of all it is necessary to convert the dataset information into an
ontology. For this, we have developed an application that first translates the information in the dataset to a common data model in
XML format. The XML file contains all the events produced by sensors for each activity, as well as other information such as the
sensors that were active during the activity or the type of the sensors. The application is currently capable of loading datasets with the
formats proposed in [14,15].

A second application is responsible for the transformation of the activities expressed in the XML format to an ontology that uses
the primitives described in Section 2. In this step two text files are also generated that contain: a) the list of individuals in the
ontology of the kind of activity to be recognized by the classifier (positives), and b) the rest of individuals (negatives). These lists of
individuals will be used to generate the input data for the classifier in a later step.

Fig. 3. Functional architecture.
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Next, it is necessary to expand the definition of the Activity concept in the ontology. The expansion process consists of generating
new class descriptions that represent different patterns of activities, without taking into account the specific type of activity that is
going to be recognized by the classifier. More specifically, another application takes the concept to be expanded (Activity) as an
argument and uses a given set of classes, properties and operators to construct new class descriptions in DL. All the concepts in the
ontology that at least describe some individual in the ontology have been taken as the set of classes L. All properties defined in the
ontology have been taken as the set of properties P. The set of operators O is specified by the user and consists of a subset of all
operators that can be used to combine class descriptions (see Section 2.2).

The expansion process begins by combining all the concepts in L by means of O operators. The complement operator (C ) results in
class expressions of the form not ci, where ci∈ L. Class expressions such as not Cupboard_set or not Activity are produced using the
complement operator, for example.

All class descriptions in L are combined with themselves in the case of operators that require two class descriptions, resulting in
expressions of the form ci ok cj, where ci, cj∈ L, i≠ j and ok∈ {and, or}. In this process, expressions such as Event and Cupboard_set or
Cupboard_set or HallBedroom_Door_set are generated, for example.

There are operators that require a property to form valid class descriptions. They are the existential quantifiers and the universal
quantifier. In this case, the expansion process combines all class descriptions in L with all properties in the ontology, producing
expressions of the form pi ok cj, where pi∈ P, ok∈ {some, all} and cj∈ L. startsWith some HallBedroom_Door_set or isFollowedBy all
Cupboard_set are examples of expressions generated by existential and universal quantifiers. These class expressions represent all
those individuals that begin with the firing of the HallBedroom_Door sensor and all those individuals that are only followed by
Cupboard sensor activations, respectively.

The last type of operators that implements the application are the cardinality constraints. These operators limit the number of
individuals to which an individual may be related among a given property. The class descriptions generated with these operators
have the form pi ork n cj, where pi∈ P, ok∈ {min, max, exact}, cj∈ L and n∈N. Expressions such as isFollowedBy min 4 Event or
isFollowedBy exact 2 Cupboard_set are generated, for example, representing the set of individuals followed by at least four sensor
activations and the set of individuals followed by exactly two activations of the Cupboard sensor, respectively. The number of
constraints to be generated is virtually infinite since n∈N. It is the user who must specify the possible values for n. For example,
n∈ {2, 3} in the experiment of Section 4.

All the expressions generated are added to L and the process is repeated again. However, not all of the expressions generated are
relevant. Some of them are simply unsatisfiable. A class expression such as hasItem some Activity, for example, is unsatisfiable since
the range of the property hasItem is the Event concept, which is defined to be disjointed with the concept Activity. There cannot be an
individual in the ontology which meets such restriction. For the same reason, expressions like hasItem some startsWith some
HallBedroom_Door_set are also unsatisfiable, since the domain of the startsWith property is the concept Activity. Only satisfiable class
expressions are added to L.

On the other hand, not all class expressions in L describe activities. With the help of the reasoner, a new set V⊆L is created, which
contains all the class expressions in L that describe activities. These are the expressions that the application produces as result, in a
text file.

The last application takes the class expressions generated in the previous step as input and produces a table with k rows and n
binary columns, where k is the number of labeled activities in the dataset and n is the number of class descriptions generated in the

expansion process. Each of the rows is therefore a vector = ⎧
⎨⎩

… … ⎫
⎬⎭

+F f f f f, , , , ,k k
j
k

n
k

n
k

1 1 . Each of the n generated class expressions

corresponds to a feature ∈f Fj
k k. =F 1j

k if the activity k is an instance of the class description j. =F 0j
k otherwise. =+F 1n

k
1 if the

activity k is an instance of the kind of activity to be recognized by the classifier (positive). =+F 0n
k

1 otherwise. The list of labeled
individuals generated at the beginning of the process is used for this purpose. This process is called “vectorization”. An example of the
results obtained by this application is shown in Table 2.

4. Experiments

In order to evaluate the quality of the methodology proposed in this work an experiment has been carried out, in which the
datasets proposed in [14–16] have been used. In the case of Ordónez et al. [16], two sets of activities and sensors are presented, so
they are considered as two different datasets. The objective of the experiment is to determine whether or not a particular ADL has
been performed based on the sensors that have been fired during a specific period of time. To simplify the experiment, the time

Table 2
Example of data produced by the ‘vectorization’ process.

startsWith some hasItem min 2
Activity HallBedroom_Door_set Hall-Bedroom_door_set Positive

1 1 0 1
2 0 1 0
3 1 1 1
4 0 0 1
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intervals always correspond to the labeled activities in the dataset.
The results obtained by four classifiers that use a classic DDA to solve this problem have been taken as reference to measure the

efficiency of our proposal. For this purpose an application that identifies the sensors that have been fired during each of the activities
has been built. The application generates a file in Weka format, following the structure presented in Section 2.1. This file contains an
instance for each activity and as many features as sensors in the dataset. All the features are binary and specify if the sensor has been
fired during the activity or not. Finally, it includes a class attribute, also binary, that indicates if it is the activity that the classifier is
learning to identify (positive) or not (negative). Each experiment consists, therefore, of determining which combination of sensors are
fired for a particular activity, such as “take shower”, for example.

By using the Weka data mining software [25], we have generated C4.5,1 Sequential Minimal Optimization (SMO), Voted per-
ceptron (VP) and Decision Table (DT) classifiers for all the activities in the datasets. A summary of the results obtained for all the
activities of the different datasets is shown in Table 3. The most difficult activities to be recognized using these algorithms have been
taken as reference. Specifically, the activity chosen for the experiment from the dataset in [15] has been the activity “Clean”, with an
accuracy of 98.41% at best. The activity chosen from Van Kasteren et al. [14] has been “Use toilet”, with 92.40% accuracy. The
activity chosen from the first dataset in [16] has been “Toileting”, while we have selected the activity “Snack” from the second
dataset.

For each of the datasets a new ontology has been automatically generated using the primitives in Section 3.1. Another application
is then used to generate a specific number of new class descriptions for each of them. All new class descriptions describe the Activity
concept. Three subsets of operators have been used to generate three different sets of new class descriptions. For the first one, all
available operators (ACIXMSU ) have been used. The complement, minimum cardinality and the existential quantifier operators
(CMS ) have been used for the second one and only the existential quantifier (S ) has been used for the latter. Versions with 50, 100,
150 and 200 class expressions have been generated for each of these sets. Versions with up to 500 class expressions have also been
generated for the cases where only the existential quantifier operator has been used.

All files with new class descriptions are evaluated by another application and a new file in Weka format is generated for each of

Table 3
Activity recognition accuracy for classic approach.

Dataset Activity C4.5 SMO VP DT

Singla Answer the phone 99.40 99.40 89.39 99.40
Singla Choose outfit 100.00 100.00 96.64 100.00
Singla Clean 96.03 98.41 96.81 96.83
Singla Fill medication 100.00 100.00 96.63 100.00
Singla Prepare birthday card 98.80 99.40 97.43 98.80
Singla Prepare soup 100.00 100.00 99.00 100.00
Singla Watch DVD 99.01 100.00 96.58 97.61
Singla Water plants 97.59 99.41 96.21 97.59
Kasteren Get drink 97.70 98.91 94.97 96.46
Kasteren Go to bed 94.16 94.67 91.32 94.69
Kasteren Leave house 100.00 100.00 98.78 100.00
Kasteren Prepare breakfast 97.00 96.18 94.83 96.32
Kasteren Prepare dinner 96.59 97.68 96.05 96.06
Kasteren Take shower 97.56 97.96 93.62 90.63
Kasteren Use toilet 91.97 91.16 89.39 90.09
Ordoñez (a) Breakfast 99.59 99.59 98.91 99.59
Ordoñez (a) Dinner 100.00 100.00 100.00 100.00
Ordoñez (a) Grooming 95.72 95.72 95.31 95.98
Ordoñez (a) Leaving 99.59 99.59 99.06 99.59
Ordoñez (a) Lunch 100.00 100.00 97.04 100.00
Ordoñez (a) Showering 100.00 100.00 99.46 100.00
Ordoñez (a) Sleeping 100.00 100.00 99.73 100.00
Ordoñez (a) Snack 98.66 100.00 95.70 98.26
Ordoñez (a) Spare time TV 96.49 97.16 97.58 97.16
Ordoñez (a) Toileting 94.33 93.93 86.95 89.49
Ordoñez (b) Breakfast 94.87 95.00 95.34 94.73
Ordoñez (b) Dinner 97.77 97.77 97.77 97.77
Ordoñez (b) Grooming 95.05 95.39 94.11 95.12
Ordoñez (b) Leaving 99.19 99.53 99.12 98.92
Ordoñez (b) Lunch 97.37 97.37 97.30 97.17
Ordoñez (b) Showering 100.00 100.00 99.53 100.00
Ordoñez (b) Sleeping 99.39 99.39 98.45 99.39
Ordoñez (b) Snack 91.96 90.13 90.20 90.61
Ordoñez (b) Spare time TV 95.74 95.74 95.53 95.74
Ordoñez (b) Toileting 98.39 98.39 98.39 98.39

1 The Weka implementation of the C4.5 classifier is called J48.
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them. The same four types of classifiers that were employed to evaluate the performance of the classifiers using the classical approach
have been used to evaluate the accuracy of the classifiers based on the new approach. Results are discussed in the next section.

5. Results

The accuracy obtained by all the different DDA for the selected activities are analyzed in this section. First, the results obtained for
the four selected activities of the different datasets are analyzed in detail. At the end of the section, there is a general analysis of the
results obtained for all the activities available in the three datasets of the experiment.

Table 4 shows the results obtained by the classifiers for the activity “Clean” in [14]. The first column indicates the set of operators
used to generate the features for the classifiers. The second column shows the number of features (F ) that have been generated in
the expansion process. Some of them have been removed from the final set of features because they are not relevant. A feature is not
considered relevant if all the instances have the same value for it. The third column contains the final number of features available for
the classifiers ( *F ). The total number of sensors in the dataset have been used for the classic approach in both columns. The
percentage of relevant features considered by the classifier is indicated in the fourth column (%). The next two columns show the time
spent in the processes of expansion and vectorization, in seconds. The sum of both values is shown in the column ‘Total’. The next four
columns indicate the accuracy obtained for the C4.5, SMO, VP and DT classifiers, in percentage values. The best results for each
approach are in bold. The accuracy of the best classifier is finally shown in the last column of the table.

The first row contains the data related to the classifiers constructed using the classical approach. This approach yields a precision
of 91.97% for the best case of the activity ‘Use toilet’. In spite of being a high value, most of the classifiers created with the approach
proposed in this work widely surpassed that value. In fact, the best accuracy (97.67%) is obtained for the SMO classifier that only use
the existential quantifier for generating the sets of DL class expressions. Only one hundred of them are needed to obtain such
precision value. It is a statistically significant improvement against the results obtained by the classic approach for a confidence of

=p 0.05 (two tailed). To check this, we have employed the Paired T-Tester test of Weka. The corrected version of the tester has been
used because we are using cross validations in the experiments. The classifiers that use sets of expressions formed by more operators
also achieve very good results, but somewhat lower. In addition, for classifiers using a datasets of type ,CMS two hundred class
expressions are required to obtain the best results.

It is worth noting the significant difference with respect to the time used by the classifiers depending on the set of operators used
to generate the class expressions. Classifiers that use datasets of typeS andCMS require just one second to generate two hundred
class expressions, whereas in the case of the classifier based on the datasets of type ACIXMSU it takes 78.79 s to generate the
same number of class descriptions. The difference becomes much more noticeable when evaluating the time spent in the process of
vectorization. The classifier that only uses the existential quantifier to generate class expressions only takes 3.10 s to evaluate the two
hundred class expressions generated, whereas more than twenty-five minutes are needed to evaluate the same number of expressions
in the case of the dataset of type CMS . Although it contains more complex expressions, the time required to evaluate the class
expressions contained in the dataset of typeACIXMSU is just eleven minutes. This is because in the dataset of typeCMS there
are many more class expressions that contain cardinality restrictions, which require much more time to be computed by the reasoner.

The behavior of the classifiers developed for the activity “Snack (b)”, from the dataset in [16], is very similar to the activity “Use
toilet” discussed above. In this case, the improvement over the classifiers based on a classical approach is 2.7 points, while in the case
of the activity “Use toilet” the improvement was 5.7 points. The best value (94.38%) achieved by the SMO algorithm is statistically
significant with respect to classic approach (90.13%) for a confidence of =p 0.05 while the best value (94.66) achieved for the C4.5

Table 4
“Use toilet” classification performance.

Dataset F *F % Expand Vectorize Total C4.5 SMO VP DT Best

Classic 14 14 100.00 91.97 91.16 89.39 90.09 91.97
ACIXMSU 50 46 92.00 1.38 73.05 74.43 86.53 87.33 84.88 85.03 87.33
ACIXMSU 100 94 94.00 9.53 69.04 78.57 95.77 96.71 91.78 94.80 96.71
ACIXMSU 150 143 95.33 33.01 94.50 127.51 95.77 96.57 91.69 94.66 96.57
ACIXMSU 200 194 97.00 78.79 682.29 761.08 95.77 96.03 92.76 94.79 96.03
CMS 50 46 92.00 0.75 79.81 80.56 86.53 87.33 84.88 85.03 87.33
CMS 100 91 91.00 0.94 240.05 240.99 95.77 95.76 90.33 94.53 95.77
CMS 150 134 89.33 1.12 1159.07 1160.19 95.22 96.30 90.44 93.71 96.30
CMS 200 178 89.00 1.31 1513.29 1514.60 95.22 96.98 90.62 93.71 96.98
S 50 44 88.00 0.70 1.27 1.97 96.32 96.32 91.28 95.76 96.32
S 100 77 77.00 0.81 1.95 2.76 95.62 97.67 90.87 94.81 97.67
S 150 109 72.67 0.93 2.40 3.33 97.26 97.53 92.76 94.96 97.53
S 200 142 71.00 1.00 3.10 4.10 97.26 96.99 91.02 94.96 97.26
S 250 174 69.60 1.16 3.48 4.64 97.26 97.39 90.46 94.96 97.39
S 300 207 69.00 1.28 3.93 5.21 97.26 97.53 89.26 94.96 97.53
S 350 240 68.57 1.53 4.61 6.14 97.26 97.26 89.77 94.96 97.26
S 400 273 68.25 1.54 4.65 6.19 97.26 97.39 87.98 94.96 97.39
S 450 307 68.22 1.70 5.42 7.12 97.26 96.86 88.96 94.96 97.26
S 500 340 68.00 1.77 5.51 7.28 97.26 96.44 90.07 94.96 97.26
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algorithm is significant for a confidence of =p 0.1 (Table 5).
There is also a significant decrease in the time required to vectorize the datasets of typeCMS andACIXMSU . It also happens

that in this case the results are improved as the number of operators used to generate the sets of class expressions increases. In fact,
classifiers that use datasets of typeS do not achieve the same accuracy as classifiers using the datasets of type ACIXMSU even
after generating five hundred class expressions from the dataset. In contrast, it should also be noted that only 9.12 s are required to
process those five hundred class expressions, whereas for the dataset of type ,CMS it takes more than three minutes to process two
hundred of them.

Table 6 shows the results obtained by the classifiers for the activity “Clean” in [15]. The classifiers constructed using the classical
approach yields a precision of 98.41% for the best case. In spite of being a very high value, some of the classifiers created with the
approach proposed in this work slightly surpassed that value. In fact, the same accuracy (98.81%) is obtained for the three different
types of datasets generated. Two hundred of them are needed at least to obtain such precision value for the datasets that contain more
complex expressions. Only one hundred and fifty class expressions are needed for the dataset that only contains expression generated
using the existential quantifier. No statistical significance has been found in this case, mainly due to the high precision value that is
taken as reference.

On the other hand, it is worth noting the significant difference with respect to the time used by the classifiers depending on the set
of operators used to generate the datasets. The classifier that uses datasets of typeCMS requires 2.27 s to generate two hundred class
expressions, while the classifier that uses datasets of type S requires the same time to generate double the amount of class

Table 5
“Snack (b)” classification performance.

Dataset F *F % Expand Vectorize Total C4.5 SMO VP DT Best

Classic 10 10 100.00 91.96 90.13 90.20 90.61 91.96
ACIXMSU 50 41 82.00 1.21 45.64 46.85 94.25 94.38 90.47 90.47 94.38
ACIXMSU 100 83 83.00 10.16 125.86 136.02 94.25 93.98 90.67 90.47 94.25
ACIXMSU 150 129 86.00 27.99 171.33 199.32 94.66 93.84 90.40 90.47 94.66
ACIXMSU 200 173 86.50 48.59 206.37 254.96 94.66 93.64 90.47 90.47 94.66
CMS 50 41 82.00 0.81 49.73 50.54 94.25 93.91 90.47 90.53 94.25
CMS 100 82 82.00 0.97 138.28 139.25 93.71 93.64 90.40 91.88 93.71
CMS 150 115 76.67 1.13 358.95 360.08 93.71 93.64 90.74 92.15 93.71
CMS 200 154 77.00 1.27 689.71 690.98 94.25 94.38 90.47 90.47 94.38
S 50 42 84.00 0.77 2.00 2.77 91.21 90.39 90.27 90.20 91.21
S 100 70 70.00 0.86 2.38 3.24 90.67 89.79 90.27 89.45 90.67
S 150 100 66.67 0.98 3.69 4.67 89.93 89.92 90.27 89.92 90.27
S 200 131 65.50 1.02 4.21 5.23 89.79 91.41 89.93 89.52 91.41
S 250 162 64.80 1.25 4.73 5.98 89.59 91.28 90.40 89.39 91.28
S 300 188 62.67 1.32 5.06 6.38 91.95 91.95 90.27 91.27 91.95
S 350 218 62.29 1.34 5.79 7.13 91.95 91.81 90.47 91.07 91.95
S 400 247 61.75 1.46 6.79 8.25 91.88 91.88 90.40 91.20 91.88
S 450 278 61.78 1.50 7.05 8.55 91.88 91.95 90.47 91.47 91.95
S 500 312 62.40 1.80 7.32 9.12 93.84 92.76 90.40 92.96 93.84

Table 6
“Clean” classification performance.

Dataset F *F % Expand Vectorize Total C4.5 SMO VP DT Best

Classic 45 45 100.00 96.03 98.41 96.81 96.83 98.41
ACIXMSU 50 37 74.00 5.97 42.30 48.27 94.79 97.62 90.82 94.79 97.62
ACIXMSU 100 72 72.00 9.01 100.50 109.51 97.01 96.80 92.98 97.22 97.22
ACIXMSU 150 110 73.33 11.85 201.75 213.60 97.22 97.19 91.84 96.42 97.22
ACIXMSU 200 141 70.50 14.29 986.49 1000.78 97.22 98.81 91.64 95.22 98.81
CMS 50 37 74.00 1.52 42.94 44.46 94.79 97.62 90.82 94.79 97.62
CMS 100 72 72.00 1.84 98.18 100.02 97.01 96.80 92.98 97.22 97.22
CMS 150 110 73.33 1.97 195.32 197.29 97.22 97.19 91.84 96.42 97.22
CMS 200 141 70.50 2.27 990.35 992.62 97.22 98.81 91.64 95.22 98.81
S 50 33 66.00 1.32 3.43 4.75 94.39 97.18 95.43 93.42 97.18
S 100 69 69.00 1.43 5.77 7.20 96.00 96.61 95.22 94.00 96.61
S 150 93 62.00 1.67 7.17 8.84 95.82 98.81 96.81 96.20 98.81
S 200 121 60.50 1.76 8.94 10.70 95.82 97.99 97.40 96.20 97.99
S 250 151 60.40 2.02 10.56 12.58 95.82 98.20 97.21 96.20 98.20
S 300 183 61.00 2.12 12.04 14.16 95.82 97.78 96.97 96.20 97.78
S 350 212 60.57 2.20 13.14 15.34 95.82 97.59 96.79 96.20 97.59
S 400 240 60.00 2.31 15.31 17.62 95.82 98.20 96.21 96.20 98.20
S 450 274 60.89 2.61 16.66 19.27 95.82 98.20 97.22 96.20 98.20
S 500 305 61.00 2.75 17.87 20.62 95.82 97.99 96.81 96.20 97.99
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descriptions. In order to generate the same number of class expressions, the classifier that uses datasets of typeACXMSU requires
14.29 s, a value six times higher. The difference becomes much more noticeable when evaluating the time spent in the process of
vectorization. The classifier that only uses the existential quantifier to generate class expressions only takes 17.87 s to evaluate five
hundred class expressions, whereas the other kind of classifiers take more than fifteen minutes to evaluate two hundred class ex-
pressions.

The same behavior is observed for the activity “Toileting (a)” (Table 7) from the dataset in [16]. The only notable difference is the
significant decrease in the time needed to process the datasets, which is mainly due to the difference in size of the datasets. The
ontology produced by the transformation of the dataset in [15] contains 17,427 logical axioms and 5676 individuals, whereas the
ontology produced by transformation of the first dataset in [16] contains only 1602 logical axioms and 613 individuals. Only in the
case of datasets of type ACIXMSU more than a minute is required to process them. In the worst case, the optimum value is
reached at 13.40 s. In the best case, only 1.41 s and fifty class expressions are required to reach the optimal value (S ).

Regarding the accuracy of the classifiers with respect to the set of operators used in this experiment, it is noteworthy that there is
no significant difference. The best values are sometimes obtained for the classifiers using datasets of type ,ACIXMSU sometimes
using the datasets of type CMS and sometimes using the dataset of type S . However, there is a significant difference in the time
required to generate and evaluate the class descriptions in the different datasets. In the activities selected for the analysis in detail
these times vary between the 1514.60 s needed to generate two hundred class expressions for the dataset of type CMS and the
10.70 s required for the typeS . In the case of the datasets of typesACXMSU andCMS class expressions such as “hasItem min 2
Hall-Bedroom_door_set” are generated, for example, representing those activities in which the Hall-Bedroom_door sensor is activated at
least twice during the activity. In spite of the apparent simplicity of this class expression, the time required by the reasoner to
determine the activities represented by that class expression is very high. All activities that include cardinality constraints require a
long period of time to be evaluated. The classifiers that use datasets of typeCMS produces more class expressions with cardinality
constraints, so they take more time than the classifiers that use other types of dataset.

The class expressions generated by the classifiers using datasets of typeS include, for instance, expressions such as “hasItem some
(isFollowedBy some Hall-Toilet_door_set)” or “startsWith some (hasNext some Hall-Bathroom_door_set)”, which represent activities in
which a sensor is fired before the Hall-Toilet_door sensor and activities in which the sensor Hall-Bathroom_door is the second sensor to
be fired, respectively. It is worth mentioning that the class expression “hasItem min 2 Hall-Bedroom_door_set” is equivalent to the
expression “hasItem some (Hall-Bedroom_door_set and (isFollowedBy some Hall-Bedroom_door_set))” but the latter requires much less
time to be computed than the former.

Regarding the type of classifiers used, after this first analysis it can be verified that in general the best results are obtained for
classifiers of type C4.5 and SMO. Classifiers of type VP and DT only obtain the best results in very few cases. Anyway, one of the
advantages offered by the system proposed in this work is the possibility of identifying the relevant features for the classifiers.
However, the VP classifier is the only classifier of the four employed in the test that does not allow the identification of these features,
because it is a ‘black box’ classifier.

Table 8 summarizes the best accuracy obtained for the classifiers generated for all the activities in the datasets. The third column
shows the accuracy of the best classifier that uses a classic approach. The fourth column shows the accuracy of the best classifier that
uses the proposed approach. The difference between those values is shown in the sixth column and, finally, the last column indicates
the percentage of gain achieved by the classifier with respect to the maximum possible gain. As can be seen, the classifiers based on
the proposal presented in this paper always improve or, in the worst case, match the accuracy obtained by the classifiers using the
classic approach. The average classification accuracy for the classifiers using the classic approach is 98.08. The average classification

Table 7
“Toileting (a)” classification performance.

Dataset F *F % Expand Vectorize Total C4.5 SMO VP DT Best

Classic 12 12 100.00 94.33 93.93 86.95 89.49 94.33
ACIXMSU 50 37 74.00 1.37 1.53 2.90 86.56 90.99 84.56 86.70 90.99
ACIXMSU 100 77 77.00 10.53 2.87 13.40 94.76 94.36 87.08 94.49 94.76
ACIXMSU 150 117 78.00 35.02 4.51 39.53 94.76 94.36 88.44 94.76 94.76
ACIXMSU 200 159 79.50 72.06 5.64 77.70 94.76 94.36 88.97 94.76 94.76
CMS 50 37 74.00 0.61 1.46 2.07 86.56 90.99 84.56 86.70 90.99
CMS 100 71 71.00 0.82 4.98 5.80 94.76 94.22 87.24 94.76 94.76
CMS 150 107 71.33 0.99 10.59 11.58 94.76 94.22 87.09 94.76 94.76
CMS 200 143 71.50 1.21 22.20 23.41 94.76 94.22 86.83 94.76 94.76
S 50 45 90.00 0.58 0.83 1.41 94.76 94.76 89.01 94.62 94.76
S 100 70 70.00 0.69 1.06 1.75 94.76 94.36 85.35 94.62 94.76
S 150 99 66.00 0.80 1.40 2.20 94.76 94.36 84.13 94.76 94.76
S 200 127 63.50 0.90 1.48 2.38 94.76 94.36 83.19 94.76 94.76
S 250 156 62.40 0.98 1.67 2.65 94.76 94.36 81.99 94.76 94.76
S 300 166 55.33 1.19 1.96 3.15 94.76 94.36 82.27 94.76 94.76
S 350 185 52.86 1.28 2.10 3.38 94.76 94.36 82.13 94.76 94.76
S 400 196 49.00 1.42 2.34 3.76 94.76 94.36 82.13 94.76 94.76
S 450 212 47.11 1.45 2.38 3.83 94.76 94.36 82.13 94.76 94.76
S 500 234 46.80 1.58 2.63 4.21 94.76 94.36 82.13 94.76 94.76
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accuracy for the classifiers using the proposed approach is 98.87. This mean that the classifiers using the proposed approach have
trimmed down the difference with respect to the perfect classifiers a 41.18%.

As pointed out in Section 2.3, CEL is the most similar technique to our proposal. We have conducted a small experiment to test it
with three activities of the Ordoñez (b) dataset. The prediction accuracies reported by the DL-Learner application,2 have been
95.74%, 97.57% and 95.54% for the “Snack”, “Breakfast” and “Grooming” activities, respectively. Apparently, the CEL approach
performs slightly better than our proposal for two of the three activities. However, it should be noted that DL-Learner makes use of its
own approximate incomplete reasoning procedure for Fast Instance Checks which partially follows a closed world assumption. This
means that the results produced by the DL-Learner application are not the same as those provided by reasoners that complies with the
OWL standard, so the produced class expressions only make sense in the context of the DL-Learner application. As an example, the
following class expression is the one that DL-Learner found to be the best description for the “Breakfast” activity.

hasItem min Fridgeset or Microwaveset or Door Kitchenset and
isFollowedBy only not Door Livingset

4 ( (
( ( ( )))))

However, when the expression is evaluated by the HermiT reasoner,3 only four instances are found for the activity, two of them
being incorrectly classified. No instances were found for the “Snack” activity.

6. Conclusion and future works

This paper has been focused on a new methodology that uses ontology for the purpose of sensor-based activity recognition with
DDA in order to increase the accuracy in the classification process. To do so, the set of feature vectors computed by the dataset are
extended with the asserted and the inferred knowledge from the ontology that describe the dataset itself. An evaluation has been
carried out with the following four popular classifiers: C4.5, Sequential Minimal Optimization, Voted perceptron and Decision Table.

Table 8
Global classification accuracy.

Dataset Activity Classic Proposal Gain % Gain

Singla Answer the phone 99.40 99.41 0.01 1.67
Singla Choose outfit 100.00 100.00 0.00
Singla Clean 98.41 98.81 0.40 25.16
Singla Fill medication 100.00 100.00 0.00
Singla Prepare birthday card 99.40 100.00 0.60 100.00
Singla Prepare soup 100.00 100.00 0.00
Singla Watch DVD 100.00 100.00 0.00
Singla Water plants 99.41 99.39 −0.02 −3.39
Kasteren Get drink 98.91 99.59 0.68 62.39
Kasteren Go to bed 94.67 99.06 4.39 82.36
Kasteren Leave house 100.00 100.00 0.00
Kasteren Prepare breakfast 97.00 98.50 1.50 50.00
Kasteren Prepare dinner 97.68 99.60 1.92 82.76
Kasteren Take shower 97.96 99.59 1.63 79.90
Kasteren Use toilet 91.97 97.67 5.70 70.98
Ordoñez (a) Breakfast 99.59 99.59 0.00 0.00
Ordoñez (a) Dinner 100.00 100.00 0.00
Ordoñez (a) Grooming 95.98 96.64 0.66 16.42
Ordoñez (a) Leaving 99.59 100.00 0.41 100.00
Ordoñez (a) Lunch 100.00 100.00 0.00
Ordoñez (a) Showering 100.00 100.00 0.00
Ordoñez (a) Sleeping 100.00 100.00 0.00
Ordoñez (a) Snack 100.00 100.00 0.00
Ordoñez (a) Spare time TV 97.58 98.98 1.40 57.85
Ordoñez (a) Toileting 94.33 94.76 0.43 7.58
Ordoñez (b) Breakfast 95.34 97.50 2.16 46.35
Ordoñez (b) Dinner 97.77 97.97 0.20 8.97
Ordoñez (b) Grooming 95.39 97.30 1.91 41.43
Ordoñez (b) Leaving 99.53 99.80 0.27 57.45
Ordoñez (b) Lunch 97.37 98.11 0.74 28.14
Ordoñez (b) Showering 100.00 100.00 0.00
Ordoñez (b) Sleeping 99.39 99.39 0.00 0.00
Ordoñez (b) Snack 91.96 94.66 2.70 33.58
Ordoñez (b) Spare time TV 95.74 95.75 0.01 0.23
Ordoñez (b) Toileting 98.39 98.38 −0.01 −0.62
Average 98.08 98.87 0.79 41.18

2 http://dl-learner.org.
3 http://www.hermit-reasoner.com.
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Results from the evaluation demonstrated the ability of the ontology to extend the vector features to provide an increase of the
performance in all evaluated classifiers.

However, there is still room for the improvement of the proposal presented in this paper. On the one hand, the number of features
to consider grows exponentially with every expansion process. This degrades the performance of the methodology. To overcome this
situation, an heuristic that restricts the number of features generated may be useful.

On the other hand, many of the related works employ external knowledge in order to generate new features. Thanks to the
modular design of OWL, which greatly facilitates the interconnection among ontologies, it should not be so difficult to integrate
information coming from external data sources into the dataset, once expressed in form of ontology. Our future work is also focused
on developing an ontology that describes the environments of the ADL experiments and help us to interconnect the datasets with
general purpose knowledge bases.

Finally, the methodology proposed in this paper is general enough to be easily applied to any other domain. The conversion of the
dataset in form of ontology is actually the most difficult part, because the rest of the tasks are independent of the problem domain.
Our next objective is to apply this methodology in the field of text mining.
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