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Abstract

This paper deals with the application of adaptive signal models for representing transients and sinusoids at the same

stage in a parametric audio coder. To accomplish such a goal, we search for sparse approximations by means of

matching pursuit with a mixed dictionary, instead of using two different dictionaries that operate in cascade. In such

sense, complex exponentials and wavelet packets are chosen for modeling the tonal and transient features of an audio

signal, respectively. At each iteration of the pursuit, the mixed dictionary function that extracts the most energy from

the residue is selected. This function will be either a complex exponential or a wavelet packet, depending on the

characteristics of the residue at that iteration. Experimental results clearly show the objective (compression rate) and

subjective (% preference) advantages of the mixed dictionary over two cascaded dictionaries. The approach proposed in

this paper is successfully applied for parametric audio coding purposes, assuring better perceptual audio quality than

MPEG2/4-AAC at 16Kbits/s for most of the CD-quality one channel audio signals considered for testing.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Parametric or model-based coding of audio
signals has become a popular tool for representing
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audio signals at very low bit rates [1–9]. All signal
models assume an underlying structure to the
signal in question. A wide range of audio signals
intuitively fit into the three-part model of sines,
transients and noise. Transients usually describe
drum hits and sudden starts of many instruments,
sines describe signal components that have
a distinct tonality, and noise often describes the
d.
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rest of the signal that is neither sinusoidal
nor transient. This model consists of three parts
that work together and complement each other
to form a complete and robust signal model,
which makes highly optimized audio com-
pression schemes possible (STN model-based
audio coders).

Several approaches have been adopted in
literature concerning the order in which the
sinusoidal and transient models are applied. In
all approaches, the noise model makes use of the
residual resulting from the sinusoidal and transient
models. In the coder of Levine and Smith [3],
transform coding was utilized to encode the
complete signal when a transient occurred, while
during non-transient intervals the sinusoidal and
noise models were applied in cascade [3]. In HILN
[5], a pre-analysis step is performed to detect
transients and determine the amplitude envelope
of the audio signal in the frame. The presence of a
transient is signaled to the sinusoidal model, which
then analyzes the audio signal over a short frame.
In the coder of Ali [1], the sinusoidal, transient,
and noise models are applied in cascade. After
sinusoidal coding, the sinusoidal component is
subtracted from the audio signal, resulting in a
first residual, which is then used as input to the
transient coder. The transient component is
subtracted from the first residual, resulting in a
second residual, which is then coded by the noise
coder.

In contrast to the coder of Ali, recent STN
model-based audio coders [6–9] apply sinusoidal
coding after transient coding, followed by noise
coding. The reasoning behind this approach is that
sinusoids are suitable functions for modeling the
tonal, quasi stationary aspects of an audio signal.
The presence of transients disturbs the stationarity
of the audio signal, thus complicating the task of
the sinusoidal model (i.e. if a sinusoidal model
represents a signal onset, the attack becomes
smeared in time, resulting in a pre-echo). By
removing transients from the audio signal prior to
sinusoidal modeling, this problem is avoided. This
approach provides good quality audio coding at
low bit rates (about 24Kbits/s per channel) for
most audio excerpts. Nevertheless, it has two main
drawbacks:
�
 Since transients and sinusoids are modeled in
cascade (first, transients, and then, sinusoids),
mismatching problems can appear if the two
components are not properly separated when a
signal onset is detected. The problem of
separating transients from sinusoids in transient
intervals must be appropriately posed.

�
 Transient detection tools very often fail to

detect micro-transients [3], which would not be
properly represented if transients and sinusoids
are modeled in cascade.

At the sight of these problems, we propose
modeling transients and sinusoids at the same
stage of the encoder. To accomplish such a goal,
we search for sparse approximations by means of
matching pursuit with a mixed dictionary. The
dictionary must be defined from two types of
functions: (1) functions that match well to sharp
transitions in the signal; (2) functions that
represent the tonal, quasi stationary aspects of
an audio signal. In such sense, complex exponen-
tials and wavelets are chosen for modeling the
tonal and transient features of an audio signal,
respectively. At each iteration of the pursuit, the
dictionary element that extracts the most energy
from the residue is selected. Depending on the
characteristics of the residue at that iteration, this
function will be either a complex exponential or a
wavelet.
The use of a mixed dictionary composed of

complex exponentials and wavelets not only
provides an efficient representation of the audio
signal, but also a better subjective quality of the
decoded audio signals, as will be assessed in the
experimental results.
2. Sparse approximations

2.1. Principles of atomic modeling

Atomic signal representations have been of
ongoing interest due to their profitable properties
in order to obtain compact time–frequency
decompositions. The fundamental notion of atom-
ic modeling is that a signal can be decomposed
into elementary waveforms (atoms). The set of
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possible atoms is known as dictionary and is
chosen to be adapted to the time–frequency
behavior of the signal [10].

Let H be a Hilbert space. The dictionary D is
then defined as a family of functions D ¼ fgi; i ¼

0; 1; . . . ;Mg in H, such as kgik ¼ 1;8i, where M is
the dictionary number of functions. The dictionary
is overcomplete if M4N, where N is the signal
length. A signal model of the form

x �
XM
i¼1

aigi (1)

constitutes a sparse approximation when aia0
only for a low number of K values (K5M).

A signal can be approximated with few atoms
when an overcomplete set of atoms adapted to the
time–frequency behavior of the signal is defined.
However, the price to pay for overcompleteness is
an increase in both the complexity and the
‘‘overhead’’ cost to encode the indexes of retained
coefficients.

There is a wide variety of approaches for
deriving overcomplete signal expansions, which
differ on the method of selecting atoms from the
dictionary. Such approaches can be roughly
grouped into two categories: (a) parallel methods,
such as the method of frames, basis pursuit [11],
and FOCUSS [12], in which computation of the
various expansion components is coupled; (b)
sequential methods, such as matching pursuit [13]
and its variations, in which models are computed
one component at a time and derive sparse
approximate solutions according to sub-optimal
criteria.

Since sparse approximate solutions are of
interest for compact signal modeling, we have
chosen matching pursuit for deriving overcomplete
signal expansions in the proposed audio compres-
sion scheme.
2.2. Matching pursuit

Matching pursuit was introduced by Mallat
and Zhang [13]. The problem of choosing
K functions gi that best approximate the analyzed
signal x is computationally very complex [14].
Matching pursuit is an iterative algorithm
that offers suboptimal solutions for decom-
posing a signal x in terms of unit-norm expansion
functions gi chosen from an overcomplete
dictionary D, where the l2 norm is used as
the approximation metric. When a well-
designed dictionary is used in matching pursuit,
compact adaptive signal decompositions are
achieved.
At the first iteration, the function (or atom) gi

which gives the highest inner product with the
analyzed signal x is chosen. The contribution of
this function is then subtracted from the signal and
the process is repeated on the residual. At the mth
iteration, it follows:

rmþ1 ¼ rm � aiðmÞgiðmÞ mX1, (2)

where aiðmÞ is the weight associated to the optimum
atom giðmÞ at the mth iteration and r1 is initialized
to x.
Computing the orthogonal projections of rm

on elements gi 2 D, the weight associated to each
dictionary element at the mth iteration is com-
puted as

am
i ¼ hr

m; gii. (3)

The optimum atom giðmÞ at the mth iteration is
obtained by minimizing residual energy:

giðmÞ ¼ argmin
gi2D
krmþ1k2 ¼ argmax

gi2D
jam

i j. (4)

The computation of correlations hrm; gii for all
vectors gi at each iteration implies a high
computational effort, which can be substantially
reduced using an updating procedure derived from
(2). The correlation updating procedure is per-
formed as follows [13]:

hrmþ1; gii ¼ hr
m; gii � aiðmÞhgiðmÞ; gii. (5)

Correlations hgiðmÞ; gii can be pre-calculated and
stored, once the overcomplete set D has been
determined. Therefore, it is only necessary to
compute once the correlations with the explicit
formula, at the first iteration.



ARTICLE IN PRESS

P. Vera-Candeas et al. / Signal Processing 86 (2006) 432–443 435
3. Matching pursuit with a mixed dictionary based

on sines þ wavelets

The operation of matching pursuit with a mixed
dictionary composed of sinusoids and wavelets is
described in this section. The mixed dictionaryD is
obtained by merging a dictionary of complex
exponentials De with a dictionary of wavelets Dw

(D ¼ De [Dw). Let us denote ei and wi

the elements of the two merged dictionaries,
respectively.

At each iteration, the algorithm can choose
either a complex exponential or a wavelet func-
tion, and the update procedure depends on what
type of function has been chosen. The algorithm
will choose the function which extracts the highest
amount of energy from the current residue.
3.1. Principles of the wavelet packet decomposition

Here, we are going to discuss some properties
of the wavelet packet (WP) decomposition, which
our wavelet-based dictionary Dw is derived
from. First of all, we restrict the wavelet-based
dictionary to orthonormal wavelets in order
to speed up the correlation updating procedure,
as can be seen later. The dictionary Dw is made
up of those functions which give rise to the
P-depth full wavelet packet decomposition.
Note that Mw ¼ P �N is the size of the dictionary
Dw. The inner products of the signal with the
wavelet-based atoms in set Dw lead to all the
wavelet coefficients that can be considered in
the P-depth full WP tree. These coefficients can
be identified using three indexes, fs; p; kg, which
indicate the subband at a given decomposition
depth, the decomposition depth and the delay,
respectively. The wavelet-based atoms can be
expressed as follows:

wfs;p;kg½n� ¼ wfs;pg½n� 2pk�. (6)

Sequence wfs;pg½n� is the time-domain version
of W fs;pgðzÞ, which can be built directly from
G0ðzÞ and G1ðzÞ, the transfer functions of the
low pass and high pass synthesis filters, respec-
tively. These filters implement the inverse
WP transform. Therefore, the function W fs;pgðzÞ
can be expressed as follows:

W fs;pgðzÞ ¼
Yp�1
d¼0

G
ððbs=2dcÞÞ2

ðz2
d

Þ, (7)

where ððlÞÞL denotes (l moduloL).
The only required correlations to implement

matching pursuits are hx;wfs;p;kgi and
hwfs1;p1;k1g;wfs2;p2;k2gi, according to expression (5).
The first ones are obtained from the WP transform
of x½n�. Instead, cross-correlations between atoms,
which must be pre-calculated and stored, are
computed taking into account that only atoms
with heritage relation (s2 ¼ bs1=ð2

p1�p2 Þc) have to
be considered when wavelet-based dictionaries
built from orthonormal wavelets are used. The
cross-correlations result in [15]

hwfs1;p1;k1g½n�;wfs2;p2;k2g½n�i

¼

d½k2 � k1� s1 ¼ s2; p1 ¼ p2;

0 s2a
s1

2p1�p2

j k
;

wfs;pg½k2 � 2pk1� s2 ¼
s1

2p1�p2

j k
;

8>>>>><
>>>>>:

ð8Þ

where p1Xp2 is supposed, p ¼ p1 � p2 and
s ¼ ððs1ÞÞ2p . Therefore, according to (8), the
iterative procedure to update correlations requires
impulsive responses of the synthesis WP tree
branches to be stored.
3.2. Properties of complex exponentials

Using a dictionary of complex exponentials De,
only the frequency of each exponential function
must be determined, which involves a significant
reduction of the dictionary size [16]. As stated
below, the projection onto the selected complex
exponential contains the information of the
phase. Furthermore, each sinusoidal function is a
linear combination of two conjugated complex
exponentials.
The functions that belong to the considered set

can be expressed as follows:

ei½n� ¼
1ffiffiffiffiffi
N
p ejð2pi=2LÞn; i ¼ 0; . . . ;L� 1

n ¼ 0; . . . ;N � 1. ð9Þ
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The constant 1=
ffiffiffiffiffi
N
p

is selected to obtain unit-
norm functions, N is the length of the analysis
frame, and Me ¼ L the number of frequencies
within the dictionary.

Due to the complex nature of these atoms, the
residual at each iteration of the pursuit is
calculated according to (10)

rmþ1 ¼ rm � aiðmÞeiðmÞ � a�iðmÞe
�
iðmÞ

¼ rm � 2RefaiðmÞeiðmÞg. ð10Þ

Now, a conjugate sub-space is searched at each
iteration of the algorithm [10], which does not
change the principles of the algorithm, so that the
atom which minimizes the residual energy is
chosen at each iteration. The correlation update
between the atoms ei 2 De and the residue at each
iteration is performed as follows:

hrmþ1; eii ¼ hr
m; eii � aiðmÞheiðmÞ; eii � a�iðmÞhe

�
iðmÞ; eii.

(11)

Owing to the nature of the atoms ei 2 De

(complex exponentials), the correlations required
to implement matching pursuit can be efficiently
computed by applying the fast Fourier transform
(FFT). Thus, the initial correlations between the
signal x and the atoms ei 2 De are expressed as

hx; eii ¼
1ffiffiffiffiffi
N
p

XN�1
n¼0

x½n�e�jð2pi=2LÞn ¼
1ffiffiffiffiffi
N
p X ½i�, (12)

where X ½i� is the 2L-length DFT of the input signal
x½n�, and L4N in order to assemble an over-
complete dictionary. Note that X ½i� has complex
nature, which implies both amplitude and phase
information are included in this value. The initial
correlations in (12) can be computed by applying
the FFT algorithm, which implies that the signal
x½n�must be zero-padded for implementing the 2L-
length FFT.

Likewise, the cross-correlations between atoms
ei 2 De can be expressed as

heiðmÞ; eii ¼
1

N

XN�1
n¼0

e�jð2pði�iðmÞÞ=2LÞn

¼
1

N
U ½ðði � iðmÞÞÞ2L�, ð13Þ
he�iðmÞ; eii ¼
1

N

XN�1
n¼0

e�jð2pðiþiðmÞÞ=2LÞn

¼
1

N
U ½ðði þ iðmÞÞÞ2L�, ð14Þ

where UðiÞ is the 2L-length DFT of the unit
function u½n�. From (13) and (14), it is deduced
that the cross-correlations between atoms ei 2 De

can also be calculated using the FFT algorithm. In
this case, the 2L-length FFT is applied to the unit
function u½n�. This transform can be pre-computed
and memory-stored for achieving a fast correlation
updating.
Therefore, the use of matching pursuits with a

dictionary composed of complex exponentials
involves: (1) The initial correlations, that can be
obtained by a 2L-length FFT; (2) The cross-
correlations between atoms, that only require a
2L-length vector to be memory-stored.

3.3. Implementation of matching pursuit with the

mixed dictionary

When dealing with a mixed dictionary com-
posed of complex exponentials and wavelets
(D ¼ De [Dw), matching pursuit must compute
the weights fam

i ;a
m
fs;p;kgg corresponding to all

dictionary elements fei;wfs;p;kgg at each iteration.
At the first iteration, these weights are the
correlations between the input signal and all the
dictionary elements. The weights are computed by
the Fourier transform or the wavelet packet
transform, depending on whether they correspond
to complex exponential or wavelet functions,
respectively. Once the weights have been calcu-
lated, the algorithm chooses the optimum atom
(the one that minimizes the residual energy), which
can be either a complex exponential or a wavelet
function.
Next, the correlation updating procedure must

be implemented, which implies that the cross-
correlations between atoms must be pre-computed
and stored in advance. We have already presented
cross-correlations between atoms of the same
nature. Now, a detailed discussion is necessary
about cross-correlations between complex expo-
nentials and wavelets. The computation of corre-
lations between atoms of different nature depends
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on the type of atom selected at each iteration,
giving rise to two different situations.

3.3.1. Correlation between a complex exponential

and a wavelet function when the complex

exponential is chosen

In this case, although the optimum atom is
complex, the function subtracted from the signal is
real, as can be seen in Eq. (10). The correlation
updating procedure has to pre-compute the cross-
correlations between the optimum atom eiðmÞ and
all the wavelet functions wfs;p;kg 2 Dw, and is
implemented following the scheme of expression
(11). This computation can be expressed by the
DFT due to the nature of complex exponentials:

heiðmÞ½n�;wfs;p;kg½n�i ¼
XN�1
n¼0

1ffiffiffiffiffi
N
p ejð2piðmÞ=2LÞnwfs;p;kg½n�

¼
1ffiffiffiffiffi
N
p W n

fs;p;kg½iðmÞ�, ð15Þ

where W fs;p;kg½iðmÞ� is the value of the 2L-length
DFT of wfs;p;kg½n� at the normalized frequency
iðmÞ=2L. Therefore, the 2L-length DFT of each
wavelet function wfs;p;kg½n� has to be memory-
stored for the correlation updating procedure.
Since the size of the wavelet-based dictionaryDw is
Mw ¼ N � P, the number of 2L-length DFT that
must be memory-stored is N � P.

However, we can save memory by taking into
account wfs;p;kg½n� ¼ wfs;pg½n� 2pk�, which involves
storing only the 2L-length DFT of wfs;pg½n�. The
number of 2L-length DFT to be stored is now
reduced to 2Pþ1 � 2. The remaining correlations
can be computed using the time-delay properties
of the DFT:

heiðmÞ½n�;wfs;pg½n� 2pk�i

¼
1ffiffiffiffiffi
N
p

XN�1
n¼0

ejð2piðmÞ=2LÞnwfs;pg½n� 2pk�

¼
1ffiffiffiffiffi
N
p ejð2piðmÞ=2LÞ2pk

�
XN�1�2pk

l¼0

ejð2piðmÞ=2LÞlwfs;pg½l�, ð16Þ

where l ¼ n� 2pk, and wfs;pg½l� ¼ 0; 8lo0, is
considered. The last result can be related with
the 2L-length DFT of wfs;pg½n� as follows:

heiðmÞ½n�;wfs;pg½n� 2pk�i

¼
1ffiffiffiffiffi
N
p ejð2piðmÞ=2LÞ2pkðW n

fs;pg½iðmÞ�

�
XN�1

l¼N�2pk

ejð2piðmÞ=2LÞl wfs;pg½l�Þ, ð17Þ

where W fs;pg½iðmÞ� is the value of the 2L-length
DFT of wfs;pg½n� at the normalized frequency
iðmÞ=2L. The algebraic sum in (17) must be
computed for all k values, and it can be calculated
by a complex digital filter. If this term is computed
for consecutive values of k, additional complexity
reduction can be obtained, resulting in N � 2p

complex multiplications for all k values. Addition-
ally, the first exponential in the same expression
represents a complex multiplication each 2p

samples. Summarizing, the number of multiplica-
tions to compute (17) is N � 2p þN=2p for each
wavelet function wfs;pg½n�. However, note that
functions wfs;pg½n� are time-localized in such a
way that they have many zero values, which
implies a computational cost reduction.
As a conclusion, when a complex exponential is

chosen the updating procedure needs: (1) to store
the 2L-length DFT of each wavelet function
wfs;pg½n�, and (2) to compute the effect of the 2pk

delay for each wavelet function
ðwfs;p;kg½n� ¼ wfs;pg½n� 2pk�Þ.

3.3.2. Correlation between a complex exponential

and a wavelet function when the wavelet function is

chosen

The optimum atom is now wfs;p;kgðmÞ and we
intend to compute the cross-correlation between
this function and all atoms ei 2 De:

hwfs;p;kgðmÞ½n�; ei½n�i ¼
1ffiffiffiffiffi
N
p

XN�1
n¼0

wfs;p;kgðmÞ½n�e
�jð2pi=2LÞn

¼
1ffiffiffiffiffi
N
p W fs;p;kgðmÞ½i�, ð18Þ

where W fs;p;kgðmÞ½i� is the value of the 2L-length
DFT of wfs;p;kg½n� at the normalized frequency
i=2L. In this case, the 2L-length DFT of each
wavelet function wfs;p;kg½n� has to be memory-
stored for implementing the correlation updating
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procedure. As in the case of subsection 3.3.1, the
memory requirements can be reduced by applying
wfs;p;kg½n� ¼ wfs;pg½n� 2pk�. In this way, the correla-
tion in (18) can be simplified as

hwfs;p;kgðmÞ½n�; ei½n�i

¼
1ffiffiffiffiffi
N
p e�jð2pi=2LÞ2pkðmÞ

�
XN�1�2pkðmÞ

l¼0

wfs;pgðmÞ½l�e
�jð2pi=2LÞl

¼
1ffiffiffiffiffi
N
p e�jð2pi=2LÞ2pkðmÞðW fs;pgðmÞ½i�

�
XN�1

l¼N�2pkðmÞ

wfs;pgðmÞ½l�e
�jð2pi=2LÞlÞ, ð19Þ

where W fs;pgðmÞ½i� is the value of the 2L-length DFT
of wfs;pgðmÞ½n� at the normalized frequency i=2L, l ¼

n� 2pk and wfs;pg½l� ¼ 0; 8lo0, is considered. The
problem of computing the last sum in (19) is now
different. We must calculate this term for i ¼

0; . . . ;L� 1 and for the value kðmÞ corresponding
to the chosen wavelet atom. Depending on the
value of kðmÞ, this computation can be optimally
obtained by FFT or complex digital filter-based
methods. Furthermore, note that most of the
functions wfs;pg½n� have zero values from N �

2pkðmÞ to N � 1.
Therefore, when a wavelet function is chosen,

the correlation updating procedure needs: (1)
storing the 2L-length DFT of each wavelet
function wfs;pg½n�, and (2) computing the effect of
the 2pkðmÞ delay for the chosen wavelet function
ðwfs;p;kgðmÞ½n� ¼ wfs;pgðmÞ½n� 2pkðmÞ�Þ.

Finally, when a mixed dictionary composed of
complex exponentials and wavelets (D ¼ De [Dw)
is used, the memory requirements for the correla-
tion updating procedure are:
(1)
 2L-length DFTs of the complex exponentials
ei.
(2)
 Impulsive responses of the synthesis WP tree
branches wfs;pg.
(3)
 2L-length DFTs of the wavelet functions wfs;pg.
The 2L-length DFT and the P-depth WP
transform of the signal x½n� are computed to
initialize the correlations between the input signal
and the dictionary elements. The required number
of multiplications per iteration is due to the
correlation updating procedure of expression (5).
One multiplication per atom is needed to multiply
the weight aiðmÞ corresponding to the optimum
atom by the cross-correlations. Besides, the
proposed implementation requires additional com-
putation to obtain the cross-correlations, which is
detailed as follows:
(1)
 When a complex exponential eiðmÞ is the
optimum atom, the cross-correlation with each
wavelet function wfs;p;kg is computed, according
to Eq. (17), by the DFT of the function wfs;pg.
Therefore, the number of multiplications is
N � 2p þN=2p for each wavelet function wfs;pg.
(2)
 When a wavelet function wfsðmÞ;pðmÞ;kðmÞg is the
optimum atom, the cross-correlation with each
complex exponential ei is computed according
to Eq. (19). Now, the number of multiplica-
tions depends on the delay kðmÞ of the
optimum atom. At the worst case, correspond-
ing to kðmÞ ¼ N � 2pðmÞ, the complexity asso-
ciated to expression (19) is the same than that
of the 2L-length FFT of the optimum atom.
4. Experimental results

We first intend to illustrate the advantages of
the proposed mixed dictionary against two differ-
ent dictionaries that operate in cascade for
matching pursuit-based parametric audio coding.
For comparison purposes, matching pursuit is
performed under three different approaches: (1)
using a single dictionary composed of complex
exponentials and wavelets, (2) cascading a dic-
tionary of complex exponentials followed by
another of wavelets, (3) cascading a dictionary of
wavelets followed by another of complex expo-
nentials.
Two examples are taken for illustrating such

advantages. Fig. 1 shows an audio fragment
where a signal onset appears taken from the
castanet excerpt. As can be seen, the best
discrimination between tonal and transient
features is accomplished by the first approach
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Fig. 1. (a) Audio fragment containing a signal onset taken from the castanet excerpt. (b) Sinusoids and wavelet atoms extracted from

the audio frame by the first approach (mixed dictionary). (c) Sinusoids and wavelet atoms extracted by the second approach (sinusoids

followed of wavelets). (d) Sinusoids and wavelet atoms extracted by the third approach (wavelets followed of sinusoids). (e) Residue

obtained by the mixed dictionary.
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(matching pursuit with the mixed dictionary).
Cascading complex exponentials followed by
wavelets (second approach) gives rise to both
pre-echo and transient smoothing, while cascading
wavelets followed by complex exponentials (third
approach) involves extracting too many transient
components.

The stopping criterion for all cases is the
following: matching pursuit is halted when an
atom extracts from the residue less than 2% of the
total energy of the residue. This value is chosen to
obtain a residue which has stochastic properties, as
can be seen in Fig. 1, because tonal (or transient)
components have to be removed from the residue
in order to avoid artifacts in the synthesized
noise [17].
Fig. 2 shows an audio fragment containing a

micro-transient taken from the glockenspiel ex-
cerpt. The structure of Fig. 2 is similar to that of
Fig. 1. The mixed dictionary obtains again the best
decomposition. The micro-transient synthesized
by the second approach is less sharp than the one
extracted by the first approach. Furthermore, the
third approach does not successfully represent the
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Fig. 2. (a) Audio fragment containing a micro-transient. (b) Sinusoids and wavelet atoms extracted from the audio frame by the first

approach (mixed dictionary). (c) Sinusoids and wavelet atoms extracted by the second approach (sinusoids followed of wavelets). (d)

Sinusoids and wavelet atoms extracted by the third approach (wavelets followed of sinusoids).
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micro-transient because no wavelet function is
extracted from the signal.

Figs. 1 and 2 show two signals containing a
transient and a micro-transient, respectively, and
in these cases the first approach gives the best
results.

To assess the perceptual behavior of matching
pursuit with the mixed dictionary, comparison
with the third approach is proposed, since most of
the STN-based parametric audio coder performs
transient modeling followed by sinusoidal model-
ing. CD-quality one-channel audio and speech
signals taken from the set of excerpts used in the
MPEG standardization activities [18] are chosen
for testing. The analysis/synthesis was done on a
frame-by-frame basis using a 50% overlap 23-ms
Hanning window ðN ¼ 1024Þ. The number of
complex exponentials in De is L ¼ 4096, the
decomposition depth of the WP tree is P ¼ 4,
and 32-coefficients filters that generate orthonor-
mal Daubechies wavelets with maximum number
of vanishing moments are used. The results do not
change significantly by increasing the decomposi-
tion depth or changing the family of the wavelet
filters [15].
We performed a subjective listening test using

the double blind triple stimulus methodology, in
which signal triplets OAB were presented to ten
experienced listeners. Here, O is the original signal;
A and B are the modeled signals using the first and
third approaches, respectively. For each test
signal, A or B were randomly presented three
times to each listener, together with the original.
The listener was asked to indicate which signal
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Table 1

Preference for mixed dictionary-vs-cascaded dictionaries (%)

Excerpt Preference (%)

Suzanne Vega 55

German male speech 60

English female speech 70

Harpsichord 100

Castanets 100

Pitch pipe 52

Bagpipes 46

Glockenspiel 100

Plucked strings 70

Trumpet solo 56

Orchestra piece 60

Contemporary pop 100

All items
Hidden

reference

Anchor LP 3.5
KHz

Codec 16
Kbits/s AAC 16

Kbits/s

0
20
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Fig. 3. MUSHRA listening test results showing mean grade

and 95% confidence interval.
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(A or B) is closer to the original. The results
averaged of all the listeners are shown in Table 1.

Mixed dictionary-based matching pursuit is
usually preferred by listeners for audio signals
with high transient content. In such sense, artifacts
like ‘‘clicks’’ are avoided for audio frames contain-
ing sharp attacks, and pre-echo distortion is
avoided for frames containing micro-transients
due to residue spreading at the time interval where
the micro-transient is located. For nearly steady
audio signals, there is almost no perceptual
difference between the two approaches. The results
in Table 1 come to confirm the comments above.

Next, we intend to reveal the ability of matching
pursuits with a mixed dictionary composed of
complex exponentials and wavelets for audio
compression by integrating this transientþ
sinusoidal joint modeling tool into a parametric
audio coder [8]. The coded information that is sent
to the decoder can be organized as:
�
 Amplitude, phase and frequency for each
sinusoid.

�
 Amplitude, decomposition depth, subband at a

given decomposition depth, and delay for each
wavelet atom.

�
 Temporal and spectral envelopes of the residue

modeled as in [8].

Note that all the information, except amplitudes
and phase, is already quantized when each atom is
selected from the mixed dictionary. Besides,
psychoacoustic principles are taken into account
to quantize the amplitudes [16].
Fig. 3 shows subjective results comparing

MPEG2/4-AAC [19] at 16Kbits/s with the para-
metric audio coder proposed in [8]. Listening tests
employed MUSHRA [20] methodology, including
a hidden reference and a low-pass filtered anchor
with 3.5KHz bandwidth. Ten experienced listeners
conducted the test with the audio material listed in
Table 1, using headphones.
It was found that the parametric audio coder

obtains, on average, better subjective results
than MPEG2/4-AAC at 16Kbits/s. Furthermore,
the parametric audio coder outperformed
MPEG2/4-AAC for all the excerpts, except for
the orchestra piece. Good audio quality is assured
in all cases and is slightly higher in musical signals
than in speech signals.
Finally, Table 2 shows the bit rates obtained

by the parametric audio coder proposed in [8]
when matching pursuit makes use of the proposed
mixed dictionary. The same excerpts listed in
Table 1 are here considered. Table 2 not
only shows the global bit rates, but also the bit
rates corresponding to sinusoids, transients and
noise. The bit rate corresponding to the header is
about 0.1Kbits/s. The overhead information
approximately represents 45% of the global bit
rate, while the remaining 55% corresponds to
quantized values.
From the results in Fig. 3 and Table 2, we

can say that very low bit rate good quality
audio coding is achieved when matching
pursuit with the proposed mixed dictionary is
implemented in a parametric audio coder [8]. Bit
rates close to 16Kbits/s are obtained for all the test
signals.



ARTICLE IN PRESS

Table 2

Bit rates obtained when using the proposed mixed dictionary

Excerpt Bit rates

(Kbits/s)

Sinusoids Transients Noise

Suzanne Vega 16.5 12.1 1.0 3.3

German male

speech

16.7 12.5 0.8 3.3

English female

speech

18.0 13.9 1.0 3.0

Harpsichord 14.6 11.7 0.2 2.6

Castanets 18.6 11.8 4.3 2.4

Pitch pipe 11.9 8.2 0.1 3.5

Bagpipes 13.2 9.2 0.2 3.7

Glockenspiel 6.9 3.8 0.7 2.3

Plucked strings 16.9 13.9 0.1 2.8

Trumpet solo 16.4 13.0 0.4 2.9

Orchestra piece 15.3 12.8 0.2 2.2

Contemporary

pop

18.7 15.6 0.2 2.8
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5. Conclusions

The paper deals with the application of match-
ing pursuit with a mixed dictionary composed of
complex exponentials and wavelets for transientþ
sinusoidal modeling in parametric audio coding, as
an alternative to matching pursuit with two
dictionaries operating in cascade. Using the mixed
dictionary, better subjective quality of the decoded
audio signals is achieved. The price to pay is an
increase of complexity, which does not make real-
time implementation with low–medium cost DSP
platforms possible.

Mixed dictionary-based matching pursuit has
been successfully applied to transientþ sinusoidal
joint modeling of audio signals, showing that
synthesized transients are precisely located at the
part of the audio signal where the energy burst is.
This fact is responsible for the better quality of
signals with transients. Experimental results show
that the proposed signal processing tool can be
incorporated into a parametric audio coder with
very good performance at 16Kbits/s, even better
than MPEG2/4-AAC at the same rate. Good
audio quality is assured for all excerpts.

Audio demonstrations are made available online
by anonymous ftp: ftp://himilce.ujaen.es/varios/
muestras/
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