
Energy Conversion and Management 50 (2009) 2020–2028
Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier .com/locate /enconman
Comparison of metaheuristic techniques to determine optimal
placement of biomass power plants

P. Reche-López a, N. Ruiz-Reyes a, S. García Galán a, F. Jurado b,*

a Telecommunication Engineering Department, University of Jaén Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaén, Spain
b Electrical Engineering Department, University of Jaén Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaén, Spain
a r t i c l e i n f o

Article history:
Received 4 September 2008
Accepted 6 April 2009
Available online 2 May 2009

Keywords:
Biomass
Distributed generation
Metaheuristics
Simulated Annealing
Tabu search
Genetic Algorithms
Particle Swarm Optimization
Profitability index
0196-8904/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.enconman.2009.04.008

* Corresponding author. Tel.: +34 953 648518; fax:
E-mail address: fjurado@ujaen.es (F. Jurado).
a b s t r a c t

This paper deals with the application and comparison of several metaheuristic techniques to optimize the
placement and supply area of biomass-fueled power plants. Both, trajectory and population-based meth-
ods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Anneal-
ing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic
Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary
PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical contin-
uous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio
between the net present value and the initial investment. In this work, forest residues are considered as
biomass source, and the problem constraints are: the generation system must be located inside the sup-
ply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered
metaheuristics are discussed. Random walk has also been assessed for the problem we deal with.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Biomass is the most common form of renewable energy, widely
used in the third world, but until recently less so in the Western
world. Nowadays, electric energy from biomass-fueled plants rep-
resents nine Exa Joules (EJ)/year. The best agricultural crop yields
of biomass provide 10–15 dry ton/ha per year so that some
11,000 ha can give rise biomass for a 30 MW power station, enough
to supply electricity to 30,000 houses. Global biomass power
capacity added in 2005 amounted to 2–3 GW, bringing total capac-
ity to about 44 GW [1]. Biomass currently caters about 10% of the
world’s primary energy supplies. Latterly, much attention has been
focused on identifying suitable biomass species, which can provide
high-energy outputs, to replace conventional fossil fuel energy
sources. As with any energy resource, there are limitations on
the use and applicability of biomass, and it must compete not only
with fossil fuels but with other renewable energy sources, such as
wind, solar and wave power.

Therefore, more research is required to prove that power gener-
ation from biomass is both technically and economically viable. In
such sense, some interesting results can be found in [2–5]. An eval-
uation of the facility of a large-scale biomass scheme for produc-
tion of electricity in Spain is presented in [3]. The biomass power
ll rights reserved.
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plant is based on woody biomass, and the location selection pro-
cess is carried out by a Geographical Information System (GIS). A
GIS-based method is developed in [4] to assess the biomass poten-
tial for power production. The method offers the tools to distin-
guish the geographic distribution of the biomass potential. The
main factors that influence the location and number of energy con-
version facilities are plant capacity and distribution of the available
biomass. In [5], a method for the optimal location and sizing of bio-
mass fueled gas turbine power plants is presented. Both, profitabil-
ity in using biomass and power loss are considered in the objective
fitness function to obtain the solution. The method consists of two
steps. The first step aims to achieve the plant size that maximizes
the profitability of the project. The second step tries to determine
the optimal location of the gas turbines in the electric system to
minimize the power loss of the system. However, in the above ci-
ted papers, the specifications (size and selected sites) for the power
plant are predefined parameters. In this paper, the problem to be
solved consists on determining the optimum placement and size
of the power plant. So, problem complexity increases significantly
and justifies the use of modern heuristic techniques.

Biomass use for power generation is firmly expanding in Eur-
ope, where bioelectricity is mostly produced from wood residues
[6]. The biomass power industry is also active in the United States,
where some 85% of total wood process wastes (excluding forest
residues) are used for power generation. Therefore, we will focus
our attention on woods residues (in particular, forest residues) as
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biomass source. Amongst the different process options for getting
electricity from biomass, gasification is the most likely cost-effec-
tive process. Many studies have exposed the advantages of gasifi-
cation over combustion for power production [7]. Gasification
opens the possibility of going from the traditional, small-scale,
low-efficiency steam cycle to combined steam and gas turbine
with higher efficiency.

The conversion of biomass by gasification into a fuel suitable for
direct use in gas turbines or gas engines increases greatly the po-
tential usefulness of biomass as a renewable resource. Gas turbines
can offer solutions to today’s energy situation as a supplement or
support function to the conventional central generation [8]. In this
paper, the biomass-fueled system consists of gas turbines.

A biomass-based power system presents the problem of deter-
mining the optimal placement and the supply area for the bio-
mass plant in order to provide a given electric power. The
installation of biomass power plants at non-optimal places can
result in an increase of costs and system losses, making the
power plant economically unfeasible. Therefore, the use of an
optimization method capable of determining the best solution
regarding the placement and supply area of the electric power
plant can be very useful. In last decades, a new kind of approxi-
mate algorithms has emerged, which basically tries to combine
basic heuristic methods in higher level frameworks aimed at effi-
ciently and effectively exploring a search space. These algorithms
are commonly called metaheuristics [9]. Although metaheuristics
do not always guarantee the globally optimal solution, they pro-
vide suboptimal solutions in short CPU times. These algorithms
can be interpreted as introducing a bias such that high quality
solutions are produced quickly.

When a realistic problem formulation with the just mentioned
considerations is to be solved, classical analytical, numerical pro-
gramming or heuristic methods are usually either high time-con-
suming or do not provide good results. It is shown in [10] that
traditional optimization techniques (like interior-point method
and gradient-based method) perform better than metaheuristics
for problems where the response surface is strongly convex. How-
ever, this assumption is not true in most of optimization problems,
where multimodal functions are considered. Empirical compari-
sons were performed in [11], showing that metaheuristic methods
provide a substantial advantage over classical methods when the
fitness function is multimodal. Therefore, metaheuristics outper-
form classical analytical, numerical programming and heuristic
methods in most real-world optimization problems, as the one ad-
dressed in this work.

Different metaheuristics with promising results have been ap-
plied to Distributed Generation (DG) and renewable energies. Hag-
hifam et al. propose in [12] a strategy for the placement of DG units
in a changeable environment. Uncertainties in the system are mod-
eled using logic fuzzy. The true Pareto-optimal solutions are estab-
lished with a multiobjective genetic algorithm and the final
solution is determined using a max–min approach. In [13] a multi-
objective formulation for the siting and sizing of DG resources into
existing distribution networks is proposed, the implemented tech-
nique is based on a genetic algorithm and an �-constrained meth-
od. Borges et al. propose in [14] a parallel genetic algorithm-based
methodology for network reconfiguration in a dispersed genera-
tion framework. In [15], a new method based on genetic algorithms
is employed to determine the optimal distributed generation loca-
tion on a distribution network, considering the vulnerability of the
system to voltage sags. The work in [16] describes heuristic and
probabilistic procedures to estimate wind power availability. The
wind velocity data are employed for technology and site selection.
In [17], a hybrid optimization approach based on genetic algo-
rithms is applied to design a photovoltaic-diesel system. The PV-
diesel system, optimized by the hybrid approach, is compared with
a stand-alone PV system that has been calculated using a classical
design method.

In this work, four metaheuristic approaches are applied to the
problem of determining the optimal placement and supply area
of biomass-fueled power plants. In particular, two well-known tra-
jectory methods, such as Simulated Annealing (SA) and Tabu
Search (TS), and two commonly used population-based methods,
such as Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO), are hereby considered. These algorithms are descent biased,
the profitability index being the objective fitness function.

The main original contributions of this work are referred to: (1)
a new Binary Particle Swarm Optimization (BPSO) algorithm,
incorporating inertia weight factor, as in the classical continuous
approach of Kennedy and Eberhart [18,19]; (2) application and
comparison of metaheuristic techniques, including the proposed
BPSO algorithm, to determine the optimal placement and the sup-
ply area of biomass power plants. The values of the parameters for
the different tested algorithms have been optimized. The proposed
BPSO algorithm has been assessed by comparison with other dis-
crete PSO algorithms, including the original discrete one from Ken-
nedy and Eberhart [20]. A classical approach of Genetic Algorithms
(GA) has also been applied to validate the results obtained by the
proposed BPSO algorithm.

This paper is structured as follows. Section 1 introduces con-
cepts about biomass-fueled power systems, briefly reviews previ-
ously published literature on using metaheuristic methods
applied to DG and renewable resources, and outlines the main con-
tributions of the paper. Section 2 overviews the principles of meta-
heuristics and the algorithms compared in this work, describing in
detail the proposed BPSO algorithm. Section 3 is devoted to the
problem description. Experimental results are shown in Section
4, which allow to assess the performance of all tested algorithms.
Finally, Section 5 outlines some meaningful conclusions.

2. Metaheuristics

2.1. Basics and approaches

Many optimization problems of practical as well as theoretical
importance consist of the search for a ‘‘best” configuration of a
set of variables to achieve some goals. They can be classified into
two categories: those where solutions are encoded with real-val-
ued variables, and those where solutions are encoded with discrete
variables. Among the latter ones, we find the so-called Combinato-
rial Optimization (CO) problems, where looking for an object from
a finite set is intended [9]. Examples for CO problems are the Trav-
eling Salesman problem (TSP), the Quadratic Assignment problem
(QAP), Timetabling and Scheduling problems. The problem ad-
dressed in this work belongs to this category (CO problem).

Due to the practical importance of CO problems, many algo-
rithms to tackle them have been developed. They can be classified
as either complete or approximate algorithms. Complete algo-
rithms are guaranteed to find an optimal solution at the expense
of too high computation times for practical purposes. Thus, the
use of approximate methods to solve CO problems has received
increasingly attention in the time. In approximate methods we sac-
rifice the guarantee of finding optimal solutions for the sake of get-
ting good solutions in a significantly reduced amount of time. In
the last 20 years, a new kind of approximate algorithms has
emerged, which guide a subordinate heuristic for exploring and
exploiting the search space in order to find efficiently near-optimal
solutions. This class of algorithms, commonly called metaheuris-
tics, includes but is not restricted to Ant Colony Optimization
(ACO), Evolutionary Computation (EC) including Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), Iterated Local
Search (ILS), Simulated Annealing (SA), and Tabu Search (TS).
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Two very important concepts in metaheuristics are intensifica-
tion and diversification. They are in some way contrary, but also
complementary to each other. The balance between diversification
and intensification is an important issue in real-world problems.
There are several approaches to classify metaheuristics, according
to their properties. We briefly summarize the most important ways
of classifying metaheuristics:

� Nature-inspired vs. non-nature-inspired. Perhaps, the most intui-
tive way of classifying metaheuristics is based on the origin of
the algorithm. Therefore, we can find nature-inspired algo-
rithms, like GA and ACO, and non-nature-inspired ones, such
as TS and ILS.

� Population-based vs. trajectory methods. Algorithms working on a
single solution at any time are called trajectory methods, and
encompass single point search-based metaheuristics, like TS
and ILS. They all give rise to a trajectory in the search space dur-
ing the search process. On the contrary, population-based meta-
heuristics, like GA and PSO, perform search processes which
describe the evolution of a set of points in the search space.

2.2. Survey of metaheuristic techniques

In the following, we briefly describe the metaheuristic tech-
niques considered in this work. Here, we have used two trajectory
methods (SA and TS) and two population-based methods (GA and
PSO).

2.2.1. Simulated annealing
The underlying principle of SA is in its analogy with the thermo-

dynamics, especially with the way that liquids freeze and crystal-
lize or metals cool and anneal. This algorithm was first presented
by Kirkpatrick in [21]. The performance of SA is mainly based on
the so-called temperature parameter T, which is decreased during
the search process. Thus, at the beginning of the search, the prob-
ability of accepting uphill moves (to escape from local maxima) is
high, and it gradually decreases, converging to a simple iterative
improvement algorithm. This process is analogous to the annealing
process of metals and glass, which assume a low energy configura-
tion when cooled with an appropriate cooling schedule.

Regarding the search process, the algorithm is the result of two
combined strategies: random walk and iterative improvement. In
the first phase of the search, the bias toward improvements is
low and it permits the exploration of the search space; this erratic
component is slowly decreased, thus leading the search to con-
verge to a (local) minimum. The probability of accepting uphill
moves is controlled by two factors: the difference of the objective
functions and the temperature.

The choice of an appropriate cooling schedule is crucial for the
performance of the algorithm. The cooling schedule and the initial
temperature should be adapted to the particular problem instance,
since the cost of escaping from local minima depends on the struc-
ture of the search landscape. SA has been applied to several CO
problems (QAP and scheduling).

2.2.2. Tabu search
TS was first introduced in Glover [22]. TS explicitly uses the his-

tory of the search, both to escape from local maxima and to imple-
ment an explorative strategy.

The classic TS algorithm uses a short term memory to escape
from local maxima and to avoid cycles. The short term memory
is implemented as a tabu list that keeps track of the most recently
visited solutions and forbids moves toward them. The neighbor-
hood of the current solution is thus restricted to the solutions that
do not belong to the tabu list. This set of solutions is commonly re-
ferred to allowed set. At each iteration, the best solution from the
allowed set is chosen as the new solution. Additionally, this solu-
tion is added to the tabu list and one of the solutions that already
were in the tabu list is removed (usually in a FIFO order). The algo-
rithm stops when a halt condition is met (in our case, the maxi-
mum number of iterations). It might also terminate if the
allowed set was empty (all the solutions in the neighborhood of
the current solution were forbidden by the tabu list).

The use of a tabu list prevents from returning to recently visited
solutions. Therefore, it prevents from endless cycling, and forces
the search to accept even uphill moves. The length of the tabu list
(the tabu tenure) controls the memory of the search process. With
small tabu tenures, the search will concentrate on small areas of
the search space. On the opposite, a large tabu tenure forces the
search process to explore larger regions, because it forbids revisit-
ing a higher number of solutions.

2.2.3. Genetic algorithms
They are general purpose search algorithms that use principles

inspired by natural genetics to evolve solutions to problems. A GA
starts off with a population of randomly generated chromosomes,
and advances toward better chromosomes by applying genetic
operators. During successive iterations, called generations, chro-
mosomes in the population are rated for their adaptation as solu-
tions. On the basis of these evaluations, a new population of
chromosomes is formed using a selection mechanism and specific
genetic operators, such as crossover and mutation. An evaluation
or fitness function must be devised for each problem to be solved.
Given a particular chromosome (a possible solution), the fitness
function returns a single numerical value, which is supposed to
be proportional to the utility or adaptation of the solution repre-
sented by that chromosome.

Although there are many possible variants GA, the underlying
mechanism operates on a population of chromosomes or individ-
ual, and consists of three operations:

� Evaluation of individual fitness. For each problem to be solved, a
suitable fitness function is required.

� Formation of a gene pool through selection mechanisms. Here,
the so-called elitist strategy has been used in order to include
into the gene pool the best found solutions.

� Recombination through crossover and mutation operators. In
this work, single point crossover is performed, and an exponen-
tially decreasing function is used for the mutation probability.

GA are especially well-fitted to difficult environments where
the space is usually large, discontinuous, complex and poorly
understood. The basic principles of GA were first laid down by Hol-
land [23], and are well described in many books, such as [24, 25]. It
is generally accepted that application of GA must take into account
the following components:

� A genetic representation of solutions to the problem.
� A way to create an initial population of solutions.
� An evaluation function, which gives the fitness of each

chromosome.
� Genetic operators, which modify the genetic composition of off-

spring during reproduction.
� Values for the parameters of the GA (population size, probabili-

ties of applying genetic operators, etc.).

2.2.4. Particle Swarm Optimization
The classical PSO algorithm [18,19] is initialized with a swarm

of particles randomly placed on the search space. At the tth itera-
tion, position of the ith particle is updated by adding to its previous
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position the new velocity vector, according to the following
equation:

xt
i;j ¼ xt�1

i;j þ v t
i;j; i ¼ 1; . . . ; P j ¼ 1; . . . ;N ð1Þ

where xt
i ¼ ½xt

i;1; . . . ; xt
i;N� denotes the position vector of the ith parti-

cle at the tth iteration, and vt
i ¼ ½v t

i;1; . . . ;v t
i;N� represents the velocity

vector of the ith particle at the tth iteration, N being the number of
variables of the function to be optimized and P the number of par-
ticles in the swarm.

The velocity vector vt
i is updated according to the following

equation:

v t
i;j ¼ x � v t�1

i;j þ c1 � rand1i
� ðpbestt�1

i;j � xt�1
i;j Þ

þ c2 � rand2i
� ðgbestt�1 � xt�1

i;j Þ ð2Þ

where pbestt�1
i ¼ ½pbestt�1

i;1 ; . . . ;pbestt�1
i;N � is the best solution

achieved for the ith particle at the ðt � 1Þth iteration, and
gbestt�1 ¼ ½gbestt�1

1 ; . . . ; gbestt�1
N � is the best position found for all

particles in the swarm at the ðt � 1Þth iteration. c1 and c2 are posi-
tive real numbers, called learning factors or acceleration constants,
that are used to weight the particle individual knowledge and the
swarm social knowledge, respectively. rand1i

and rand2i
are real

random numbers uniformly distributed between 0 and 1, that cause
stochastic changes in the ith particle trajectory. Finally, x is the
inertia factor, which represents the weight applied to the previous
velocity of the ith particle. A suitable selection of inertia factor in
Eq. (2) provides a balance between global and local explorations.

The classical version of the PSO algorithm [18,19] operates in a
continuous search space. In order to solve optimization problems
in discrete search spaces, several binary discrete PSO algorithms
have been proposed. In a binary discrete space the position of a
particle is represented by a N-length bit string and the movement
of the particle consists of flipping some of these bits. Kennedy and
Eberhart proposed in [20] the first binary version of PSO. Since
then, other binary approaches for PSO have appeared in the litera-
ture [26–29]. Among them, the approach in [27] closely resemble
the classical continuous PSO approach.

2.3. The proposed binary PSO algorithm

In this work, we have developed and applied a improved ver-
sion of the binary PSO algorithm proposed in [27], which incor-
porates a inertia weight factor, like the classical continuous
approach [18,19]. Now, particle position ðxiÞ and particle velocity
ðviÞ are N-length binary vectors. The algorithm uses the Ham-
ming distance, and the logical AND ‘�’, OR (‘+’) and XOR ‘�’
operators.

Particle position is updated by using the XOR operator instead
of the sum-operator, as in [27]:

xt
i;j ¼ xt�1

i;j � v t
i;j; i ¼ 1; . . . ; P j ¼ 1; . . . ;N ð3Þ

In our approach, the velocity vector can be interpreted as a
change vector. Thus, if v t

i;j ¼ ‘10, then xt
i;j ¼ �xt�1

i;j ; �x
t�1
i;j being the logi-

cal negation of xt�1
i;j . However, if v i;j ¼ ‘00, then xt

i;j ¼ xt�1
i;j (no change

happens). The velocity vector (change vector) is updated by apply-
ing the following equation:

v t
i;j ¼ �xi;j þxi;j � ðc1i;j

� ðpbestt�1
i;j � xt�1

i;j Þ þ c2i;j
� ðgbestt�1

j � xt�1
i;j ÞÞ

ð4Þ

where:

� c1 i ¼ ½c1i;1
; . . . ; c1i;N

�, c2 i ¼ ½c2i;1
; . . . ; c2i;N

� are random N-length bin-
ary strings, whose components have the same probability.

� pbestt�1
i ¼ ½pbestt�1

i;1 ; . . . ; pbestt�1
i;N �, gbestt�1¼½gbestt�1

1 ;...;gbestt�1
N �

are also N-length binary strings.
� xi ¼ ½xi;1; . . . ;xi;N� is the inertial vector of the ith particle. It is a
random N-length binary vector, whose components are ‘0’ with
probability Px.

� �xi ¼ ½ �xi;1; . . . ; �xi;N� is the one’s complement of inertial vector xi.

In our improved binary PSO approach, a very important param-
eter is probability Px, here called inertial probability. As just stated,
bits in xi are ‘0’ with probability Px. Inertial probability decreases
with the number of iterations, in such a way that at the initial iter-
ations (high Px values) the algorithm explores the search space and
at the last iterations (low Px values) the algorithm exploit the
search space.

It must be noted that if xi;j ¼ ‘00, then v t
i;j ¼ ‘10, and so posi-

tion of the ith particle is changed. However, if xi;j ¼ ‘00, the
movement of the ith particle at the tth iteration is conducted
by pbestt�1

i and gbestt�1 solutions, with a partially stochastic
behavior due to the random learning vectors c1 i and c2 i. The idea
is to allow particle swarm to perform a random exploration over
the space search at the initial iterations. Later, when the swarm
has acquired enough knowledge about the problem, the move-
ment of each particle is mainly conducted by pbesti and gbest
solutions. In this work, an exponentially decreasing function is
used for probability Px.

3. Problem formulation, solution representation and fitness
function

3.1. Problem description

The problem to be solved consists on determining the optimum
placement and supply area of a biomass-fueled power plant based
on forest residues. For such goal, four metaheuristic techniques are
applied and compared. Here, we have employed two trajectory
methods (SA and TS) and two population-based methods (GA
and BPSO). The size of the generation system depends on: (1) bio-
mass quantity that can be collected, (2) selection of parcels where
to collect the biomass. Placement of power plant (parcel p) mainly
depends on the characteristics of the parcels. In this work, K par-
cels of constant area have been considered, all of them character-
ized by a predominant biomass type (forest residues in this
work). These parcels also present other relevant characteristics,
such as accessibility [30].

The values of the variables involved in the problem are obtained
from databases or Geographic Information Systems (GIS). These are
the following:

� Si: Area of parcel i ðkm2Þ.
� Ui: Usability coefficient of parcel i. It is applied to only take the

usable surface into account.
� Di: Net density of dry biomass yield from parcel i (ton/
ðkm2 yearÞ).

� LHVi: Lower heat value of biomass in parcel i (MW h/ton).
� Lp: Length of the electric line that connects the power plant to

the grid (km).
� distðp; iÞ: Distance between parcel i and the power plant, which

is located in parcel p(km).
� Ccui

: Biomass collection unit cost in parcel i (€/ton).

Therefore, given the total mean efficiency of the electric gener-
ation system, g, the electricity produced, Eg (MW h/yr), is equal to:

Eg ¼ g �
XK

i¼1

ðSi � Ui � Di � LHViÞ ð5Þ

Assuming a plant running time of T(h/yr), the electric power, Pe

(MW), is:
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Pe ¼
Eg

T
ð6Þ
3.2. Coding of the solution

Before using a given metaheuristic to determine the optimum
placement and supply area of the biomass power plant, the repre-
sentation of a feasible solution must be defined. A solution consists
of three parts: (1) X component of location plant; (2) Y component
of location plant; (3) Size of supply area for the power plant. These
components are binary Gray coded in order to exploit some useful
properties of Gray code related with the Hamming distance.

We have considered a rectangular search space with x 2 ½1; LX �
and y 2 ½1; LY �; LX and LY being sizes in X-dimension and Y-dimen-
sion, respectively. Supply area is a square shaped region which
has the plant at the centroid. In order to obtain not only the place-
ment of the power plant but also the size of the supply area, a pre-
fixed number of supply region sizes has been assumed (i.e. size
number 0 corresponds to a 1� 1 region, size number 1 corre-
sponds to a 3� 3 region, and maximum size number S corresponds
to a ð2 � Sþ 1Þ � ð2 � Sþ 1Þ region). Thus, the total number of bits to
code the solution is:

N ¼ log2LX þ log2LY þ log2S ð7Þ
3.3. Objective fitness function: profitability index

The objective fitness function takes costs and benefits into con-
sideration. Specifically, initial investment and collection, transpor-
tation, maintenance and operation costs are considered, together
with benefits from the sale of electrical energy. Therefore, the prof-
itability index is chosen as the objective function.

In this section some interesting parameters to evaluate the
profitability index of the project are reviewed. The initial invest-
ment, the present value of cash inflows (benefits) and cash out-
flows (costs) and the net present value are studied and adapted
to the particularities of this work.

3.3.1. Initial investment
The initial investment (INV) for the design, construction of the

generation plant and required equipment is expressed as:

INV ¼ INVf þ Is � Pe þ CL � Lp ð8Þ

where INVf is the fixed investment ð€Þ; Is is the specific investment
ð€=MWÞ and CL the electric line cost (€/km).

3.3.2. Cash inflows
The present value of cash inflows ðPVINÞ is obtained from the

sold electric energy during the useful lifetime, Vu. It can be written
as:

PVIN ¼ pg � Eg �
Kg � ð1� KVu

g Þ
1� Kg

ð9Þ

where pg is the selling price of the electric energy injected to the
network ð€=MW hÞ; Eg the sold and produced electric energy
(MW h/yr) and Kg ¼ 1þrg

1þd ; rg being the annual increase rate of the
sold energy price and d the nominal discount rate.

3.3.3. Cash outflows
The present value of cash outflows ðPVOUTÞ is the sum of the fol-

lowing costs during the useful lifetime of the plant: annual collec-
tion cost, Cc , annual transport cost, Ct , and annual maintenance and
operation costs, Cmo.

The annual cost of biomass collection is Cc ¼
PK

i¼1ðCcui
�

Ui � Si � DiÞ.
The annual cost of biomass transport is Ct ¼
PK

i¼1ðCtui
� Ui�

Si � Di � distðp; iÞÞ, where Ctui
is the biomass transport unit cost in

parcel i ð€=ðton kmÞÞ.
The annual maintenance and operation costs are Cmo ¼ Cmofþ

m � Eg , where Cmof is the fixed annual cost of maintenance and oper-
ation, which mainly consists of the minimum labor cost of the
plant ð€=yearÞ, and m is the average maintenance cost ð€=MW hÞ.

Finally, the present value of cash outflows is:

PVOUT ¼ Cc �
Kc � ð1�KVu

c Þ
1�Kc

þ Ct �
Kt � ð1�KVu

t Þ
1�Kt

þ Cmo �
Kmo � ð1�KVu

moÞ
1�Kmo

ð10Þ

where Kc ¼ 1þrc
1þd ; Kt ¼ 1þrt

1þd and Kmo ¼ 1þrmo
1þd ; rc being the annual in-

crease rate of Cc; rt the annual increase rate of Ct and rmo the annual
increase rate of Cmo.

3.3.4. Net present value
The present value (PV) of an investment is the present value of

cash inflows ðPVINÞ minus the present value of cash outflows
ðPVOUTÞ during the useful lifetime of the plant. Therefore, it can
be written as:

PV ¼ PVIN � PVOUT ð11Þ

The net present value (NPV) is defined as the present value (PV)
minus the initial investment (INV):

NPV ¼ PV � INV ð12Þ
3.3.5. Profitability index
The fitness function that has been used in this work is the prof-

itability index (PI), which is defined as follows:

PI ¼ NPV
INV ¼

PVIN�PVOUT�INV
INV ¼ PVIN�PVOUT

INV � 1 ð13Þ

An investment is profitable when PI > 0.

4. Experimental results

The region considered to apply and compare the four metaheu-
ristics (SA, TS, GA and PSO) consists of 128� 128 ¼ 16;384 parcels
of constant surface, Si ¼ 2 km2. The size of the supply area for the
power plant is coded by 6 bits, i.e. 26 ¼ 64 different sizes are pos-
sible. The region is covered by natural forest vegetation. Forest res-
idues constitute the biomass type. There are parcels where neither
extraction of forest vegetation nor placement of the generation
plant are possible.

Region under study, including position of the electrical lines, is
shown in Fig. 1. A radial feeder is considered to assess the perfor-
mance of the proposed optimization approach. The radial feeder
is connected through a substation to a sub-transmission system.
As mentioned in Section 3, the initial investment for construction
of the generation plant and required equipment depends on the
length of the electric line that connects the power plant to the
grid. The number of evaluations of the fitness function needed
to find the optimal solution when using exhaustive search is
2N;N being the number of bits required to represent the solution.
For the proposed problem, parameter N is equal to log2ð128Þþ
log2ð128Þ þ 6 ¼ 20, which involves 220 ¼ 1; 048;576 evaluations.
Although this number is not large enough to make exhaustive
search impractical, it can become a major deal when changes in
the experimental setup are required to assess several technolo-
gies, different parameter configurations, other electrical or eco-
nomic models, etc. In all these cases, the computational time is
a critical issue, which justifies the use of modern optimization
methods, such as metaheuristics.
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Fig. 2 shows the theoretical biomass potential, which is defined
from the net density of dry biomass that can be obtained at any
parcel, Di ðton=ðkm2 yearÞÞ, and provides a measure of the primary
biomass resource.

Fig. 3 shows the available biomass potential. It has been created
taking the following parameters into account: Di ðton=
ðKm2 yearÞÞ;Ui; Si ðKm2Þ and LHVi (MW h/ton). By multiplying the
four variables for all parcels that comprise the entire region, it
results in the available biomass potential, expressed in (MW h/yr).

The available information for each parcel comprises Si;Ui;Di;

LHVi; Lp; distðp; iÞ and Ccui
. Taking into account that gas turbine is

the technology considered in this work for producing electric
energy in the biomass-fueled power plant, Table 1 shows the
remaining parameter values to compute the profitability index.

Once all parameter values required to compute the profitability
index have been defined, the four considered metaheuristics (SA,
TS, GA and PSO) are applied to the problem of determining the
optimum placement and supply area of a biomass-fueled power
plant. As just stated, the power plant is fueled by forest residues,
which are converted into electric energy by using gas turbine-
based technology. In the following, experimental results
accomplished by the four considered metaheuristic techniques
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Fig. 2. Theoretical biomass potential (ton/ðKm2 yrÞ).
are reported. Analysis comparative between them is also included.
First of all, we are going to assess the performance of the trajectory
methods (SA and TS). Then, population-based methods (GS and
PSO) are evaluated for the formulated problem.

4.1. Trajectory methods

Simulation data for the SA algorithm are the following: (1) Ini-
tial temperature T0 ranges from 1 to 10; (2) The total number of
iterations for each experiment is Niter ¼ 1000; (3) The number of
experiments (realizations) to obtain mean and standard deviation
values is 30. SA performs an evaluation per iteration, which results
in 1000 evaluations for each experiment. Table 2 depicts the influ-
ence of parameter T0 in the profitability index when optimization
is performed by SA.

From Table 2, it results that parameter T0 does not influence in
the profitability index. Experimental results also reveal that SA
quickly find near-optimum solutions (i.e. an upper bound is
reached in few iterations).

Simulation data for the TS algorithm are now the following: (1)
The total number of iterations for each experiment is Niter = 1000;
(2) The number of experiments (realizations) to obtain mean and
standard deviation values is 30. TS performs a variable number
of evaluations at each iteration, because neighbors included into
the Tabu list change from one iteration to the next. Table 3 shows
the profitability index (mean and standard deviation) when opti-
mization is performed by TS.

The computational cost of TS is higher than that of SA. In our
experiments with TS, we have found that the average number of
evaluations for each experiment is close to 1200, which involves
Table 1
Standard values for parameters (GAS TURBINE).

Parameter Value Parameter Value

g 0.3 T (h/yr) 7500
INVf ð€Þ 1:5� 106 Is ð€=MWÞ 1:2� 106

CL ð€=kmÞ 3� 104 Vu ðyearÞ 15
pg ð€=MW hÞ 100 Ctui ð€=ðton kmÞÞ 0.3
Cmof ð€=yrÞ 2:4� 105 m ð€=MW hÞ 4.0
d 0.08 rg 0.04
rc 0.06 rt 0.08
rmo 0.04



Table 2
SA: Profitability index vs. T0 (mean and standard deviation values).

T0 Average r

1 1.8632 0.0243
2 1.8644 0.0241
3 1.8545 0.0360
4 1.8686 0.0255
5 1.8522 0.0435
6 1.8606 0.0410
7 1.8599 0.0234
8 1.8609 0.0297
9 1.8645 0.0279
10 1.8555 0.0294

Average 1.8604 0.0048
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Fig. 5. Effect of parameter P0
x on the convergence rate.
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getting better solutions on average (i.e. higher mean value of the
profitability index) than SA.

4.2. Population-based methods

Simulation data for the proposed binary PSO algorithm are the
following: 1) Several population sizes are considered (P = 10, 20,
30, 40, 50 and 60); 2) The inertia probability at the beginning of
the algorithm can take different values (P0

x ¼ 0; 0:05; 0:1;
0:2; 0:3; 0:4 and 0.5); 3) The total number of iterations for each
experiment is now Niter ¼ 70, which involves ðNiter þ 1Þ � P ¼ 71 � P
evaluations; 4) The number of experiments to obtain mean and
standard deviation values does not change (30 realizations).

The performance of our binary PSO algorithm has been assessed
by computing the influence of probability P0

x on the profitability
index for all considered values of parameters P. Experimental re-
sults illustrating that influence are shown in Fig. 4, which are based
on 30 replicate simulation runs.

From Fig. 4, two main conclusions can be extracted: (1) the
quality of the solution provided by the proposed BPSO algorithm
increases with parameter P0

x until a maximum is reached at
P0

x ¼ 0:4. This behavior has been observed for all considered values
Table 3
Profitability index (mean and standard deviation) when TS is performed.

Average r

1.9105 0.0236
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Fig. 4. Mean value of the profitability index vs. P0
x for all considered values of

parameter P when optimization by our BPSO algorithm is performed.
of parameter P (i.e. the profitability index increases with the inertia
probability until P0

x ¼ 0:4, regardless of the population size); (2)
better solutions are obtained as the population size grows, until
an upper bound is reached. It results that a population size above
P = 40 implies higher computational cost (more evaluations are re-
quired) without increasing the quality of the solution accordingly.

Therefore, at the sight of results in Fig. 4, the proposed BPSO
algorithm achieves optimal performance for the problem to be
solved when P0

x ¼ 0:4 and P ¼ 40.
Fig. 5 shows the effect of parameter P0

x on the convergence
curve of the proposed BPSO algorithm. Comparative results be-
tween P0

x ¼ 0 (high diversification) and P0
x ¼ 0:4 (high intensifica-

tion) are reported. The population size is P ¼ 40 (the optimum
one).

From Fig. 5, it results that P0
x ¼ 0:4 yields better solutions than

P0
x ¼ 0 at the expense of more time spent.

Next, we are going to assess the performance of GA (a classical
approach is considered) for the problem to be solved. Simulation
data are the following: (1) Several population sizes are considered
(P = 30, 40, 50, 60, 70, 80 and 90); (2) The mutation probability at
the beginning of the algorithm ðP0

mÞ and the selection rate (SR) have
been fixed to be 0.1 and 70%, respectively, which are typical values
found in the literature; (3) The total number of iterations for each
experiment is Niter ¼ 70, which involves ðNiter � SR

100þ 1Þ � P evalua-
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Fig. 6. Mean value of the profitability index vs. population size when optimization
by GA is performed.
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Table 4
Results derived from trajectory methods.

SA TS

x-coordinate 85 29
y-coordinate 74 65
Supply area 870 874
Pe (MW) 4.6752 4.7158
Dist. grid 0 1.4142
PI 1.8763 1.9138
NPV (M€) 14.34 13.78
INV (M€) 7.11 7.20

Table 5
Results derived from population-based methods.

BPSO by
Afshimmanesh

BPSO by
Kennedy

GA Proposed
BPSO

x-coordinate 66 108 64 74
y-coordinate 28 26 28 105
Supply area 874 994 876 1012
PeðMWÞ 4.7270 4.8812 4.7326 4.8683
Dist. grid 0 2.8284 0 0
PI 1.9323 1.9388 1.9340 1.9518
NPV ðM€Þ 13.86 14.43 13.88 14.33
INV ðM€Þ 7.17 7.44 7.18 7.34
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Fig. 8. Placement and supply area of the biomass plant for the best possible
solution.
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tions; (4) Mean and standard deviation values are achieved with 30
realizations.

We are interested in knowing how the population size P influ-
ences the profitability index. Fig. 6 illustrates the behavior of GA
with the population size.

From Fig. 6, it results that better solutions are obtained as the
population size grows. However, there is a population size above
which the quality of the solution does not improve accordingly
with the computational cost. In such sense, P = 60 has been chosen
as the optimum value for the population size.

Comparative results between BPSO and GA are next reported for
the problem we deal with. Fig. 7 compares the convergence curve
of the profitability index as a function of the number of iterations
for all considered metaheuristics. Convergence curves in Fig. 7
show mean values computed over 30 realizations, and have been
obtained by using the optimum parameter values of each algo-
rithm. Here, three BPSO algorithms are assessed: the proposed
one, the original BPSO algorithm by Kennedy and Eberhart [20]
and the BPSO algorithm by Afshinmanesh et al. [27]. The optimum
parameter values for all compared algorithms are:

� Proposed BPSO: P0
x ¼ 0:4 and P ¼ 40

� GA: P0
m ¼ 0:1; SR ¼ 70% and P ¼ 60

� BPSO by Kennedy and Eberhart: P ¼ 40
� BSPO by Afshinmanesh et al.: vmax ¼ 18 and P ¼ 40

As shown in Fig. 7, the proposed BPSO algorithm converges to
better solutions than GA and the other two BPSO algorithms. By
analyzing the convergence curves in Fig. 7, the four assessed algo-
rithms can be ranked as follows: (1) proposed BPSO; (2) BPSO by
Kennedy and Eberhart; (3) GA; (4) BPSO by Afshinmanesh et al.
Although the BPSO algorithm by Afshinmanesh et al. is the worst
ranked, it provides the best performance for a reduced number of
iterations (Niter below 10). In that case, the worst ranked algorithm
is the BPSO by Kennedy and Eberhart. The computational cost of
BPSO is somewhat lower than that of GA. Notice that BPSO involves
P � ðNiter þ 1Þ ¼ 40 � ð70þ 1Þ ¼ 2840 evaluations, while GA involves
P � ðNiter � SR

100þ 1Þ ¼ 60 � ð70 � 0:7þ 1Þ ¼ 3000 evaluations.

4.3. Trajectory vs. population-based methods: comparative results

Here, comparison between all considered metaheuristics is re-
ported. Simulations have been performed by using the optimum
parameter values obtained for all algorithms. The results in Tables
4 and 5 are referred to trajectory and population-based methods,
respectively. The tables show meaningful results concerning our
problem (coordinates of the optimal location, supply area, profit-
ability index, net present value, initial investment, distance to grid,
generated power), derived from all metaheuristics. The results in
both tables correspond to median values computed over 30
realizations.

The supply area and the distance to the grid are expressed in
Km2 and Km, respectively. From Tables 4 and 5 it results that pop-
ulation-based methods outperform trajectory methods. The main
reason for this fact is the following: trajectory methods explore
the search space, while population-based methods explore and ex-
ploit the search space. Among the population-based methods, the
highest profitability index is obtained by the proposed BPSO algo-
rithm, which outperforms the other two BPSO algorithms consid-
ered for comparison. Comparative analysis between the proposed
BPSO algorithm and GA (used in this work to validate the results)



Table 6
Details about the best possible solution.

x-coordinate 101
y-coordinate 28
Supply area (km2) 1004
PeðMWÞ 4.969
Distance to grid (km) 0
PI 1.9918
NPV ðM€Þ 14.86
INV ðM€Þ 7.46
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evinces the good performance of our BPSO algorithm. Note that the
distance to the grid is usually zero, which means that the electrical
line crosses the parcel chosen as optimal placement for the bio-
mass plant.

Fig. 8 shows the placement and supply area of the biomass
power plant for the best possible solution. This solution is found
when the profitability index takes the highest possible value. Table
6 provides additional information about the best possible solution.

From Table 6, it results that the profitability index for the best
possible solution is not far from the median value obtained by
the proposed BPSO algorithm. Therefore, it provides near-optimum
solutions, being a good candidate for solving discrete optimization
problems in real-world applications.

Finally, random walk is applied to the problem we deal with.
The median value of the profitability index achieved by random
walk, computed over 30 realizations, was 1.8106. This value is
the lowest one among those obtained by all tested algorithm, as
expected.

5. Conclusion

In this work, four metaheuristics have been are applied and
compared in order to determine the optimal placement and supply
area of biomass-fueled power plants. In particular, two well-
known trajectory methods (Simulated Annealing and Tabu Search)
and two commonly used population-based methods (Genetic Algo-
rithms and Particle Swarm Optimization) have been considered for
the problem we deal with. Further, a new binary PSO algorithm has
been proposed and successfully applied to the problem. The profit-
ability index of the biomass power plant has been used as the fit-
ness function. The power plant is based on gas turbines for
producing electric energy from forest residues.

Experimental results show that the proposed BPSO algorithm
converges to better solutions than GA and other BPSO algorithms
considered for comparison. From the convergence curves, it results
that the four assessed algorithms can be ranked as follows: (1) pro-
posed BPSO; (2) BPSO by Kennedy and Eberhart; (3) GA; (4) BPSO
by Afshinmanesh et al. Although the BPSO algorithm by Afshinm-
anesh et al. is the worst ranked, it provides the best performance
for a reduced number of iterations (Niter below 10). Experimental
results also reveal that population-based methods outperform tra-
jectory methods. Meaningful results about the problem (coordi-
nates of the optimal location, supply area, profitability index, net
present value, initial investment, distance to grid, generated
power), derived from all metaheuristics, are also reported in the
paper. The profitability index for the best possible solution is not
far from the median value obtained by the proposed BPSO algo-
rithm. Therefore, it provides near-optimum solutions, being a good
candidate for solving discrete optimization problems in real-world
applications.
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