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bstract

With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies.
s an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass
astes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of

he electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into
ccount the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric
ines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric

ower are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization
lgorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm
o optimize biomass fuelled systems for distributed power generation.

2008 Elsevier B.V. All rights reserved.
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. Introduction

Renewable electricity generation has emerged as one of the
avoured options for dealing with fossil fuel depletion, green
ouse gas emissions and subsequent adverse effects like global
arming. As an outcome of the Kyoto protocol, one of the
uropean Union’s objectives is to increase the contribution of

enewable energy sources up to 12% of the total energy supplied
y 2010 [1].

Biomass is one of the most promising renewable energy
ources, but more research is required to prove that power gener-
tion from biomass is both technically and economically viable.

n such sense, some interesting results can be found in refs. [2,3].
he main advantage of biomass-based power generation is that

he cycle of growth and combustion of biomass has a net zero
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evel of CO2 production. Also, the use of biomass generates
mployment and rural economic progress where it takes place,
ontributing to sustainable development. There are many forms
f biomass, the forest residues being one of the most important
iomass sources. In this paper, we are concerned with forest
esidues as biomass source. They are not habitually convertible
n by-products. However, they can be used as organic fuel, pro-
iding some additional advantages, such as forest pests reduction
nd forest fire risk decrease. The principle factors to assess the
ossibilities of forest residues to generate electrical energy are:
orest vegetation density, type of trees, accessibility and orogra-
hy of the terrain, age of forest vegetation, size of tops, needles,
ranches, etc.

There are several options to produce electricity from
iomass: combustion, gasification and pyrolysis, gasification
eing the most efficient one. Gasification of biomass is a

hermal treatment, which ensues in a high production of
aseous products and small amounts of char and ash. Steam
eforming of hydrocarbons, partial oxidation of heavy oil
esidues, selected steam reforming of aromatic compounds, and
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asification of coals and solid wastes to yield a mixture of H2
nd CO, accompanied by water–gas shift conversion to produce
2 and CO2, are well-proved processes.
Gas derived form biomass gasification is a renewable fuel,

hich can be used for electricity production. The gasifier heats
ith limited oxygen supply the forest residues, the final result
eing a very clean-burning gas fuel suitable for direct use in
as turbines or gas engine. This article is mainly concerned with
hree biomass fuelled systems. These systems are gas motor, gas
urbine and fuel cell-microturbine hybrid power cycle.

Biomass-based gas (biogas) as a fuel for diesel engines offers
he advantage of reduced emissions while retaining the effi-
iency of the conventional diesel engine. The engine can operate
t high compression ratio with a wide range of gas composition.
disadvantage of biogas use in diesels is the high auto-ignition

emperature [4].
The work of Gumz [5] is the earliest reference found describ-

ng the concept of combining a pressurized gasifier with a gas
urbine engine, although Gumz himself references an earlier
ork proposing this concept. He also states that the combination

ould certainly benefit from future development of pressurized
ot gas cleaning to avoid excessive turbine blade wear. Gumz’s
ork deal with coal-fuelled plants, but the concept is similar
hen using biomass as fuel. Gas turbines can offer solutions to

oday’s energy situation as a supplement or support function to
he conventional central generation and power system [6]. Com-
limentary answers are needed to meet projected growth in new
oad and peak demand while providing power system stability,
ecurity and end-user power quality solutions.

A fuel cell is an electrochemical device that converts chem-
cal energy directly into electrical energy. It is based on the
nverse reaction of the electrolysis. Different types of fuel
ells exist with different performances and components. The
lassification is based on the electrolyte, resulting in the fol-
owing types of fuel cells: proton exchange membrane fuel
ell (PEMFC), phosphoric acid fuel cell (PAFC), molten car-
onate fuel cell (MCFC), solid oxide fuel cell (SOFC) [7].
mong them, the most promising one is the SOFC. It is com-
osed of an electrolyte metallic oxide, no porous and good
onductive, it can be manufactured in different geometric setups
planar, tubular, monolithic, etc.) and it is characterized funda-
entally by their high operating temperature (between 800 ◦C

nd 1000 ◦C). These high temperatures simplify system con-
guration by permitting internal reforming and accepting their
omponents determined gases that are very polluting for another
ype of fuel cells. The high operating temperatures facilitate the
evelopment of cogeneration systems as well as hybrid power
ystems formed by the own fuel cell and a gas turbine. The ther-
al energy generated by electrochemical reactions in the fuel

ell is utilized to produce more power output by a gas turbine.
s result, higher overall efficiency is expected (approximately
0%) in comparison to that obtained from individual system
7–9].
Microturbines, which are typically fuelled with natural gas,
enerate between 25 kW and 200 kW of electricity. Their rela-
ively low cost and small size low allow them to be located near
here they are needed. They can operate at very low emission

p
l

x
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evels and reduce the efficiency losses and environmental impact
f large transmission and distribution systems. In this paper, a
uel cell is associated with a biogas microturbine to produce
lectric power [10,11].

In this paper, optimizing three biomass fuelled systems (gas
otor, gas turbine and fuel cell-microturbine hybrid power

ycle) for a region mainly covered by natural forest vegetation
s intended. Comparing the performance of the three systems
s also claimed. For a realistic problem formulation, most ana-
ytical, numerical programming or heuristic methods are unable
o work well. In recent years, artificial intelligence (AI)-based

ethods, such as genetic algorithms (GAs), have been applied to
imilar problems with promising results [12]. Meanwhile, some
ew AI-based methods are introduced and developed. Although
hese AI-based methods do not always guarantee the globally
ptimal solution, they provide suboptimal (near globally opti-
al) solutions in a short CPU time. This paper employs a modern
I-based method, Particle Swarm Optimization (PSO) [13–15],

o solve the problem of deciding the most profitable technology
gas turbine, gas engine or fuel cell-microturbine hybrid power
ycle). For each technology, optimal location and supply area
f the biomass plant, net present value and generated electric
ower are determined. In this work, the fitness function for the
SO algorithm is the profitability index.

PSO is a nature-inspired evolutionary stochastic algorithm
eveloped by Kennedy and Eberhart [13]. This technique, moti-
ated by social behaviour of organisms such as bird flocking
nd fish schooling, has been shown to be effective in optimizing
ultidimensional problems. PSO, as an optimization tool, pro-

ides a population-based search procedure in which individuals,
alled particles, change their positions (states) with time. In a
SO system, particles fly around in a multidimensional search
pace. During flight, each particle adjusts its position according
o its own experience, and the experience of neighbouring par-
icles, making use of the best position encountered by itself and
ts neighbours. The main advantages of PSO are: it is very easy
o implement and there are few parameters to adjust. In addition,
SO has been successfully applied in many different areas, such
s artificial neural network training, fuzzy system control and
ainly function optimization.
This paper is organized as follows. After introduction, a brief

eview about PSO is presented in Section 2. In Sections 3 and
, the problem description and the objective function are pre-
ented, respectively. Experimental results are shown is Section
. Finally, conclusions are presented in Section 6.

. Particle Swarm Optimization

.1. The classical approach

The classical PSO algorithm is initialized with a swarm of
articles randomly placed on the search space. At the tth iter-
tion, position of the ith particle is updated by adding to its

revious position the new velocity vector, according to the fol-
owing equation:

t
i,j = xt−1

i,j + vt
i,j, i = 1, . . . , P j = 1, . . . , N (1)
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here xt
i = [xt

i,1, . . . , x
t
i,N ] denotes the position vector of the ith

article at the tth iteration, and vt
i = [vt

i,1, . . . , v
t
i,N ] represents

he velocity vector of the ith particle at the tth iteration, N being
he number of variables of the function to be optimized and P
he number of particles in the swarm.

The velocity vector vt
i is updated according to the following

quation:

t
i,j = ωvt−1

i,j + c1rand1i(pbestt−1
i,j − xt−1

i,j )

+c2rand2i(gbestt−1 − xt−1
i,j ) (2)

here pbestt−1
i = [pbestt−1

i,1 , . . . , pbestt−1
i,N ] is the best solu-

ion achieved for the ith particle at the (t − 1)th iteration and

bestt−1 =
[
gbestt−1

1 , . . . , gbestt−1
N

]
is the best position found

or all particles in the swarm at the (t − 1)th iteration. c1 and c2
re positive real numbers, called learning factors or acceleration
onstants, that are used to weight the particle individual knowl-
dge and the swarm social knowledge, respectively. rand1i and
and2i are real random numbers uniformly distributed between
and 1, that make stochastic changes in the particle trajectory.
inally, ω is the inertia weight factor and represents the weight-

ng of a particle’s previous velocity. Suitable selection of inertia
eight in Eq. (2) provides a balance between global and local

xplorations, thus requiring less iteration on average to find a
ufficiently optimal solution.

From Eq. (2), we can find that the current flying velocity
f a particle comprises three terms. The first term is the parti-
le’s previous velocity revealing that a PSO system has memory.
he second term and the third term represent a cognition-only
odel and a social-only model, respectively. The cognition-only
odel treats individuals as isolates and reflects private thinking,
hereas the social-only model implies that individuals compare

he effectiveness of neighbours’ beliefs and change toward those
hat are relatively successful [14].

.2. The proposed binary PSO algorithm

The classical version of the PSO algorithm operates in a con-
inuous search space. In order to solve optimization problems in
iscrete search spaces, several binary discrete PSO algorithms
ave been proposed. In this section some of these algorithms
re briefly reviewed. In a binary discrete space the position of a
article is represented by a N-length bit string and the movement
f the particle consists of flipping some of these bits.

Kennedy and Eberhart propose in ref. [16] the first binary
ersion of PSO. This algorithm updates the velocity vector vt

i

ccording to Eq. (2), but variable vt
i,j is interpreted as the prob-

bility of the bit at position j of particle i at the tth iteration to
ecome ‘1’. Since the computed velocity can be greater than 1.0
r even less than 0.0, a sigmoid function (Eq. (3)) is applied to
ariable vt

i,j in order to transform velocity values into the range

0.0,1.0].

(vt
i,j) = 1

1 + e
−vt

i,j

(3)

t

v
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he position of the ith particle in ref. [16] is updated according
o expression (4):

t
i,j =

{
‘1’ if rand < S(vt

i,j)

‘0’ otherwise
(4)

here rand is a real random number uniformly distributed
etween 0 and 1.

In ref. [17], Afshinmanesh et al. propose a different binary
SO algorithm. In this algorithm distance and velocity are
efined as the changes in bits of a binary string. The algorithm
ses the Hamming distance, and the logical AND (‘·’), OR (‘+’)
nd XOR (‘⊕’) operators. The procedure for updating particle
osition and velocity can be summarized as follows:

t
i,j = xt−1

i,j ⊕ vt
i,j, i = 1, . . . , P j = 1, . . . , N (5)

t
i,j = c1i,jd1t−1

i,j + c2i,jd2t−1
i,j (6)

here c1i = [c1i,1, . . . , c1i,N ] and c2i = [c2i,1, . . . , c2i,N ] are
andom N-length binary strings, whose components are ’0’
r ’1’ with the same probability. In Eq. (6), d1t−1

i =
d1t−1

i,1 , . . . , d1t−1
i,N ] is the distance vector (in the Ham-

ing sense) between the position of the ith particle at the
t − 1)th iteration and its previous best position (pbestt−1

i =
pbestt−1

i,1 , . . . , pbestt−1
i,N ]), and d2t−1

i = [d2t−1
i,1 , . . . , d2t−1

i,N ] is
he Hamming distance vector between the position of the ith
article at the (t − 1)th iteration and the previous global best
osition (gbestt−1 = [gbestt−1

1 , . . . , gbestt−1
N ]). The Hamming

istance is computed by means of the XOR operator:

1t−1
i,j = pbestt−1

i,j ⊕ xt−1
i,j (7)

2t−1
i,j = gbestt−1

j ⊕ xt−1
i,j (8)

his algorithm is completed with a mechanism based on an arti-
cial immune system in order to limit the maximum number of
its with value ‘1’ in the velocity vector.

In this work, we have applied an improved version of the
inary PSO algorithm proposed in ref. [17], which incorporates
n inertia weight factor, as in the classical continuous approach
13]. In the proposed binary PSO algorithm, particle position and
article velocity are N-length binary vectors. Particle position is
pdated by using the XOR operator instead of real adding, as in
17]:

t
i,j = xt−1

i,j ⊕ vt
i,j, i = 1, . . . , P j = 1, . . . , N (9)

n our approach, the velocity vector can be interpreted as a

hange vector. Thus, if vt
i,j = ‘1’, then xt

i,j = xt−1
i,j , xt−1

i,j being

he logical negation of xt−1
i,j . However, if vt

i,j = ‘0’, then xt
i,j =

t−1
i,j (no change happens).

The velocity vector (change vector) is updated by applying

he following equation:

t
i,j = ωi,j + ωi,j(c1i,j(pbestt−1

i,j ⊕ xt−1
i,j )

+c2i,j(gbestt−1
j ⊕ xt−1

i,j )) (10)
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here vectors pbestt−1
i = [pbestt−1

i,1 , . . . , pbestt−1
i,N ], gbestt−1 =

gbestt−1
1 , . . . , gbestt−1

N ], c1i = [c1i,1, . . . , c1i,N ] and c2i =
c2i,1, . . . , c2i,N ] have already been defined, and symbols ‘+’
nd ‘·’ represent the logical OR and AND operators, respec-
ively.

The remaining terms are now defined:

�i = [ωi,1, . . . , ωi,N ] is the inertial vector of the ith particle.
It is a random N-length binary vector, whose components are
’0’ with probability Pω.
�i = [ωi,1, . . . , ωi,N ] is the one’s complement of inertial vec-
tor �i.

In our improved binary PSO approach, a very important
arameter is probability Pω, here called inertial probability. As
ust stated, bits in �i are ’0’ with probability Pω. Inertial proba-
ility decreases with the number of iterations, in such a way that
t the initial iterations (high Pω values) the algorithm explores
he search space and at the last iterations (low Pω values) the
lgorithm exploits the search space.

It must be noted that if ωi, j = ‘0’, then vt
i,j = ‘1’, and so

osition of the ith particle is changed. However, if ωi, j = ‘1’,
he movement of the ith particle at the tth iteration is conducted
y pbestt−1

i and gbestt−1 solutions, with a partially stochastic
ehaviour due to the random learning vectors c1i and c2i.

The idea is to allow particle swarm to perform a random
xploration over the space search at the initial iterations. Later,
hen the swarm has acquired enough knowledge about the prob-

em, the movement of each particle is mainly conducted by pbesti
nd gbest solutions. In this work, an exponentially decreasing
unction is used for probability Pω.

. Problem description and coding of the solution

.1. Problem description

The problem to be solved consists on comparing three com-
only used systems for biomass-based power generation. The

ystems to be compared are: gas motor, gas turbine and fuel
ell-microturbine hybrid power cycle. We are interested in deter-
ining the optimal location and supply area of the electric

eneration plant for the three biomass fuelled systems. The net
resent value and the electric power generated from the three
iomass fuelled systems will also be computed.

In this work, the size of the electric generation system
epends on:

Biomass quantity that can be collected from a given region
mainly covered by natural forest vegetation.
Technology to produce electricity from biomass. Three
biomass fuelled systems are here regarded: gas motor, gas
turbine and fuel cell-microturbine hybrid power cycle.
Location of the biomass-based power plant (parcel p) mainly
epends on the characteristics of the considered region to col-
ect biomass. In this work, K parcels of constant area have

r
o

N
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een regarded, most of them characterized by a predominant
iomass type (forest residues in this work). These parcels
lso present other relevant characteristics, such as accessibility
18].

The values of the variables involved in the problem are
btained from databases or Geographic Information Systems
GIS). These are the following:

Si: area of parcel i (km2).
Ui: usability coefficient of parcel i. It is applied to take into
account only the usable surface.
Di: net density of dry biomass obtained from parcel i
(ton/(km2 yr)).
LHVi: lower heat value of biomass in parcel i (MWh/ton).
Lp: length of the electric line that connects the power plant to
the grid (km).
dist (p, i): distance between parcel i and the power plant, which
is located in parcel p (km).
Ccui : biomass collection unit cost in parcel i (Euro/ton).

Therefore, given the total mean efficiency of the electric gen-
ration system,η, the produced electricity, Eg (MWh/yr), is equal
o:

g = η

K∑
i=1

SiUiDiLHVi (11)

ssuming a plant running time of T (h/yr), the electric power,
e (MW) is:

e = Eg

T
(12)

.2. Coding of the solution

Before using the proposed binary PSO to determine location
f biomass power plant, the representation of a feasible solu-
ion (particle position) must be defined. A solution consists of
hree parts: (1) X component of location plant; (2) Y component
f location plant; (3) Size of supply area for the power plant.
hese components are binary Gray coded in order to exploit
ome useful properties of Gray code related with the Hamming
istance.

We have considered a rectangular search space with x ∈ [1,
X] and y ∈ [1, LY], LX and LX being sizes in X-dimension and
-dimension, respectively. Supply area is a square shaped region
hich has the plant at the centroid. In order to obtain not only

he sitting of the plant but also the sizing of the supply area,
prefixed number of supply region sizes have been assumed

i.e. size number 0 corresponds to a 1 × 1 region, size number 1
orresponds to a 3 × 3 region and maximum size number S cor-

esponds to a (2S + 1) × (2S + 1) region. Thus, the total number
f bits used to code the solution is:

= log2LX + log2LY + log2S (13)
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defined from the net density of dry biomass that can be obtained
at any parcel, Di (ton/(km2 yr)), and provides a measure of the
primary biomass resource. Location of the electrical lines inside
the considered region is also shown in Fig. 1.

Table 1
Standard values for parameters

Parameter Value

Ctui
(Euro/ton km) 0.3

CL (Euro/km) 3 × 104

T (h/yr) 7500
INVf (Euro) 1.5 × 106

pg (Euro/MWh) 100
d 0.08
452 P.R. López et al. / Electric Power S

. Objective function: profitability index

The objective function takes into consideration costs and
enefits. Specifically, initial investment and collection, trans-
ortation, maintenance and operation costs are considered,
ogether with benefits from the sale of electrical energy. There-
ore, the profitability index is chosen as the objective function.

In this section some interesting parameters to evaluate the
rofitability index of the project are reviewed. The initial invest-
ent, the present value of cash inflows (benefits) and cash

utflows (costs) are defined and adapted to the particularities
f this work.

.1. Initial investment

The initial investment (INV) for the design, construction and
quipment of the generation plant is expressed as:

NV = INVf + IsPe + CLLp (14)

here INVf is the fixed investment (Euro), Is the specific invest-
ent (Euro/MW), and CL the electric line cost (Euro/km).

.2. Cash inflows

The present value of cash inflows PVIN is obtained from the
old electric energy during the useful lifetime, Vu (yr). It can be
ritten as:

VIN = pgEg
Kg(1 − KVu

g )

1 − Kg
(15)

here pg is the selling price of the electric energy injected to the
etwork (Euro/MWh), Eg the sold and produced electric energy
MWh/yr) and Kg = (1 + rg/1 + d), rg being the annual increase
ate of the sold energy price and d the nominal discount rate.

.3. Cash outflows

The present value of cash outflows (PVOUT) is the sum of the
ollowing costs during the useful lifetime of the plant: annual
ollection cost, Cc, annual transport cost, Ct, and annual main-
enance and operation costs, Cmo.

The annual cost of biomass collection is Cc =
K
i=1(CcuiUiSiDi).
The annual cost of biomass transport is Ct =
K
i=1(CtuiUiSiDidist(p, i)), where Ctui is the biomass

ransport unit cost in parcel i (Euro/(ton km)).
The annual maintenance and operation costs are

mo = Cmof + mEg, where Cmof is the fixed annual cost of
aintenance and operation and m the average maintenance cost

Euro/MWh).
Finally, the present value of cash outflows is:
VOUT = Cc
Kc(1 − KVu

c )

1 − Kc
+ Ct

Kt(1 − KVu
t )

1 − Kt

+Cmo
Kmo(1 − KVu

mo)

1 − Kmo
(16)

r
r
r
r
C

s Research 78 (2008) 1448–1455

here Kc = (1 + rc/1 + d), Kt = (1 + rt/1 + d) and Kmo =
1 + rmo/1 + d), rc being the annual increase rate of Cc, rt
he annual increase rate of Ct and rmo the annual increase rate
f Cmo.

.4. Net present value

The net present value (NPV) of an investment is defined as
ollows:

PV = PV − INV (17)

V = PVIN − PVOUT being the present value. An investment is
rofitable when NPV > 0.

.5. Profitability index

The profitability index (PI) is chosen in this work as objective
tness function. It is defined as follows:

I = NPV

INV
= PV

INV
− 1 (18)

e can also say that an investment is profitable when PI > 0.

. Experimental results

The region considered to apply the proposed method consists
f 128 × 128 = 16384 parcels of constant surface, Si = 2 km2.
he region is covered by natural forest vegetation. Therefore,

orest residues constitute the biomass type. The available infor-
ation for each parcel comprises Si, Ui, Di, LHVi, Lp, dist (p,

) and Ccui . Other parameter values are shown in Table 1.
Parameters which are characteristics of the type of genera-

ion unit are listed in Table 2. The fuel cell-microturbine hybrid
ower cycle generation unit requires the highest specific invest-
ent, but gas engine average maintenance costs are twice higher

han gas turbine or fuel cell maintenance costs and less useful
ifetime. Also, the total mean efficiency of the electric generation
s depended on the type of generation unit.

Fig. 1 presents the theoretical biomass potential, which is
g 0.04

c 0.06

t 0.08

mo 0.04

mof (Euro) 240000



P.R. López et al. / Electric Power Systems Research 78 (2008) 1448–1455 1453

Table 2
Specific values for unit generation

Gas engine Fuel cell Gas turbine

Parameter Value Parameter Value Parameter Value

m (Euro/MWh) 8.0 m (Euro/MWh) 4.0 m (Euro/MWh) 4.0
η 0.2 η 0.6 η 0.3
Is (Euro/MW) 0.2 × 106 Is (Euro/MW) 2.0 × 106 Is (Euro/MW) 1.2 × 106

Vu (yr) 10 Vu (yr) 15 Vu (yr) 15
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Fig. 1. Theoretical biomass potential (ton/(km2 yr)).

Fig. 2 shows the available biomass potential. It has been cre-
ted taking the following parameters into account: Ui, Si (km2),
i (ton/(km2 yr)) and LHVi (MWh/ton). By multiplying the four
ariables for all the parcels that comprise the entire region, it
esults the available biomass potential, expressed in (MWh/yr),
s depicted in Fig. 2.

Commonly, PSO calculation process ceases at a maximum
umber of iterations [19,20]. Experience is needed in this param-
ter choosing. It will consume a lot of calculation time if the
arameter is set too big, while no optimized result could be got
f it is set too small.

Population size is associated to the search space. If this
arameter is too small, the algorithm is probable to converge to a
ocal optimum; however, if the population size is too large, it will
ngage large computer memory and demand high calculation
ime. After tests, authors have evidenced that good performance

f PSO is achieved when the population size is about 30. This
alue is close to the 30–50 population size pointed out in ref.
13]. Therefore, simulation data are: P = 30, N = 20 and 60 itera-
ions. The constraints for simulation are: (1) The electric power

t
A
G
p

able 3
utput values

as motor Fuel cell

arameter Value Parameter

I 2.82 PI
PV (kEuro) 7278 NPV (kEuro)

e (MW) 4.98 Pe (MW)
upply area (km2) 1458.0 Supply area (km2)
Fig. 2. Available biomass potential (MWh/yr)).

enerated by the plant is limited to 5 MW and (2) the generation
ystem must be located inside the supply area.

In a typical realization the proposed PSO algorithm provides
he output values presented in Table 3. Gas motor has been shown
he most profitable (highest profitability index). In spite of gas

otor reaches the highest profitability index, project based on
uel cell gets the highest net present value.

Figs. 3–5 show the optimal location and supply area for the
iomass plant in the same realization that has been considered
reviously. Note that the optimal location is different in each
ase.

A fair comparison between the proposed binary PSO algo-
ithm and Genetic Algorithms is performed for the three
lternative biomass fuelled technologies (gas motor, gas turbine,
uel cell). For such goal, convergence curves of the average prof-
tability index versus number of iterations are computed using

he same population size (P = 30). Results are shown in Figs. 6–8.
s shown in these figures, PSO reaches a better solution than
A with a lower number of iterations. Table 4 depicts mean
rofitability index and its standard deviation for each technol-

Gas turbine

Value Parameter Value

1.59 PI 1.93
17767 NPV (kEuro) 13885

4.84 Pe (MW) 4.73
450.0 Supply area (km2) 876.0
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Fig. 3. Gas motor. Optimal location and supply area for the biomass plant.

Fig. 4. Fuel cell. Optimal location and supply area for the biomass plant.

Fig. 5. Gas turbine. Optimal location and supply area for the biomass plant.

Fig. 6. Gas motor. Average profitability index vs. number of iterations.

Fig. 7. Fuel cell. Average profitability index vs. number of iterations.

Fig. 8. Gas turbine. Average profitability index vs. number of iterations.
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Table 4
Profitability index

Gas motor Fuel cell Gas turbine

Mean Standard deviation Mean Standard deviation Mean Standard deviation

PSO
2.9054 0.0969 1.5987 0.0158 1.9388 0.0191

GA
2.7433 0.1441 1.5826 0

Mean and standard deviation values.
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Fig. 9. Gas motor. Influence of parcel dimension.

gy and algorithm. All of values have been obtained from 30
xperiments.

Furthermore, influence of parcel dimension in the execution
ime (number of iterations) and in the solution accuracy has been
eported. For such goal, experiments with parcels of different
imension (0.5 km2, 2 km2 and 8 km2) have been performed.
s an example, the results of the experiments for gas motor are

hown in Fig. 9. As shown in this figure, the best solution is
ccomplished for the parcel size of 0.5 km2, but the execution
ime to reach this solution is the highest one, as expected.

. Conclusions

This paper has presented a new approach to determine the
ptimal supply area and location for an electric generation sys-
em based on biomass. The proposed new approach is a discrete
inary version of the PSO algorithm, which makes use of the
rofitability index as objective function. The proposed approach
as been assessed using a region composed of 16384 parcels,
ll of them with the same area (Si = 2 km2). In the region under
tudy, gas motor has been shown the most profitable, however
he net present value of the fuel cell-based project has achieved
he highest net present value. Computer simulations have shown
he good performance of the proposed method. Convergence is

eached in few iterations, typically, a maximum of 25 iterations,
hich is equivalent to a computational cost, given by the number
f fitness function evaluations, more than 1390 times lower than
hat required for exhaustive comparison.
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