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A crucial step in group decision making (GDM) processes is the aggregation of individual opinions with
the aim of achieving a ‘‘fair’’ representation of each individual within the group. In multi-granular linguis-
tic contexts where linguistic term sets with common domain but different granularity and/or semantic
are used, the methodology widely applied until now requires, prior to the aggregation step, the applica-
tion of a unification process. The reason for this unification process is the lack of appropriate aggregation
operators for directly aggregating uncertain information represented by means of fuzzy sets. With the
recent development of the Type-1 Ordered Weighted Averaging (T1OWA) operator, which is able to
aggregate fuzzy sets, alternative approaches to multi-granular linguistic GDM problems are possible.
Unlike consensus models based on unification processes, this paper presents a new T1OWA based con-
sensus methodology that can directly manage linguistic term sets with different cardinality and/or
semantic without the need to perform any transformation to unify the information. Furthermore, the lin-
guistic information could be assumed to be balanced or unbalanced in its mathematical representation,
and therefore the new T1OWA approach to consensus is more general in its application than previous
consensus reaching processes with muti-granular linguistic information. To test the goodness of the
new consensus reaching approach, a comparative study between the T1OWA based consensus model
and the unification based consensus model is carried out using six randomly generated GDM problems
with balanced multi-granular information. When distance between fuzzy sets used in the T1OWA based
approach is defined as the corresponding distance between their centroids, a higher final level of consen-
sus is achieved in four out of the six cases although no significant differences were found between both
consensus approaches.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Decision making is an inherent activity of human beings. Every-
day, human beings, consciously or unconsciously, make decisions
about different aspects related to their life. Group decision making
(GDM) has proven its usefulness as a decision methodology to ad-
dress complex decisions in which the participation of experts from
different areas may be interesting and even advisable. Moreover, in
many of these decision making processes it is common to encoun-
ter problems where experts have to assess qualitative aspects that
cannot easily be evaluated using precise quantitative assessments.
In these cases the use of linguistic assessments seems be more
appropriate to express experts’ preferences. The fuzzy linguistic
approach has proven its utility to deal with the imprecision and
vagueness associated to qualitative information [1]. In this ap-
proach, qualitative aspects are represented by means of linguistic
variables whose values are words rather than numbers. Concerning
linguistic variables, semantic rules are defined in order to associate
to each element of the universe of discourse its meaning. This
interpretation of the meaning of a linguistic label is formally cap-
tured using the concept of fuzzy set, and therefore linguistic labels
can formally be considered and represented as fuzzy subsets of
their universe of discourse [1]. Another important aspect to be ta-
ken into account in the linguistic approach is the ‘‘granularity of
uncertainty’’, i.e. the finest level of distinction among different
quantifications of uncertainty as represented by the cardinality of
the corresponding linguistic term set [2].

In GDM problems with experts belonging to different areas or
with distinct levels of knowledge about the problem, it seems nat-
ural to expect that they will express opinions and/or preferences
using different sets of linguistic terms and in general with different
cardinality (granularity). Consequently, the development of
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adequate tools to manage and model multi-granular linguistic
information becomes very important in the resolution of this type
of GDM problem [3–9].

In a multi-granular linguistic context, the aggregation of ele-
ments from linguistic term sets of different cardinality and seman-
tics is a challenging issue [10–12]. Different approaches have been
proposed in the literature to address this and, among them, one of
the most widely used requires a unification process methodology
previous to the aggregation operation [6]. The unification process
methodology is based on transformation functions with domain
each one of the different linguistic term sets and same co-domain,
known as the base linguistic term set (BLTS). Although transforma-
tion functions operate with the membership functions of the fuzzy
sets used to represent the linguistic terms to be aggregated, such
functions have been always subject of criticisms because they are
not bijective and are subject to possible loss of information. Re-
cently, Zhou et al. [13] proposed the Type-1 Ordered Weighted
Average (T1OWA) operator that is able to directly aggregate
type-1 fuzzy sets. The T1OWA operator, which is developed via
the application of the extension principle to Yager’s OWA operator
[14], has been successfully proven to aggregate linguistic opinions
in human decision making with linguistic weights [15–18]. This
operator has the following main characteristics: (i) it allows the di-
rect aggregation of different types of linguistic term sets – bal-
anced or unbalanced sets, triangular or trapezoidal linguistic
labels, etc.; (ii) the weighting vector consists of elements that
can be crisp and precise numbers or fuzzy ones; (iii) it uses the
whole membership function of the fuzzy sets to aggregate in the
computation of the fuzzy aggregated value; and (iv) it allows the
implementation of the concept of soft majority in the decision pro-
cess if required. In summary, the use of the T1OWA operator in
developing decision making models makes the current unification
process superfluous and allows its direct application, i.e. there is no
need to modify and/or adapt the model, to a wider range of deci-
sion making problems under uncertainty.

GDM problems generally involve situations of conflict among
its experts, and therefore it is preferable that the set of experts
reach consensus before applying a selection process to derive the
decision solution [8,10,19,20]. Consensus is defined as the full
and unanimous agreement of all the experts, a definition that is
inconvenient in practice because it only allows differentiating be-
tween two states, namely, the existence and absence of consensus.
The chances for reaching such a full agreement are rather low,
while it is recognised that most real life situation unanimity is
not necessary [21,22]. Thus, one key issue that needs to be ad-
dressed in a GDM problem is the evaluation of the level of consen-
sus of the group of experts. Consensus is modelled mathematically
via the use of similarity function measuring the concept of proxim-
ity of information [23]. In the linguistic model, the computation of
similarity degrees between experts relies on the use of a distance
function between the fuzzy sets representing their linguistic pref-
erences. When the consensus level reaches a threshold value,
agreed by the group of experts, the resolution process of the
GDM is carried out; otherwise a feedback mechanism is activated,
and personalised recommendations generated to support the indi-
vidual experts, until the threshold level of consensus is achieved.
The feedback recommendations will help the experts to identify
the preference values that should be considered for changing.
The idea of preserving as much as possible the initial experts’ pref-
erences [24] has also motived novel methodologies to reach con-
sensus based on linear-programming based approaches that aim
at minimising cost under the weighted averaging operator and
OWA operators [25].

The aim of this paper is to present a new methodology to con-
sensus reaching processes in multi-granular linguistic contexts
based on the T1OWA operator. The new consensus reaching model
allows the direct processing of the membership functions of the
fuzzy sets modelling the linguistic information and therefore
makes the unification process step currently used in developed
models unnecessary. Furthermore, because the membership func-
tions are nor required to fulfil extra conditions regarding their bal-
anced or unbalanced distribution within the underlying domain of
the variable used to measure preferences, nor they are required to
be of the same shape type, the proposed methodology offers a
greater degree of flexibility or generality in its application than
existing models do. Having said this, a comparative study between
the T1OWA based consensus model and the unification based con-
sensus model is included using six randomly generated GDM prob-
lems with balanced multi-granular information. As it will be
elaborated further later in the paper, when the distance between
fuzzy sets in the T1OWA based approach is defined as the corre-
sponding distance between their centroids, a higher final level of
consensus is obtained in four out of the six cases studied, although
no significant differences are found between both consensus ap-
proaches. Arguably, the T1OWA methodology can be used with
guarantee in consensus reaching multi-granular linguistic decision
making problems.

The rest of the paper is organised as follows. In Section 2 con-
tains a short, but necessary for the set of the paper, review of con-
cepts concerning multi-granular fuzzy linguistic GDM problems,
the unification methodology of multi-granular linguistic informa-
tion and the consensus reaching processes. Section 3 presents the
T1OWA operator and its alpha-level fast implementation. Section 4
focuses on the presentation of the new T1OWA methodology to
consensus reaching processes in multi-granular linguistic contexts.
A comparative study between the new consensus methodology
and the consensus methodology based on the unification process
of preferences is presented in Section 5. Finally, some conclusions
are pointed up in Section 6.
2. Preliminaries

To make the paper self-contained, the main concepts that will
be used are introduced here.
2.1. Linguistic variable

A linguistic variable is formally represented by a 5-tuple
hL,T(L),U,S,Mi [1] where (i) L is the name of the variable; (ii) T(L)
is a finite term set of (primary) labels or words (a collection of lin-
guistic values); (iii) U is a universe of discourse or base variable;
(iv) S is the syntactic rule which generates the terms in T(L); and
(v) M is a semantic rule which associates with each linguistic value
X its meaning M(X): U ? [0,1]. Usually, T(L) is denoted as L when
there is no risk of confusion.

The semantic rule, also known as ‘compatibility function’ [1],
associates with each element of the base variable its compatibility
with each linguistic value. This interpretation of the meaning of a
linguistic label coincides with that of a fuzzy set, and therefore lin-
guistic labels can be considered and formally represented as fuzzy
subsets of their base variable. Therefore, the nature of the base var-
iable will dictate the general method to use when manipulating
linguistic values. A non-numerical base variable makes the defini-
tion of the compatibility function ‘difficult to be formalized in ex-
plicit terms’ [1]. As a result, it turns out to be problematic when
implemented at present in computer programmes. Thus, it is fair
to say that most, if not all, important linguistic decision models
in the literature assume that the base variable is a subset of the
set of real numbers, and therefore numeric in nature. Indeed, these
linguistic decision models usually start associating the linguistic
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values (labels) to be used with membership functions (triangular,
trapezoidal, Gaussian . . .) to represent their meanings (see Fig. 3).

2.2. Linguistic decision making problems

The majority of models developed to solve linguistic GDM prob-
lems can be classed as linguistic symbolic computational models
based on ordinal scales. Four main proposals can be found in the
literature following this ordinal scheme [26]: (i) the linguistic sym-
bolic computational model based on ordinal scales and max–min
operators; (ii) the linguistic symbolic computational model based
on indexes; (iii) the linguistic symbolic computational model
based on continuous term sets, and (iv) the 2-tuple linguistic com-
putational model. The main advantage of these ordinal proposals
lies in their simplicity, however they fail to implement appropri-
ately the richness of the linguistic nature that is being modelled
in these cases. Indeed, the above models start by assuming a nu-
meric nature of the base variable and membership functions are
provided to model the meaning of the linguistic labels used in
the problem. However, these membership functions are generally
neglected and not fully used, which seems in contradiction with
the philosophy of the original linguistic approach in which they
are based. In these cases it seems paradoxical that concepts like
membership functions, fuzzy sets, vagueness, and uncertainty,
are used in their motivation because they are simply not fully
implemented or use in their model architecture. These ordinal
models are based on a one-to-one map between the set of linguis-
tic labels and their indexes, which are derived from an underlying
ordering the meaning of the linguistic labels obey.

It could be argued, however, that the above mentioned ordinal
approaches could be more appropriate for linguistic decision mod-
els where the base variable is not numeric in nature, and it could
well be that this was the main rationale when developing them.
However, they have become so popular within the research com-
munity that it seems apparent that they have been adopted by
most researchers even when the base variable is numeric in nature.
These ordinal approaches do not seem the most appropriate here
because their first step consists of replacing the set of linguistic
terms, which are supposed to be a set of fuzzy subsets of the set
of real numbers, by a set of crisp values before the computation
process is carried out, and therefore their expressiveness potential
is lost in this way. In these case, Zadeh pointed out the following
recommendation to apply when the base variable is numerical in
nature: ‘linguistic variables can be treated in a reasonably precise
fashion by the use of the extension principle for fuzzy sets’ [1]. This
is the methodology underlying the proposal put forward in this
paper.

2.3. Group decision making with multi-granular linguistic assessments

GDM problems are classically described as decision situations
where, given a set of alternatives X = {x1,x2, . . . ,xn} (n P 2), a set
of experts E = {e1, e2, . . . , em} (m P 2) try to achieve a collective
solution. Preference relations, also known as pairwise comparison
matrices, are a popular and powerful method to model experts’
preferences in group decision making (GDM) problems. The main
advantage of preference relations is that individuals can focus
exclusively on two alternatives at a time, which facilitates the
expression of their opinions [27–30], making them more accurate
than non-pairwise methods [31]. In decision environment per-
vaded with uncertainty, experts might find comfortable providing
their opinions and or preferences using linguistic assessments
rather than precise numerical ones [1,10,26]. Thus, linguistic pref-
erences relations [8,32], which are usually modelled as matrices,
Pei
¼ ðplk

i Þ; l; k 2 f1; . . . ;ng, will be the focus of this paper. Each ele-
ment of matrix plk

i ¼ lPei
ðxl; xkÞ represents experts ei linguistic
preference of the alternative xl over xk, which is formally repre-
sented as a fuzzy subset of the unit interval [0,1].

As mentioned before, in GDM we can encounter problems
where experts may have different background and level of knowl-
edge about the problem, and consequently linguistic term sets
with different cardinality might be used by different experts
[6,33,34]. In any case, the cardinality or granularity of the linguistic
term sets should be small enough so as not to impose useless pre-
cision levels but big enough to allow a discrimination of assess-
ments in a limited number of degrees [8]. Summarising, in a
multi-granular linguistic GDM context each expert ei will provide

preferences using a linguistic term set Si ¼ si
0; . . . ; si

g

n o
, with more

two or more linguistic term set having different cardinality.

2.4. Managing multi-granular linguistic information

Linguistic preferences expressed on different domains demand
specific tools and models to allow the managing of linguistic term
sets with different cardinality and/or semantic. A methodology
widely used to address GDM problems with multi-granular lin-
guistic preferences is based on a unification process [6], by which
experts’ linguistic preferences are transformed into a single do-
main or linguistic term set known as the basic linguistic term set
(BLTS), and denoted by ST.

Herrera et al. in [6] argue that it seems reasonable to impose a
cardinality to ST high enough so that the uncertainty degrees asso-
ciated to each one of the possible domains used by the experts is
maintained. This means that the cardinality of the BLTS has to be
as high as possible. In a general multi-granular fuzzy linguistic
context, Herrera et al. propose the application of the following
rules for the selection of the granularity and semantic of set ST [6]:

1. If there is only one linguistic term set, from the set of different
domains to be unified, with maximum granularity, then that set
is chosen as the BLTS, ST.

2. If there are two or more linguistic term sets with maximum
granularity, then the election of ST depends on the semantics
associated to them:
(a) If all of them have the same semantics (with different

labels), then any one of them can be selected as ST.
(b) If two or more of them have different semantics, then ST is

defined as a generic linguistic term set with a number of
terms greater than the number of terms a person is able
to discriminate, which is normally 7 or 9 [35]. There are
cases when a BLTS with 15 terms symmetrically distributed
has been used [6].

This methodology is further described in an Appendix. Method-
ologies that do not require the use of a unification process are also
available in the literature. A notable example is the methodology
developed by Jiang et al. [12], which aims to preserve as much as
possible the initial experts’ preferences during the decision making
process and that is based on the resolution of linear-programming
based approaches.

2.5. Consensus reaching process

A consensus reaching process can be defined as an iterative pro-
cess that consists of several discussion rounds in which experts ex-
press their preferences and try to achieve a minimum level of
agreement before making a decision [36]. In real-world problems,
a human moderator in charged of guiding the experts towards con-
sensual positions that derive in a common and accepted group
solution.

A graphical description of a general consensus reaching process
is depicted in Fig. 1. As it can be seen, the figure of the moderator
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has the key role of supervising and coordinating the whole process
by providing appropriate advice to the experts in order to bring
their positions closer to improve the level of agreement.

Consensus is usually understood as the full and unanimous
agreement of all the experts regarding all the feasible alternatives.
However, in practice, this definition is inconvenient because it only
allows differentiating between two states: the existence and ab-
sence of consensus. Furthermore, on the one hand, the chances
for reaching such a full agreement are rather low, and on the other
hand, unanimity is not necessary or desirable in most real life sit-
uations. A second meaning of the concept of consensus refers to
the judgement arrived at by ‘most of’ those concerned, which has
led to the definition and use of a new concept of consensus degree
referred to as ‘soft’ consensus degree [22,30,37–44].

3. Type-1 OWA operator

Unlike Yager’s OWA operator that aggregates crisp values [14],
the type-1 OWA operator is able to aggregate type-1 fuzzy sets
with uncertain weights, with these uncertain weights being also
modelled as type-1 fuzzy sets. As a generalisation of Yager’s
OWA operator and based on the extension principle, the type-1
OWA operator is defined as follows [13]:

Definition 1 (Type-1 OWA operator (T1OWA)). Given n linguistic
weights fWig

n
i¼1 in the form of type-1 fuzzy sets defined on the

domain of discourse [0,1], a type-1 OWA operator (T1OWA) is a
mapping, U,
U : ePðRÞ � � � � ePðRÞ ! ePðRÞ
ðA1

; � � � ;AnÞ# Y

such that

lY ðyÞ¼ supPn
k¼1 �wiarðiÞ ¼ y

wi 2U;ai 2X

lW1 ðw1Þ^ � � �^lWn ðwnÞ^lA1 ða1Þ^ � � �^lAn ðanÞ ð1Þ

where �wi ¼ wiPn

i¼1
wi

; r is a permutation function such that ar(i) P

ar(i+1), "i = 1, � � � , n � 1, and ePðRÞ is the set of fuzzy sets on R.

From Definition 1, a direct approach to performing T1OWA
operations was suggested in [13]. However, this approach is com-
putationally expensive, which inevitably curtails further applica-
tions of the T1OWA operator to real world decision making. A
fast approach to T1OWA operations has been developed based on
the a-cuts of fuzzy sets [15].
OPINIONS ADVICE

SET OF
ALTERNATIVES

CONSENSUS PROCESS

DECISION
UNDER

CONSENSUS

PROBLEM

Fig. 1. Consensus reaching process.
Definition 2. (a-level T1OWA operator). Given the n linguistic

weights fWig
n
i¼1 in the form of type-1 fuzzy sets defined on the

domain of discourse [0,1], then for each a 2 [0,1], an a-level

T1OWA operator with a-level weight sets Wi
a

n on

i¼1
to aggregate

the a-level of type-1 fuzzy sets fAig
n
i¼1 is given as

Ua A1
a; � � � ;A

n
a

� �
¼

Pn
i¼1wiarðiÞPn

i¼1wi

����wi 2Wi
a; ai 2 Ai

a;8i
� �

ð2Þ

where Wi
a ¼ fwjlWi

ðwÞP ag, Ai
a ¼ fxjlAi

ðxÞP ag, and r is a per-
mutation function such that ar(i) P ar(i+1), " i = 1, � � � , n � 1.

Using the Representation Theorem of type-1 fuzzy sets, the a-

level sets Ua A1
a; � � � ;A

n
a

� �
obtained via Definition 2 can be used to

construct the following type-1 fuzzy set on R

G ¼ [0<a61aUa A1
a; � � � ;A

n
a

� �
ð3Þ

with membership function

lGðxÞ ¼ _a:x2Ua A1
a ;���;A

n
að Þaa ð4Þ

Fuzzy sets obtained in (1) and (3) may seem different, however in
[15] Zhou et al. proved that both results are equivalent, in what it
is known as the Representation Theorem of T1OWA Operators.

Theorem 1 (Representation Theorem of T1OWA Operators). Given
the n linguistic weights fWig

n
i¼1 in the form of type-1 fuzzy sets

defined on the domain of discourse [0,1], and the type-1 fuzzy sets
A1, � � � , An, then we have that

Y ¼ G

where Y is the aggregation result defined in (1) and G is the result de-
fined in (3).

Therefore, an effective and practical way of carrying out T1OWA
operations consist in the decomposition of the T1OWA aggregation
into the a-level T1OWA operations and then the reconstruction of
the output via the Representation Theorem 1.

When the linguistic weights and the aggregated sets are fuzzy
number, the output of the a-level T1OWA operator is a closed
interval [15]:

Theorem 2. Let fWig
n
i¼1be fuzzy numbers on [0,1] and fAig

n
i¼1 be

fuzzy numbers on R. Then for each a 2 U, Ua A1
a; � � � ;A

n
a

� �
is a closed

interval.

Based on this result, the computation of the T1OWA output
according to (3), G, reduces to compute the left end-points and

right end-points of the intervals Ua A1
a; � � � ;A

n
a

� �
:

Ua A1
a; � � � ;A

n
a

� �
�

and Ua A1
a; � � � ;A

n
a

� �
þ
;

where Ai
a ¼ Ai

a�;A
i
aþ

h i
;Wi

a ¼ Wi
a�;W

i
aþ

h i
. For the left end-points,

we have

Ua A1
a; � � � ;A

n
a

� �
�
¼ min

Wi
a�6wi6Wi

aþ
Ai
a�6ai6Ai

aþ

Xn

i¼1

wiarðiÞ

,Xn

i¼1

wi ð5Þ

For the right end-points, we have

Ua A1
a; � � � ;A

n
a

� �
þ
¼ max

Wi
a�6wi6Wi

aþ
Ai
a�6ai6Ai

aþ

Xn

i¼1

wiarðiÞ

,Xn

i¼1

wi ð6Þ

It can be seen that (5) and (6) are programming problems. Solutions
to these problems, so that the T1OWA aggregation operation can be
performed efficiently, are available from [15].
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4. Consensus reaching process based on T1OWA operator

In the multi-granular context, the different theoretical models
proposed in the literature [8,30,38] address the consensus reaching
process, in which transformation functions were used to unify the
multi-granular linguistic information. As pointed our earlier, a
drawback of such unification process is that the consensus reach-
ing process loses information because the transformations func-
tions are not bijective. These proposed models did not address
the issues of direct manipulation of different elements belonging
to linguistic sets of different granularity, specially in the necessary
aggregation step of GDM problems, because there were no mathe-
matical tools available at that moment. Interestingly, the introduc-
tion of the T1OWA operator provides such a needed tool for the
direct manipulating linguistic sets with different granularity in
consensus decision making. Unlike previous models [8,38], the
proposed consensus model makes use of the T1OWA operator to
compute the collective preference, and therefore the whole mem-
bership functions of the fuzzy sets that represent the experts’ lin-
guistic preferences are taken into account. The two main
advantage with respect to previous models are: (1) it allows the di-
rect aggregation of different types of linguistic term sets – bal-
anced or unbalanced sets, triangular or trapezoidal linguistic
labels, etc. and therefore the unification process is not just neces-
sary; and (2) there is no loss of information in the aggregation
process.

A general sketch of the consensus process proposed is depicted
in Fig. 2. The model has a set of multi-granular linguistic prefer-
ences as input, with a final output being a set of recommendations
to the group of experts to increase the level of agreement when
this is below a threshold value for the next consensus round. Spe-
cifically our proposed model includes the following steps:

1. Computation of the consensus degree: (1.1) Similarity
degrees; and (1.2) Consensus matrix.

2. Consensus control.
3. Feedback Mechanism: (3.1) Computation of the collective lin-

guistic preference relation; (3.2) Identification of the preference
values to change; and (3.3) Generation of advice.

These steps will be presented in more detail in following sub-
sections. A step-by-step example to illustrate the computation pro-
cesses involved in each step is also provided. This example is taken
from [8] where a unification methodology to consensus was ap-
plied to.

Example 1. An investment company wants to invest a sum of
money in the best industrial sector among four possible alterna-
tives: car industry (x1), food company (x2), computer factory (x3)
and arms industry (x4). Before making a decision a minimum level
of agreement among four experts, {e1, . . . , e4}, is required. These
experts belong to different departments within the company (risk
analysis, growth analysis, social-political analysis and environ-
mental impact analysis department) and they use linguistic term
sets with different granularity and semantics. Two key parameters
in any consensus reaching process are the consensus threshold, i.e.
the minimum level of agreement that experts want to achieve, and
the maximum number of consensus rounds that they are willing to
carry out in order to achieve it. Both parameters have to be fixed in
advance and their values depend on the type of problem. In this
example, these parameters are set to be 0.75 and 10, respectively.

Experts provide preferences using one of the possible three
linguistic label sets A, B, C with elements modelled using triangular
fuzzy numbers (TFNs) in the numeric domain [0,1], as represented
in Fig. 3.
A triangular fuzzy number (TFN) membership function l:
[0,1] ? [0,1] is:

leAðxÞ ¼
0; 0 6 x < a
x�a
b�a ; a < x 6 b
c�x
c�b ; b 6 x < c

0; c < x 6 1

8>>><>>>: ð7Þ

A TFN can shortly represented in its parametric form (a,b,c), with a
and c known as the lower and upper bounds, respectively, while b is
known as its modal value. When the TFN is symmetrical, i.e. when
b = (a + c)/2, then b is also its centroid. The parametric representa-
tion of the above three linguistic label sets A, B, C using TFNs is given
in Table 1.

Example 2 (Example 1 continuation). Experts e1 and e2 provide
linguistic assessment using set C, while expert e3 uses set A and
expert e4 set B. Their initial linguistic preference relations being:

Pe1 ¼

� c0 c0 c2

c4 � c3 c4

c3 c0 � c1

c2 c1 c3 �

0BBB@
1CCCA Pe2 ¼

� c2 c0 c4

c1 � c1 c1

c3 c3 � c1

c0 c4 c3 �

0BBB@
1CCCA

Pe3 ¼

� a1 a4 a3

a5 � a8 a4

a4 a1 � a2

a5 a5 a7 �

0BBB@
1CCCA Pe4 ¼

� b0 b4 b5

b6 � b1 b6

b3 b4 � b2

b0 b1 b4 �

0BBB@
1CCCA
4.1. Computing the consensus degree

It was mentioned before that consensus is a measure of agree-
ment, and thus in the context of GDM it will represent the level of



a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8

0 0.25 0.5 0.75 1

b0 b 1 b2 b 3 b 4 b 5 b 6

0 0.25 0.5 0.75 1

c1

0 0.25 0.5 0.75 1

2 40c c c c3

Fig. 3. Linguistic label sets A, B and C (from left to right).

Table 1
TFN parametric representation of linguistic label sets A, B and C.

Label set A Label set B Label set C

a0 = (0,0,0.12) b0 = (0,0,0.16) c0 = (0,0, 0.25)
a1 = (0,0.12,0.25) b1 = (0,0.16,0.33) c1 = (0,0.25,0.5)
a2 = (0.12,0.25,0.37) b2 = (0.16,0.33,0.5) c2 = (0.25,0.5,0.75)
a3 = (0.25,0.37,0.5) b3 = (0.33,0.5, 0.66) c3 = (0.5,0.75,1)
a4 = (0.37,0.5,0.62) b4 = (0.5,0.66,0.83) c4 = (0.75,1,1)
a5 = (0.5,0.62,0.75) b5 = (0.66,0.83,1)
a6 = (0.62,0.75,0.87) b6 = (0.83,1,1)
a7 = (0.75,0.87,1)
a8 = (0.87,1,1)
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agreement among the experts. Mathematically, consensus can be
defined using similarity functions measuring the concept of prox-
imity of information [23]. In the linguistic model, the computation
of similarity degrees between experts relies on the use of a dis-
tance function between the fuzzy sets representing their linguistic
preferences. This is elaborated in the following subsections.

4.1.1. Similarity degress
In the following, we provide the formal definition of distance

and similarity functions as given in [45]:

Definition 3 (Distance). Let A be a set. A function d : A� A�!R is
called a distance (or disimilarity) on A if, for all x, y 2 A, there holds
1. d(x,y) P 0 (non-negativity)
2. d(x,y) = d(y,x) (symmetry)
3. d(x,x) = 0 (reflexivity)
Definition 4 (Similarity). Let A be a set. A function s : A� A�!R is
called a similarity on A if s is non-negative, symmetric, and if
s(x,y) 6 s(x,x) holds for all x, y 2 A, with equality if and only if x = y.

The main transforms between a distance d and a similarity s
bounded by 1 are [45]:

d ¼ 1� s; d ¼ 1� s
s

; d ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð1� s2Þ

q
;

d ¼ arccos s; d ¼ � ln s

In this paper, we use the first transform to go from a distance func-
tion to a similarity function.

There are two main approaches to compare two fuzzy sets A1

and A2 using a metric, d(A1,A2). The first approach, based on the
application of the extension principle to a numeric distance such
as the Hamming or Euclidean distances [46–48], to extend their
application to the case of fuzzy sets. The output of such metric is
a fuzzy set. However, it is well known that the set of fuzzy sets
(numbers) is not totally ordered [49], and therefore alternative ap-
proaches might be needed if this type of ordering is required. A
widely used approach in this case is to convert the fuzzy sets into
a representative crisp value, and perform the comparison on these
representative values [50,51]. This is the approach implemented in
this consensus model, with the centroid being the representative
element of the corresponding linguistic label used to compute sim-
ilarity degrees.

Definition 5. The centroid of a type-1 fuzzy set A in a continuous
domain X is calculated as,

cvA ¼
R

x x � lAðxÞdxR
x lAðxiÞ

: ð8Þ

The centroid of linguistic preference plk
i provided by expert ei

when comparing the ordered pair of alternatives (xl,xk) will be de-
noted by cvelk

i . Thus the first step to compute similarity degrees be-
tween experts is to derive their corresponding matrix of centroids.
Example 3 (Example 1 end). We only show here the matrix of
centroids of expert e1:

CVe1 ¼

— 0:0833 0:0833 0:5
0:9167 — 0:75 0:9167

0:75 0:0833 — 0:25
0:5 0:25 0:75 —

0BBB@
1CCCA

Note 1. Unlike previous models [8,38], the elements of the ma-
trix of centroids are now more meaningful and understandable. For
example, the linguistic preference value p14

1 ¼ c2 given by e1 repre-
sents a central assessment of indifference within the linguistic set
C, and therefore its associated representative value should be the
equivalent in the numeric preference domain, i.e. 0.5, as it is the
case with its centroid value, cve14

1 ¼ 0:5.
Definition 6 (Similarity degree between fuzzy sets). Given two
fuzzy sets, A1 and A2, their similarity s(A1,A2) is:

sðA1;A2Þ ¼ 1� dðcvA1 ; cvA2 Þ ð9Þ

In the particular case of TFNs A1 = (a1,b1,c1) and A2 = (a2,b2,c2)
we have cvA1 ¼ ða1 þ b1 þ c1Þ=3 and cvA2 ¼ ða2 þ b2 þ c2Þ=3. Using
the Hamming distance

sðA1;A2Þ ¼ 1� ða1 � a2Þ þ ðb1 � b2Þ þ ðc1 � c2Þ
3

���� ����: ð10Þ

An alternative expression for the distance between TFNs is [52]:

d0ðA1;A2Þ ¼
ja1 � a2j þ jb1 � b2j þ jc1 � c2j

3
:

Expression (10) will be used in this paper.
For each pair of experts ei, ej (i < j), a similarity matrix,

SMij ¼ smlk
ij

� �
, is obtained

smlk
ij ¼ s plk

i ; p
lk
j

� �
ð11Þ
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where smlk
ij represent the similarity degree between the preferences

of the experts ei and ej on the ordered pair of alternatives (xl,xk). The
closer smlk

ij to 1 the more similar plk
i and plk

j are considered, while the
closer smlk

ij to 0 the more distant plk
i and plk

j are considered.
Note 2. By definition, we have smlk

ij ¼ smlk
ji and therefore we can

impose the constraint i < j when computing similarity matrices.

4.1.2. Consensus matrix
As it was mentioned before, consensus within a group of ex-

perts will measure the level of agreement of all the experts in
the group on the question to solve. This definition implicitly im-
plies that consensus can be mathematically modelled by fusing
the similarity degrees previously defined. Thus, the aggregated va-
lue of all the similarity degrees on a particular ordered pair of alter-
natives will represent the degree of consensus of the group of
experts on that particular pair of alternatives. The matrix obtained
in such a way will therefore be referred to as the consensus matrix,
CM = (cmlk), i.e.

8 l; k ¼ 1; . . . ;n : cmlk ¼ /ðsmlk
ij Þ; i; j ¼ 1; . . . ;m ^ i < j: ð12Þ

The operator / represents an appropriate aggregation operator that
will change depending on the problem to be solved or the con-
straints imposed to the problem. For example, if a solution of con-
sensus is to be achieved when ‘most of’ the expert agree on it the
aggregation operator could well be Yager’s OWA operator guided
by the linguistic quantifier representing the concept ‘most of’. Be-
cause, one of our objectives in this papers is to compare the new
consensus methodology here presented with the unification based
consensus model presented in [8], we will be using the simple aver-
age as the aggregation operator /.

Consensus can be measured at the three different levels of the
relation: pair of alternatives, alternatives and relation [53]:

Level 1. Consensus on pairs of alternatives to measure the
degree of consensus of the group of experts on the ordered pair
of alternatives:
cplk ¼ cmlk; 8l; k ¼ 1; . . . ;n ^ l – k: ð13Þ
Level 2. Consensus on alternatives to measure the degree of con-
sensus of the group of experts on the alternatives:
cal ¼
Pn

k¼1;l–kcplk

ðn� 1Þ : ð14Þ
Level 3. Consensus on the relation or global consensus of the group
of experts
cr ¼
Pn

l¼1cal

n
: ð15Þ
Example 4 (Example 1 continuation). The degree of consensus at
the three different levels are:

Level 1. Consensus on pairs of alternatives:

CM ¼

— 0:7706 0:6422 0:6717
0:6039 — 0:5183 0:5839
0:8333 0:5757 — 0:9600
0:6472 0:5600 0:8950 —

0BB@
1CCA.

Level 2. Consensus on alternatives:
ca1 = 0.6948; ca2 = 0.5687;ca3 = 0.7900;ca4 = 0.7007.
Level 3. Global consensus: cr = 0.6886.

4.2. Consensus control

The global consensus degree cr obtained in the previous phase is
compared against a consensus threshold, k, agreed by the set of
expert previous to the application of the consensus process. If cr
is greater or equal than this consensus threshold then the consen-
sus reaching process is considered successful and hence it should
end. Otherwise, the experts need to discuss and attempt to bring
their opinions closer for their consensus degree to increase and
achieve the threshold value set. In the following we present a feed-
back mechanism to generate advice rules to support the experts in
achieving this goal. Note that the model uses a parameter, Max-
rounds, which represents the maximum number of rounds allowed
before stopping the consensus process. In this way the model guar-
antees the end of the process. Both parameters, k and Maxrounds,
must be fixed in advance before starting the consensus process.

4.3. Feedback mechanism

When cr < k a feedback mechanism is activated to generate per-
sonalised advice to some or all of the experts on a number of pref-
erence values that are identified as contribution low to consensus,
i.e. those preference values whose similarity to the corresponding
collective preference value are below the consensus threshold va-
lue. To do this, the following there steps are carried out: Computa-
tion of the collective linguistic preference relation, Identification of the
preference values that should be changed and Generation of advice.

4.3.1. Computation of the collective linguistic preference relation
The collective linguistic preference relation,Pcol, is calculated by

aggregating all experts’ preference relations fPe1 ; . . . ;Pemg at the
level of pairs of alternatives. This aggregation is carried out using
the T1OWA operator:

Pcol ¼ UðPe1 ; . . . ;PemÞ: ð16Þ

In this way, the model can aggregate directly multi-granular lin-
guistic labels represented by fuzzy sets without loss of information,
being this one of the key aspect of the model.

The similarity between the collective linguistic preference val-
ues and the corresponding individual ones will be used to identify
the preferences values to be changed. Thus, the corresponding ma-
trix of centroid, CVcol, associated to the collective linguistic prefer-
ence relation is also computed here.

Example 5 (Example 1 continuation). Fig. 4 shows the individual
linguistic preferences provided by each one of the experts when
comparing the ordered pair of alternatives (x1,x2) (solid lines) and
the aggregation result (dashed line) using the T1OWA implemen-
tation of the average operator.

The collective matrix of centroids is:

CVcol ¼

— 0:1922 0:3341 0:6537
0:6813 — 0:5294 0:6488
0:6238 0:4061 — 0:2695
0:3175 0:4877 0:7588 —

0BBB@
1CCCA

Note 3. The visualisation of expert’s opinions with respect to the
collective one as shown in Fig. 4 constitutes a powerful tool to sup-
port the experts in understanding their standing with respect to,
on the one hand, the group and, on the either hand, another expert
within the group he/she might be interested to follow or analyse. It
can be easily deducted from Fig. 4 that expert e2 is the furthers of
all with respect to the collective linguistic preference, while expert
e3 linguistic preference value is very similar to the collective one.
4.3.2. Identification of the preference values to change
In order to increase the global consensus degree, cr, the first step

is to identify those alternatives that contribute less to consensus,
i.e. the alternatives (xl) with a consensus degree, cal, lower than
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Fig. 4. T1OWA aggregation: solid lines: individual linguistic preferences repre-
sented as TFNs; dashed line: collective linguistic aggregation result, also a TFN.

Table 2
Consensus process results.

Round number Consensus degree Number of changes

First round 0.6885 7
Second round 0.7283 7
Third round 0.7648 End
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the global consensus degree. Next, for each identified alternative,
the pairs of alternatives with a consensus value, cplk, below the glo-
bal consensus degree are proposed to be changed because these are
the values that contribute less to consensus. However, not all ex-
perts will require to modified the identified preference values
but those with a proximity value with respect to the collective
preference at these pairs of alternatives lower than the average
proximity value for the whole group.

Therefore the steps to follow are:
Computing the proximity matrix Using the distance function

(11), a proximity matrix is computed for each expert, PMi ¼ pmlk
i

� 	
:

pplk
i ¼ 1� cvelk

i � cv lk
col

�� �� ð17Þ

where pplk
i represents the proximity between the preference of ex-

pert ei and the collective one on the pair of alternatives (xl,xk).
Identification of alternatives The set of alternatives with a

consensus degree lower than the threshold value is identified:

IA ¼ fl 2 f1; . . . ;ngjcal < crg: ð18Þ

Identification of preferences The set of preference values to
consider for change in the next consensus round is:

IP ¼ fðl; kÞ 2 f1; . . . ;ng2jl 2 A ^ cplk < crg ð19Þ

Preference values to change The set of preference values to
change and the experts that will be requested to change them is:

PC¼ ði; l;kÞ2f1; . . . ;mg�f1; . . . ;ng2 maxfcal;cplkg< cr^pplk
i <

Pm
j¼1pplk

i

m

�����
( )

:

ð20Þ

Note 4. In (20), a general aggregation operator h could be used to
compute the average proximity of the group at the level of pairs
of alternatives, pplk ¼ hðpplk

1 ; . . . ;pplk
mÞ. Thus, the general definition

of the set PC would be:

PC¼ ði; l;kÞ 2 f1; . . . ;mg�f1; . . . ;ng2 maxfcal;cplkg< cr^pplk
i < pplk

��n o
: ð21Þ

Example 6 (Example 1 continuation). Applying the rules given
above we have:

IA ¼ f2g:
IP ¼ fð2;1Þ; ð2;3Þ; ð2;4Þg:
PC ¼ fð2;2;1Þ; ð2;2;4Þ; ð2;2;3Þ; ð4;2;1Þ; ð4;2;3Þ; ð4;2;4Þg:
4.3.3. Generation of advice

The experts previously identify to change some of their prefer-
ences will receive personalised recommendations of the direction
of the change expected to be done if consensus is to be increased.
For all (i, l,k) 2 PC, the following two direction rules are proposed:

DR.1. If cvelk
i � cv lk

col < 0, then expert ei should increase the linguis-
tic assessment associated to the pair of alternatives (xl,xk).

DR.2. If cvelk
i � cv lk

col > 0, then expert ei should decrease the lin-
guistic assessment associated to the pair of alternatives
(xl,xk).

Note 5. The case cvelk
i � cv lk

col ¼ 0 is not possible to happen at
this stage. Indeed, if we have cvelk

i � cv lk
col ¼ 0 then by (17) it would

be pplk
i ¼ 1, i.e. the proximity between the preference value of ex-

pert ei and the collective preference value on the pair of alterna-
tives (xl,xk) would be maximum and, consequently, we would
have that (i, l,k) R PC.

Note 6. It is up to the experts to decide on the magnitude of the
change to implement as the rules only indicate the direction of the
change. Consequently, the model here presented cannot be catego-
rised as an automatic consensus reaching process.

Example 7 (Example 1 end). Assuming that the experts imple-
ment the recommended changes by choosing as new linguistic
preferences the linguistic label that is just before or the following
one in the ordinal scale defined by their meaning and/or the
corresponding centroids of their associated TFNs, we summarise
the main parameters of whole consensus process in Table 2.
5. Comparative study: T1OWA model vs. Unification model

The output of the transformation function, sSST , given in (23)
when applied to linguistic preference values, plk

i , (with TFNs as
membership functions) is a fuzzy set on the BLTS, ST = {c0, . . . ,cg},

~plk
i ¼ sSiST ðplk

i Þ ¼ alk
i0; . . . ;alk

ig

� �
. Formally, this is a discrete type-2

fuzzy sets [54,55]. However, in [6] these type-2 fuzzy set were
transformed into discrete type-1 fuzzy sets by associating to each
element (linguistic label), ch, of the BLTS set its subindex, h, in order
to carry out the next step of the unification based consensus model,
i.e. the computation of the centroid of the unified linguistic prefer-
ences using the discrete version of Eq. (8):

cvelk
i ¼ cv ~plk

i

� 	
¼
Pg

h¼0h � alk
ihPg

h¼0alk
ih

: ð22Þ

The T1OWA based consensus process and the unification based con-
sensus process were applied to six randomly generated GDM prob-
lem with multi-granular linguistic information for comparative
purposes. The following constraints were imposed:

(i) Number of experts and alternatives were kept low as in
Example 1.

(ii) The same three sets A, B and C of symmetric and balanced
linguistic terms of Example 1 were used.

(iii) A consensus threshold c = 0.75 and Max_rounds = 10 were
fixed in advance.
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Both consensus models were implemented and executed with
the mathematical software MATLAB. The T1OWA operations were
carried out using the R-software environment [56]. Fig. 5 depicts
the evolution of the global consensus degree for each model during
the different consensus rounds. The T1OWA based consensus mod-
el achieves a final global consensus higher than the unification
based model in four out of the six cases. Fig. 6 summarises the
changes suggested and implemented in each consensus round as
well as the aggregated number of changes for both models. It can
Fig. 5. T1OWA model vs. Unification model: compa

Fig. 6. Comparison of n
be seen that the unification based model achieves a higher final
consensus degree than the T1OWA based model when its aggre-
gated number of changes is higher, otherwise the T1OWA based
model achieves a higher final degree of consensus.

The above comparison cannot be considered a rigorous tech-
nique because values that differ might not be significantly different
from a statistical point of view. Greater rigour can be achieved
through statistical testing. The Wilcoxon Signed Rank Test [57]
was applied to the final global consensus achieved to ascertain
rison of the evolution of the consensus degree.

umber of changes.



Table 3
Wilcoxon Signed Rank Test data.

TEST SET T1-model U-model Differences Absolute value Rank Signed rank

Example 1 0.7784 0.7648 0.0136 0.0136 3 3
Example 2 0.7518 0.7501 0.0017 0.0017 2 2
Example 3 0.7813 0.7654 0.0159 0.0159 5 5
Example 4 0.8133 0.7758 0.0375 0.0375 6 6
Example 5 0.7931 0.8074 �0.0143 0.0143 4 �4
Example 6 0.7931 0.7944 �0.0013 0.0013 1 �1
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Fig. 7. A multi-granular linguistic unification based CSS model.
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whether or not there was a significant difference between both
consensus model using the centroid values to define consensus
and proximity degrees. Thus, the hypothesis tested was:

H0: The T1OWA based consensus model and the Unification
based consensus model do not produce significantly differ-
ent global consensus degrees.

Table 3 shows the computation necessary to apply the one-
sided Wilcoxon Signed Rank Test, i.e. the alternative hypothesis
was:

H1: The T1OWA based consensus model results in global consen-
sus degrees significantly higher than the Unification based
consensus model.

From Table 3 we compute the statistic: T� = 5, i.e. the sum of
absolute ranks assigned to negative differences. We assume that
a test p-value under the null hypothesis lower than or equal to
0.05 (a) will be considered as significantly different; we refer to
it as the test being significant and therefore we conclude that the
null hypothesis tested is to be rejected. Otherwise, we will fail to
reject the null hypothesis. In terms of the value T�, the null hypoth-
esis tested is to be rejected in favour of the alternative one when T�
is lower than or equal to the critical value. For a sample size of 6,
the critical value is 2 and therefore we conclude that we fail to re-
ject the null hypothesis. We conclude that both consensus models
do not produce significantly different global consensus degrees.

6. Conclusion

In this paper, a new approach of a consensus reaching process
based on the T1OWA operator is proposed to deal with GDM prob-
lems in multi-granular linguistic contexts. Unlike previous consen-
sus models that require balanced linguistic term sets, the new
consensus reaching model allows the direct processing of the
membership functions of the fuzzy sets modelling the linguistic
information and therefore makes the unification process step cur-
rently used in previous models unnecessary. Furthermore, because
the membership functions are nor required to fulfil extra condi-
tions regarding their balanced or unbalanced distribution within
the underlying domain of the variable used to measure prefer-
ences, nor they are required to be of the same shape type, the pro-
posed methodology offers a greater degree of flexibility or
generality in its application than existing models do.

A comparative study between the T1OWA based consensus
model and the unification based consensus model is included using
six randomly generated GDM problems with balanced multi-gran-
ular information. Under the same conditions of application, i.e.
when the distance between fuzzy sets in the T1OWA based ap-
proach is defined as the corresponding distance between their cen-
troids significant differences are found between both consensus
approaches. Arguably, the T1OWA methodology can be used with
guarantee in consensus reaching multi-granular linguistic decision
making problems.
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Appendix A. Multi-granular unification based methodology

In [6], Herrera et al. propose a methodology to deal with multi-
granular GDM problems that is based on the application of a unifi-
cation process by which experts’ preferences are transformed into
a single domain called basic linguistic term set (BLTS), ST. The unifi-
cation based consensus support system (CSS) model is illustrated
in Fig. 7,

Once ST has been selected, the following multi-granular trans-
formation function is applied to model every linguistic value as a
fuzzy set defined on ST:

Definition 7 (Unification transformation [6]). Given two linguistic
term sets S = {l0, . . . , lp} and ST = {c0, . . . , cg}, with g P p, and F(ST)
the set of fuzzy sets defined on ST, the following multi-granular
transformation function sSST : S! FðSTÞ,
sSST ðliÞ¼ fðch;ahÞjah ¼max
y

minflli
ðyÞ;lch

ðyÞg;h¼0; . . . ;gg; ð23Þ

transforms each element of S into a fuzzy set on ST; lli
ðyÞ and lch

ðyÞ
are the membership functions of the fuzzy sets associated to the lin-
guistic terms li and ch, respectively.

The following example illustrates the application of the above
unification transformation function:



l 1

0 0.25 0.5 0.75 1

0 0.16 0.5 0.84 1

l 2 l 3 l 4l 0

C0 C1 C2 C3 C4 C5 C6l 1

Fig. 8. Transforming l1 2 S into a fuzzy set on ST.
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Example 8. Let S = {l0, l1, l2, l3, l4} and ST = {c0,c1,c2,c3,c4,c5,c6} be
two term sets represented with the following TFNs

l0 ¼ ð0;0;0:25Þ c0 ¼ ð0;0;0:16Þ
l1 ¼ ð0;0:25;0:5Þ c1 ¼ ð0;0:16; 0:34Þ
l2 ¼ ð0:25;0:5;0:75Þ c2 ¼ ð0:16;0:34;0:5Þ
l3 ¼ ð0:5;0:75;1Þ c3 ¼ ð0:34;0:5;0:66Þ
l4 ¼ ð0:75;1;1Þ c4 ¼ ð0:5;0:66;0:84Þ

c5 ¼ ð0:66;0:84;1Þ
c6 ¼ ð0:84;1;1Þ

The fuzzy set obtained when applying sSST to l1 is

sSST ðl1Þ ¼ fðc0;0:39Þ; ðc1;0:85Þ; ðc2;0:85Þ; ðc3;0:39Þ; ðc4;0Þ; ðc5;0Þ; ðc6;0Þg:

This is depicted in Fig. 8:
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