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P. Reche López a, F. Jurado b,�, N. Ruiz Reyes a, S. Garcı́a Galán a, M. Gómez b
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a b s t r a c t

This paper introduces a binary particle swarm optimization-based method to accomplish optimal

location of biomass-fuelled systems for distributed power generation. The approach also provides the

supply area for the biomass plant and takes technical constraints into account. This issue can be

formulated as a nonlinear optimization problem. In rural or radial distribution networks the main

technical constraint is the impact on the voltage profile. Biomass is one of the most promising

renewable energy sources in Europe, but more research is required to prove that power generation from

biomass is both technically and economically viable. Forest residues are here considered as biomass

source, and the fitness function to be optimized is the profitability index. A fair comparison between the

proposed algorithm and genetic algorithms (GAs) is performed. For such goal, convergence curves of the

average profitability index versus number of iterations are computed. The proposed algorithm reaches a

better solution than GAs when considering similar computational cost (similar number of evaluations).

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable electricity generation has emerged as one of the
favored options for dealing with fossil fuel depletion, green house
gas emissions and subsequent adverse effects like global warm-
ing. As an outcome of the Kyoto protocol, one of the European
Union’s objectives is to increase the contribution of renewable
energy sources up to 12% of the total energy supplied by 2010.

Biomass is one of the most promising renewable energy
sources in Europe, but more research is required to prove that
power generation from biomass is both technically and economic-
ally viable. In such sense, some interesting results can be found in
Kumar et al. (2003) and Jurado and Cano (2006). The main
advantage of biomass-based power generation is that the cycle of
growth and combustion of biomass has a net zero level of CO2

production. Also, the use of biomass generates employment and
rural economic progress where it takes place, contributing to
sustainable development.

There are many forms of biomass, the forest residues
constitute one of the most important biomass sources. In this
paper, we are concerned with forest residues as biomass source.
They are not habitually convertible in by-products. However, they
can be used as organic fuel, providing the following additional
ll rights reserved.
advantages: reducing forest pests, decreasing the forest fire risk,
reducing environmental impacts, etc. The principle factors to
assess the possibilities of forest residues to generate electrical
energy are: forest vegetation density, type of trees, accessibility
and orography of the terrain, age of the forest vegetation, size of
tops, needles, branches, etc.

There are several options to produce electricity from biomass:
combustion, gasification and pyrolysis, gasification being the most
efficient one. Gasification of biomass is a thermal treatment,
which ensues in a high production of gaseous products and small
amounts of char and ash. Steam reforming of hydrocarbons,
partial oxidation of heavy oil residues, selected steam reforming of
aromatic compounds, and gasification of coals and solid wastes to
yield a mixture of H2 and CO, accompanied by water–gas shift
conversion to produce H2 and CO2, are well-proved processes
(Jurado et al., 2001).

Gas derived from biomass gasification is a renewable fuel,
which can be used for electricity production. The gasifier heats
with limited oxygen supply the forest residues, the final result
being a very clean-burning gas fuel suitable for direct use in gas
turbines or gas engine. In this article, the chosen biomass-fuelled
system is a fuel cell-microturbine hybrid power cycle.

A fuel cell is an electrochemical device that converts chemical
energy directly into electrical energy. It is based on the inverse
reaction of the electrolysis. Different types of fuel cells exist with
different performances and components. The classification is
based on the electrolyte, resulting in the following types of fuel
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cells: proton exchange membrane fuel cell (PEMFC), phosphoric
acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid
oxide fuel cell (SOFC) (Ellis et al., 2001). Among them, the most
promising one is the SOFC. It is composed of an electrolyte
metallic oxide, no porous and good conductive, it can be
manufactured in different geometric setups (planar, tubular,
monolithic, etc.) and it is characterized fundamentally by their
high operating temperature (between 800 and 1000 1C). These
high temperatures simplify system configuration by permitting
internal reforming and accepting their components determined
gases that are very polluting for another type of fuel cells. The
high operating temperatures facilitate the development of
cogeneration systems as well as hybrid power systems formed
by the own fuel cell and a gas turbine. The thermal energy
generated by electrochemical reactions in the fuel cell is utilized
to produce more output power by a gas turbine. As result, higher
overall efficiency is expected (approximately 60%) in comparison
to that obtained from individual systems (Ellis et al., 2001;
Williams et al., 2004; Kuchonthara et al., 2003).

Microturbines (MT) generate between 25 and 200 kW of
electricity. Their relatively low cost and small size allow them to
be located near where they are needed. They can operate at very
low emission levels and reduce the efficiency losses and
environmental impact of large transmission and distribution
systems. In this paper, SOFC is associated with a biogas
microturbine (SOFC-MT system) to produce electric power (Jurado
and Saenz, 2003; Jurado, 2003).

A biomass-based power system presents the problem of
determining the optimal placement and the supply area for the
biomass plant in order to provide a given electric power. It is
probably that distributed generation (DG) will consider some
distributed source connected to remote areas, where electric
networks are weak and the demand is small. Given the more
resistive feature of the distribution networks, it is awaited that
generators will have a significant impact, positive or negative in
unlike circumstances, on the voltage profile. As a result, a
planning technique for DG must study the effect that generation
will have on the network voltage. In rural or radial distribution
networks the main constraint for the power flow is the impact on
the voltage profile (Jurado and Cano, 2006). As a result, the DG
planning technique must include an appropriate power flow
technique. When a realistic problem formulation with all above-
mentioned considerations is to be solved, most analytical,
numerical programming or heuristic methods are unable to work
well. In recent years, artificial intelligence (AI)-based methods,
such as genetic algorithms (GAs), have been applied to similar
problems with promising results (Boone and Chiang, 1993).
Meanwhile, some new AI-based methods have been introduced
and developed. Although these AI-based methods do not always
guarantee the globally optimal solution, they provide suboptimal
(near-globally optimal) solutions in short CPU times. This paper
employs a modern AI-based method, particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995;
Kennedy, 1997), to solve the problem of determining the optimal
placement and the supply area for a biomass-fuelled system. In
this work, the fitness function for the PSO algorithm is the
profitability index (Eq. (21)).

PSO is a nature-inspired evolutionary stochastic algorithm
developed by Kennedy and Eberhart (1995). This technique,
motivated by social behavior of organisms such as bird
flocking and fish schooling, has been shown to be effective in
optimizing multidimensional problems. PSO, as an optimization
tool, provides a population-based search procedure, in which
individuals, called particles, change their positions (states)
with the time. In a PSO system, particles fly around in a
multidimensional search space. During flight, each particle
adjusts its position according to its own experience,
and the experience of neighboring particles, making use of the
best position encountered by itself and its neighbors. The main
advantages of PSO are: (1) it is very easy to be implemented and
(2) there are few parameters to adjust.
2. Particle swarm optimization

2.1. Classical approach

The classical PSO algorithm is initialized with a swarm of
particles randomly placed on the search space. At the tth iteration,
position of the ith particle is updated by adding to its previous
position the new velocity vector, according to the following
equation:

xt
i;j ¼ xt�1

i;j þ vt
i;j; i ¼ 1; . . . ; P; j ¼ 1; . . . ;N (1)

where xt
i ¼ ½x

t
i;1; . . . ; x

t
i;N� denotes the position vector of the ith

particle at the tth iteration, and vt
i ¼ ½v

t
i;1; . . . ; v

t
i;N� represents the

velocity vector of the ith particle at the tth iteration, N being the
number of variables of the function to be optimized and P the
number of particles in the swarm.

The velocity vector vt
i is updated according to the following

equation:

vt
i;j ¼ o � vt�1

i;j þ c1 � rand1i
� ðpbestt�1

i;j � xt�1
i;j Þ

þ c2 � rand2i
� ðgbestt�1

� xt�1
i;j Þ (2)

where pbestt�1
i ¼ ½pbestt�1

i;1 ; . . . ;pbestt�1
i;N � is the best solution

achieved for the ith particle at the ðt � 1Þth iteration, and
gbestt�1

¼ ½gbestt�1
1 ; . . . ; gbestt�1

N � is the best position found for
all particles in the swarm at the ðt � 1Þth iteration. c1 and c2 are
positive real numbers, called learning factors or acceleration
constants, that are used to weight the particle individual knowl-
edge and the swarm social knowledge, respectively. rand1i

and
rand2i

are real random numbers uniformly distributed between 0
and 1, that make stochastic changes in the ith particle trajectory.
Finally, o is the inertia weight factor, which represents the
weighting of a particle’s previous velocity; a suitable selection of
inertia weight in (2) provides a balance between global and local
explorations, thus requiring less iterations on average to achieve a
suboptimal solution.

From Eq. (2), we can find that the current flying velocity of a
particle comprises three terms. The first term is related to the
particle’s previous velocity, revealing that a PSO system has
memory. The second and third terms represent the cognitive-
model part and the social-model part, respectively.

2.2. Binary PSO

The classical version of the PSO algorithm operates in a
continuous search space. In order to solve optimization problems
in discrete search spaces, several binary discrete PSO algorithms
have been proposed. In this section some of these algorithms are
briefly reviewed.

In a binary discrete space the position of a particle is
represented by a N-length bit string and the movement of the
particle consists of flipping some of these bits.

Kennedy and Eberhart (1997) propose the first binary
version of PSO. This algorithm updates the velocity vector vt

i

according to Eq. (2), but variable vt
i;j is interpreted as the

probability of the bit at position j of particle i at the tth
iteration to become ‘1’. Since the computed velocity can be
greater than 1.0 or even less than 0.0, a sigmoid function
(Eq. (3)) is applied to variable vt

i;j in order to transform velocity
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values into the range ½0:0;1:0�.

Sðvt
i;jÞ ¼

1:0

1:0þ e�vt
i;j

(3)

The position of the ith particle in Kennedy and Eberhart (1997)
is updated according to expression

xt
i;j ¼

‘ 1’ if ðrandoSðvt
i;jÞÞ

‘ 0’ otherwise

(
(4)

where rand is a real random number uniformly distributed
between 0 and 1.

Afshinmanesh et al. (2005), propose a different binary PSO
algorithm. In this algorithm distance and velocity are defined as
the changes in bits of a binary string. The algorithm uses the
Hamming distance, and the logical AND (‘�’), OR (‘þ’) and XOR (‘�’)
operators. The procedure for updating particle position and
velocity can be summarized as follows:

xt
i;j ¼ xt�1

i;j � vt
i;j; i ¼ 1; . . . ; P; j ¼ 1; . . . ;N (5)

vt
i;j ¼ c1i;j

� dt�1
1i;j
þ c2i;j

� dt�1
2i;j

(6)

where c1i ¼ ½c1i;1
; . . . ; c1i;N

� and c2 i ¼ ½c2i;1
; . . . ; c2i;N

� are random N-
length binary strings, whose components are ‘0’ or ‘1’ with the
same probability. In Eq. (6), d1

t�1
i ¼ ½dt�1

1i;1
; . . . ; dt�1

1i;N
� is the distance

vector (in the Hamming sense) between the position of the ith
particle at the ðt � 1Þth iteration and its previous best position
(pbestt�1

i ¼ ½pbestt�1
i;1 ; . . . ;pbestt�1

i;N �, and d2
t�1
i ¼ ½dt�1

2i;1
; . . . ; dt�1

2i;N
� is

the Hamming distance vector between the position of the ith
particle at the ðt � 1Þth iteration and the previous global best
position (gbestt�1

¼ ½gbestt�1
1 ; . . . ;gbestt�1

N �. The Hamming dis-
tance is computed by means of the XOR operator:

dt�1
1i;j
¼ pbestt�1

i;j � xt�1
i;j (7)

dt�1
2i;j
¼ gbestt�1

j � xt�1
i;j (8)

This algorithm is completed with a mechanism based on an
artificial immune system in order to limit the maximum number
of bits with value ‘1’ in the velocity vector.

Amonchanchahigul and Kreesuradej (2006) propose other
different approach to the Binary PSO. The learning process of
each particle considers three methods: learning from the global
best value, learning from the best value found for each particle
and learning without any reference value. In Rastegar et al. (2004),
a binary PSO algorithm based on learning automata can be found.
Finally, in Sadri and Suen (2006) concepts as birth and mortality
rates are incorporated into the Kennedy and Eberhart’s (1997)
binary PSO, in order to combine GA ideas with PSO.

In this work, we have applied a improved version of the binary
PSO algorithm proposed in Afshinmanesh et al. (2005), which
incorporates a inertia weight factor, as in the classical continuous
approach (Kennedy and Eberhart, 1995). In the proposed binary PSO
algorithm, particle position (xi) and particle velocity (vi) are N-
length binary vectors. Particle position is updated by using the XOR
operator instead of real adding, as in Afshinmanesh et al. (2005):

xt
i;j ¼ xt�1

i;j � vt
i;j; i ¼ 1; . . . ; P; j ¼ 1; . . . ;N (9)

In our approach, the velocity vector can be interpreted as a change
vector. Thus, if vt

i;j ¼ ‘ 1’ , then xt
i;j ¼ x̄t�1

i;j , x̄t�1
i;j being the logical

negation of xt�1
i;j . However, if vi;j ¼ ‘ 0’ , then xt

i;j ¼ xt�1
i;j (no change

happens).
The velocity vector (change vector) is updated by applying the

following equation:

vt
i;j ¼ ōi;j þ oi;j � ðc1i;j

� ðpbestt�1
i;j � xt�1

i;j Þ

þ c2i;j
� ðgbestt�1

j � xt�1
i;j ÞÞ (10)
where vectors pbestt�1
i ¼ ½pbestt�1

i;1 ; . . . ;pbestt�1
i;N �, gbestt�1

¼

½gbestt�1
1 ; . . . ; gbestt�1

N �, c1i ¼ ½c1i;1
; . . . ; c1i;N

� and c2i ¼ ½c2i;1
; . . . ; c2i;N

�

have already defined, and symbols ‘þ’ and ‘�’ represent the logical
OR and AND operators, respectively.

The remaining terms are now defined:
�
 xi ¼ ½oi;1; . . . ;oi;N� is the inertial vector of the ith particle. It is a
random N-length binary vector, whose components are ‘0’ with
probability Po.

�
 x̄i ¼ ½ōi;1; . . . ; ōi;N� is the one’s complement of inertial vector xi.

In our improved binary PSO approach, a very important parameter
is probability Po, here called inertial probability. As just stated, bits
in xi are ‘0’ with probability Po. Inertial probability decreases with
the number of iterations, in such a way that at the initial iterations
(high Po values) the algorithm explores the search space and at the
last iterations (low Po values) the algorithm exploit the search
space.

It must be noted that if oi;j ¼ ‘ 0’ , then vt
i;j ¼ ‘ 1’ , and so

position of the ith particle is changed. However, if oi;j ¼ ‘ 1’ , the
movement of the ith particle at the tth iteration is conducted by
pbestt�1

i and gbestt�1 solutions, with a partially stochastic
behavior due to the random learning vectors c1i and c2 i.

The idea is to allow particle swarm to perform a random
exploration over the space search at the initial iterations. Later,
when the swarm has acquired enough knowledge about the
problem, the movement of each particle is mainly conducted by
pbesti and gbest solutions. In this work, an exponentially
decreasing function is used for probability Po:

Pt
o ¼ P1

o expð�l � ðt � 1ÞÞ; t ¼ 1;2; . . . ; tmax (11)

where Pt
o is the inertial probability at the tth iteration, P1

o the
initial inertial probability and tmax the maximum number of
iterations. Parameter l is computed as follows:

l ¼

ln
P1
o

Ptmax
o

 !

tmax � 1
(12)

where Ptmax
o is the final inertial probability.
3. Problem description and coding of the solution

3.1. Problem description

The problem to be solved consists on determining the optimal
location of a forest residues-based biomass power plant. The size
of the generation system depends on: (1) biomass quantity that
can be collected and (2) selection of parcels where to collect the
biomass. Location of power plant (parcel p) mainly depends on the
characteristics of considered parcels. In this work, K parcels of
constant area have been regarded, all of them characterized by a
predominant biomass type (forest residues in this work). These
parcels also present other relevant characteristics, such as
accessibility (Freppaz et al., 2004).

The values of the variables involved in the problem are
obtained from databases or geographic information systems
(GIS). In this work, a raster-based GIS has been considered. A
raster model represents the region under study as a tessellation,
with grid cells having a certain length and width and covering the
entire rectangular area of interest. The values in a given cell
(sometimes called pixel) represent the geographic feature set
corresponding to the entire cell area. The real world is modelled as
a complete covering of square cells. For the problem here
considered, raster data model is better suited than vector data
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model, because it is required to deal with the overlaying of
different geographic features (or variables) (Harmon and Ander-
son, 2003). The geographic variables considered in this work are
the following:
�
 Si: Area of parcel i ðkm2
Þ.
�
 Ui: Usability coefficient of parcel i. It is applied to take into
account only the usable surface.

�
 Di: Net density of dry biomass yield from parcel i

ðton=ðkm2 yrÞÞ.

�
 LHVi: Lower heat value of biomass in parcel i (MW h/ton).

�
 Lp: Length of the electric line that connects the power plant to

the grid (km).

�
 distðp; iÞ: Distance between parcel i and the power plant, which

is located in parcel p (km).

�
 Ccui

: Biomass collection unit cost in parcel i ðh=tonÞ.

Therefore, given the total mean efficiency of the electric genera-
tion system, Z, the electricity produced, Eg (MW h/yr), is equal to

Eg ¼ Z �
XK

i¼1

ðSi � Ui � Di � LHViÞ (13)

Assuming a plant running time of T(h/yr), the electric power,
Pe(MW) is

Pe ¼
Eg

T
(14)

Compliance with limits associated to technical constraints
(voltage and generated power) is an underlying objective for DG
systems, which requires particular attention. The best solution
can be found in terms of other objectives (in this work, the
profitability index), but if this solution violates the technical
constraints of the DG system, it might not be feasible. Voltage
regulation is one of the principal problems related to DG and
distribution networks, and in many cases it represents a barrier to
the large diffusion of DG on the distribution system. Therefore, for
a solution to be acceptable, voltage must be between a lower and
an upper bound. On the other hand, generated power must be
smaller than a fixed limit, but close to it.

3.2. Coding of the solution

The optimization problem to be addressed in this work could
be considered a real coded problem (decision variables and fitness
function are real valued). However, the way in which geographic
data are represented in a raster-based GIS approach limits the
accuracy of the obtained solutions by real coded algorithms, such
as classical PSO or real coded GAs. Therefore, a discrete
optimization (binary PSO) has been considered more suitable
than a continuous one.

Before using the proposed Binary PSO to determine location of
the biomass power plant, the representation of a feasible solution
(particle position) must be defined. A solution consists of three
parts: (1) X component of plant location; (2) Y component of plant
location; and (3) size of supply area for the power plant. These
components are binary Gray coded in order to exploit some useful
properties of Gray code related with the Hamming distance.

We have considered a rectangular search space with x 2 ½1; LX �

and y 2 ½1; LY �, LX and LY being sizes in X- and Y-dimension,
respectively. Supply area is a square shaped region which has the
plant at the centroid. In order to obtain not only the location of the
power plant but also the supply area, a prefixed number of supply
region sizes have been assumed (i.e. size number 0 corresponds to
a 1� 1 region, size number 1 corresponds to a 3� 3 region and
maximum size number S corresponds to a ð2 � Sþ 1Þ � ð2 � Sþ 1Þ
region). Thus, the total number of bits used to code the solution is

N ¼ log2 LX þ log2 LY þ log2 S (15)

4. Objective function: profitability index

The objective function takes into consideration costs and
benefits. Specifically, initial investment and collection, transpor-
tation, maintenance and operation costs are considered, together
with benefits from the sale of electrical energy. Therefore, the
profitability index is chosen as the objective function.

In this section some interesting parameters to evaluate the
profitability index of the project are reviewed. The initial
investment, the present value of cash inflows (benefits) and cash
outflows (costs) and the net present value are studied and adapted
to the particularities of this work.

4.1. Initial investment

The initial investment (INV) for the design, construction of the
generation plant and required equipment is expressed as

INV ¼ INVf þ Is � Pe þ CL � Lp (16)

where INVf is the fixed investment ðhÞ, Is is the specific investment
ðh=MWÞ and CL the electric line cost ðh=kmÞ.

4.2. Cash inflows

The present value of cash inflows (PVIN) is obtained from the
sold electric energy during the useful lifetime, Vu. It can be
written as

PVIN ¼ pg � Eg �
Kg � ð1� KVu

g Þ

1� Kg
(17)

where pg is the selling price of the electric energy injected to the
network ðh=MW hÞ, Eg the sold and produced electric energy
(MW h/yr) and Kg ¼ ð1þ rgÞ=ð1þ dÞ, rg being the annual increase
rate of the sold energy price and d the nominal discount rate.

4.3. Cash outflows

The present value of cash outflows (PVOUT) is the sum of the
following costs during the useful lifetime of the plant: annual
collection cost, Cc, annual transport cost, Ct and annual main-
tenance and operation costs, Cmo.

The annual cost of biomass collection is Cc ¼PK
i¼1ðCcui

� Ui � Si � DiÞ.
The annual cost of biomass transport is Ct ¼

PK
i¼1ðCtui

�

Ui � Si � Didistðp; iÞÞ, where Ctui
is the biomass transport unit cost

in parcel i ðh=ðtonkmÞÞ.
The annual maintenance and operation costs are

Cmo ¼ Cmof þm � Eg, where Cmof is the fixed annual cost of
maintenance and operation, which mainly consists of the
minimum labor cost of the plant ðh=yrÞ, and m is the average
maintenance cost ðh=MW hÞ.

Finally, the present value of cash outflows is

PVOUT ¼ Cc �
Kc � ð1� KVu

c Þ

1� Kc
þ Ct �

Kt � ð1� KVu
t Þ

1� Kt

þ Cmo �
Kmo � ð1� KVu

moÞ

1� Kmo
(18)

where Kc ¼ ð1þ rcÞ=ð1þ dÞ, Kt ¼ ð1þ rtÞ=ð1þ dÞ and
Kmo ¼ ð1þ rmoÞ=ð1þ dÞ, rc being the annual increase rate
of Cc, rt the annual increase rate of Ct and rmo the annual increase
rate of Cmo.
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Table 1
Electrical characteristics of the radial feeder

Resistance per unit 0.1793

Reactance per unit 0.1542

Load at each node (nodes from 1 to 10) (MW) 0.5

Table 2
Standard values for parameters (SOFC-MT system)

Parameter Value

Z 0.6

INVf ðhÞ 1:5� 106

CL ðh=kmÞ 3� 104

pg ðh=MW hÞ 100

Cmof ðh=yrÞ 2:4� 105

d 0.08

rc 0.06

rmo 0.04

T (h/yr) 7500

Is ðh=MWÞ 2� 106

Vu (yr) 15

Ctui
ðh=ðTon kmÞÞ 0.3

P. Reche López et al. / Engineering Applications of Artificial Intelligence 21 (2008) 1389–1396 1393
4.4. Net present value

The present value (PV) of an investment is the present value of
cash inflows (PVIN) minus the present value of cash outflows
(PVOUT) during the useful lifetime of the plant. Therefore, it can be
written as

PV ¼ PVIN � PVOUT (19)

The net present value (NPV) is defined as the present value (PV)
minus the initial investment (INV):

NPV ¼ PV� INV (20)

4.5. Profitability index

The fitness function that has been used in this work is the
profitability index (PI) which is defined as follows:

PI ¼
NPV

INV
¼

PVIN � PVOUT � INV

INV

¼
PVIN � PVOUT

INV
� 1 (21)

An investment is profitable when PI40.
m ðh=MW hÞ 4.0

rg 0.04

rt 0.08
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5. Experimental results

The region considered to apply the proposed method
consists of 128� 128 ¼ 16 384 parcels of constant surface,
Si ¼ 0:0625 km2. The size of the supply area for the power plant
is coded by 6 bits (26

¼ 64 different sizes are possible). The region
is covered by natural forest vegetation, the forest residues being
the biomass source. In the region under study, there are parcels
where neither extraction of forest residues nor placement of the
generation plant is possible. The region under study and the single
line diagram illustrating the topology of the test distribution
network are shown in Fig. 1.

A radial feeder with 10-nodes, as shown in Fig. 1, is considered
to assess the performance of the proposed optimization approach.
The radial feeder is connected through a substation (the so-called
slack node, which corresponds to node no. 1) to a sub-transmis-
sion system. The electrical characteristics of the considered radial
feeder are presented in Table 1. More detailed information about
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Fig. 1. Region under study, showing possible injection nodes to the distribution

electrical network.

20 40 60 80 100 120

120

Fig. 2. Theoretical biomass potential (ton=ðkm2 yrÞ).
the considered radial feeder can be found in Wang and Nehrir
(2004).

As shown in Table 1, the electrical distribution system is
composed of uniformly distributed loads. The biomass power
plant is added to the distribution system as a new node (node
no. 11).

The available information for each parcel comprises Si, Ui, Di,
LHVi, Lp, distðp; iÞ and Ccui

. Other parameter values are shown in
Table 2.

Fig. 2 presents the theoretical biomass potential, which is
defined from the net density of dry biomass that can be obtained
at any parcel, Di (ton=ðkm2 yrÞ), and provides a measure of the
primary biomass resource.

Fig. 3 shows the available biomass potential. It has been
created taking the following parameters into account:
Di ðton=ðkm2 yrÞÞ, Ui, Siðkm2

Þ and LHVi (MW h/ton). Multiplying
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Table 3
Results about the profitability index

Results Profitability index

Mean 0.8561

Standard deviation 0.0123

Highest value 0.8723

Fig. 5. Optimal location and supply area of the biomass power plant for the best

found solution.
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the four variables for all the parcels that comprise the entire
region, it results the available biomass potential, expressed in
(MW h/yr), as depicted in Fig. 3.

Simulation data are: P ¼ 15, N ¼ 20 and tmax ¼ 50. A trade-off
solution between profitability index and computational cost
has been searched when choosing the population size P. The
technical constraints to be considered in simulations are: (1) the
electric power generated by the plant is limited to Pemax ¼ 2 MW;
(2) the voltage cannot be above 1.05 per unit or below 0.95 per
unit; and (3) the generation system must be located inside the
supply area.

The performance of our binary PSO algorithm has been
assessed by computing the influence of probability P1

o on the
profitability index for the chosen value of the population size
(P ¼ 15). Experimental results illustrating that influence are
shown in Fig. 4, which are based on 30 replicate simulation runs.

As can be seen in Fig. 4, the quality of the solution provided by
PSO increases with parameter P1

o until a maximum is reached at
P1
o ¼ 0:3. In our experiments, this behavior has been observed for

all considered values of parameter P (i.e. the profitability index
increases with the initial inertia probability until P1

o ¼ 0:3,
regardless of the population size). These experiments have also
evidenced that a good election for the final inertial probability is
Ptmax
o ¼ 0:001.
Once parameters for the proposed binary PSO approach have
been properly chosen, we ran the optimization algorithm 30
times, the results about the profitability index being shown in
Table 3.

As shown in Table 3, it has been achieved a value above
zero for the profitability index. Therefore, the investment is
profitable. However, energy from biomass, like all other
forms of renewable energy, requires the support of market
instruments, such as the renewable energy national programmes
in order to make more profitable investments. Under these
programmes, renewable energy suppliers can obtain grants.
Nowadays, the grants in Spain are worth approximately
0:12h=kW h (Ministerio de Industria and Comercio y Turismo,
2007).

Fig. 5 shows the optimal location and the supply area of the
biomass power plant for the best found solution. For this solution,
the proposed PSO algorithm provides the following output
values: profitability index, PI ¼ 0:8723; net present value, NPV ¼
4:7937 Mh; generated electric power, Pe ¼ 1:9941 MW; supply
area: 162:5625 km2.

As shown in Fig. 5, the biomass power plant is connected
through node 6 to the distribution system. Note that node 6 is the
closest one to the biomass power plant.

Further, Fig. 6 shows the voltage profile for the best found
solution (highest value of the profitability index).

As shown in Fig. 6, the voltage profile is kept within the
allowed limits. As expected, node 1 (slack node) and node 11
(biomass power plant) present a voltage magnitude equals to 1
per unit, the later one being PV type (active power and voltage
magnitude are constant values). In addition, since the biomass
power plant is linked through node 6 to the distribution system,
this node exhibits a voltage magnitude higher than that of
neighbor nodes. Note that the voltage magnitude decreases as
nodes go away from node 6 due to the voltage drop across the
distribution system.
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Table 4
Number of evaluations of the fitness function for both PSO and GAs

Metaheuristic Number of evaluations

Binary PSO P þ P � tmax ¼ 15þ 15� 50 ¼ 765

GA P þ dP�SR
2 e � 2 � tmax ¼ 18þ d18�0:8

2 e � 2� 50 ¼ 818
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Fig. 7. Convergence curves for both algorithms (binary PSO and GAs).
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Finally, comparative results between the proposed binary PSO
algorithm and GAs for the problem we deal with are reported. The
main characteristics of the GA used in this work are:
�
 Selection mechanism. Here, the so-called elitist strategy has
been used in order to include into the gene pool the best found
solutions.

�
 Crossover operator. In this work, single-point crossover is

performed.

�
 Mutation operator. The exponentially decreasing function in

Eq. (12) has been used for the mutation probability.

The mutation probability at the beginning of the algorithm (P1
m)

and the selection rate (SR) have been fixed to be 0.1 and 0.8,
respectively, which are typical values found in the literature. With
the aim to perform a fair comparison between both metaheur-
istics, the number of evaluations of the fitness function must be
similar in both approaches. In such sense, the population size for
GAs has been chosen to be P ¼ 18, the number of evaluations
being compared in Table 4.

Note that the number of evaluations per iteration is 15 and 16
for PSO and GAs, respectively.

Fig. 7 compares the mean value of the profitability index as a
function of the number of iterations when 30 replicate simulation
runs are performed.

As shown in Fig. 7, the proposed binary PSO algorithm
converges to better solutions than GAs. The results also show
that the proposed binary PSO algorithm converges to good
solutions in few iterations.
6. Conclusions

This paper has presented an AI-based method to determine the
optimal supply area and location for an electric generation system
based on biomass. The proposed AI-based method is a binary
version of the PSO algorithm, which makes use of the profitability
index as objective function. The solutions are coded using 20 bits.
The paper has evidenced that a good planning technique must
consider the technical constraints of the network, the voltage
regulation being one of the principal problems to be addressed for
DG systems. Computer simulations have shown the good
performance of the proposed method in comparison to GAs.
Further, acceptable solutions (PI ¼ 0:8561, on average) has been
reached in few iterations. Therefore, convergence is quickly
reached and computational cost is 220=ð51� 15Þ � 1370 times
lower than that required for exhaustive search.
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