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a b s t r a c t

In this work a method for an unsupervised lateral localization of simultaneous sound sources is presented.
Following a binaural approach, the kurtosis-driven split-EM algorithm (KDS-EM) implemented is able to estimate
the direction of arrival of relevant sound sources without knowing a priori their number. Information about the
localization is integrated within a period of observation time to serve as an auditory memory in the context
of social robotics. Experiments have been conducted using two types of observation times, one shorter with
the purpose of analyzing its performance in a reactive level, and other longer that allows the analysis of its
contribution as an input of the building process of the sorroundings auditory models that serves to drive a
more deliberative behavior. The system has been tested in real and reverberant environments, achieving a good
performance based on an over-modeling process that is able to isolate the location of the relevant sources from
adverse acoustic effects, such as reverberations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Hearing is a prominent sense for communication and socializa-
tion (Argentieri et al., 2015). Thus, auditory capabilities should be
strengthened in those robots that aim to present a social behavior.
Moreover, for both human and robots auditory capabilities, the stage
of sound localization is one of the most important low-level auditory
function (Argentieri et al., 2013). Human hearing allows to localize
and distinguish individual sources from a complex mixture of sounds,
which allows for example to listen to, and follows, one speaker in
the presence of others (situation that has been called ‘‘the cocktail
party problem’’ (Cherry, 1953, 1957). Indeed, following the approach
of mimic human hearing system (bioinspired approach), research in
robot audition has became an important topic for robotics (Argentieri
et al., 2015, 2013). The implementation of such ability in a social
robot would allow to establish conversations not only in noisy situations
with several speakers, but also in residential environments with sounds
originated from audio devices such as TV and radio equipments, and in
presence of typical background noises that may be disturbing in Human–
Robot Interaction (HRI). Moreover, robot audition can be exploited
with the goal of building an acoustic map, which in turn is a typical
approach widely used with other sensor inputs in robotics, such as visual
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information, odometry and laser data. Thus, an acoustic map can be used
as an input to higher layers of an attentional mechanism, which is useful
not only improving the interaction capabilities with a human speaker,
but also in order to move towards a source of interest, track a mobile
source, or merge the information with visual features (Ferreira et al.,
2013; Viciana-Abad et al., 2014).

The localization of multiple sound sources is still an open problem
in the Computational Auditory Scene Analysis field (CASA) (Wang and
Brown, 2006), especially when two microphones are used with the
aim of emulating the human auditory system. Within the scope of
localization, binaural cues such as interaural time and level differences,
together with monaural cues, can be used to determine azimuth and
elevation angles, and even the distance to the source under certain
conditions. The lateral localization cues are related with the interaural
time difference (ITD) (Argentieri et al., 2015; Wang and Brown, 2006;
Stern et al., 2006), since the wave sound arrives slightly earlier in time
at the ear (or microphone) that is closer to the source, unless the source
is located directly in front of the head. This difference is also known as
time difference of arrival (TDOA) (May et al., 2013; Cobos et al., 2011)
because it depends on the direction of arrival of the wave sound, and
thus on the lateral localization of the source relative to the microphones.
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The estimation of the ITD is probably the most critical aspect of
binaural processing. Many models of binaural processing are based on
the cross correlation of the signals arriving to the two ears after being
processed by the auditory periphery, or based on other functions that
are closely related to cross correlation (Stern et al., 2006). The notion
of an interaural cross-correlation mechanism is broadly supported by
physiological studies, which have revealed systematic arrangement of
ITD-sensitive neurons in the auditory midbrain (Wang and Brown,
2006). While the first reported cells to be maximally sensitive to signals
presented with a specific ITD were placed in the inferior colliculus in
the brain stem, cells with a similar response have been later reported
in other parts of it (Stern et al., 2006). However, although in some
cases the goal is to better understand the human auditory system, and
thus it is important to accurately simulate the functionality or even the
physiological structure of the auditory pathway, this is not mandatory
in the case of robotics. Indeed, in robotics, usually the knowledge about
the human hearing system is only applied as far as it can improve the
system performance (Kohlrausch et al., 2013).

Binaural signals have been already successfully used for the direction
estimation of concurrent speakers (Dietz et al., 2010; Nikunen and Di-
ment, 2016). Indeed, the source separation achieved by using direction
of arrival (DOA) algorithms together with beamforming techniques has
also allowed increasing the intelligibility in scenarios with more than
one speaker (Nikunen and Diment, 2016). However, those approaches
still require knowing a priori the number of sources, limiting therefore
its applicability to tasks developed for a robot in a real scenario.

The purpose of this work is the unsupervised detection of the direc-
tion of arrival of multiple sound sources in reverberant environments,
without a priori knowledge of the number of sources of interest. To
achieve this goal, the method is divided into two steps as it is done in
Wang and Brown (2006), May et al. (2013) and Bregman (1990). First,
the distribution of direction of arrival is achieved by dividing the signal
in different frames and second, a grouping stage is proposed to integrate
the information belonging to each single sound source. This approach is
inspired on the assumption of the existence of innate bottom-up auditory
primitive grouping processes that contribute to form coherent audio
streams in an acoustic scene (Wang and Brown, 2006; May et al., 2013;
Bregman, 1990). In Bregman (1990) it is stated that these grouping
processes are governed by mechanisms analogous to those proposed
by the Gestalt psychologists for visual perception. While in the vision
field, the Gestalt principles of grouping (also known as law of prägnanz)
are based on visual properties such as proximity, similarity, continuity,
etc. for objects perception, the auditory grouping processes rely on
physical properties such as proximity in frequency and time, periodicity
or common spatial location (Wang and Brown, 2006; Bregman, 1990). In
particular, based on the common spatial location property, concurrent
sounds originated from the same location in space tend to be grouped
by these innate bottom-up processes in the human auditory system.

In our approach the grouping stage is based on an Expectation–
Maximization (EM) algorithm. The EM algorithm has been widely used
in many fields such as robot mapping (Thrun et al., 1998; Burgard et al.,
1999) visual learning tasks (Wu and Huang, 2002), and location in
radiocommunications (Roos et al., 2002). In this work the EM algorithm
is employed under the assumption that the sources generate a Laplacian
distribution of direction of arrival samples. Other works have also used
this assumption to employ the EM technique for binaural multiple sound
localization (Cobos et al., 2011; Zhang and Rao, 2010). However in
Cobos et al. (2011), the number of sources must be known a priori and in
Zhang and Rao (2010) the estimated number is based on a criterion that
may penalize high order models, while in the method proposed in this
paper, high order models are of interest since they can be used to isolate
acoustic artifacts that may be detrimental for the localization task. In
Escolano et al. (2014) the localization of multiple sources is achieved
also based on Laplacian distributions, although via Bayesian inference,
where the number of sources is estimated while the model is computed.
However, the method presents a limit in terms of the maximum number
of sources to be detected and it presents a high computational load.

In this work a kurtosis-driven split-EM is proposed to be used
in a robotic platform that will integrate the audio information in
two different stages, being the period of observation used to run the
algorithm the main difference among these two application levels. In
one stage, the audio information related to the lateral localization of
sources will be integrated within an observation time of 10 s. This level
of processing can be used for a deliberative layer as, for example, within
an inner model of the robot and its surroundings. The data about a
source of interest will include not only its lateral localization relative to
the robot, but also information of the percentage of time it has shown
activity respect to the rest of sources within the observation time. These
localization results are compared with those extracted from a second
stage, which is featured with an observation time of 2 s. This new
processing stage is run to endorse a robotic platform with the feasibility
of exhibiting a more reactive behavior needed for HRI.

The rest of this paper is organized as follows: Section 2 presents
the technique used to compute the ITDs and the directions of arrival
for single frames based on the computation of the Generalized Cross
Correlation-Phase Transform (GCC-PHAT) algorithm. Then, Section 3
describes with detail the proposed kurtosis driven split-EM method
to achieve the localization of multiples sources. Section 4 presents
experiments in two different scenarios and a comparison with a state
of the art approach. Finally, Section 5 discusses the main conclusions
and outlines future work.

2. Detection of the direction of arrival from Short-Time Fourier
Transform

Different techniques have been proposed in the literature for the
localization of sound sources based on the Short-Time Fourier Transform
(STFT) of the signals registered at a pair of microphones (Wang and
Brown, 2006; Cobos et al., 2011; Yilmaz and Rickard, 2004; Wang et
al., 2016).

In an anechoic and noise-free model, where only the direct path
between a source and a microphone is considered, the signals that arrive
at two microphones from 𝐾 acoustic sources can be expressed as:

𝑦1(𝑡) =
𝐾
∑

𝑘=1
𝑎1,𝑘 𝑠𝑘(𝑡 − 𝑇1,𝑘) (1)

𝑦2(𝑡) =
𝐾
∑

𝑘=1
𝑎2,𝑘 𝑠𝑘(𝑡 − 𝑇2,𝑘), (2)

being 𝑠𝑘(𝑡) the 𝑘th source signal, 𝑎1,𝑘 and 𝑎2,𝑘 the attenuation coefficients
and 𝑇1,𝑘 and 𝑇2,𝑘 the time delays associated with the path from the 𝑘th
source to microphones 1 and 2, respectively.

The microphone signals are synchronously sampled at frequency 𝑓𝑠,
frame-decomposed and expressed into the time–frequency (T–F) domain
via short-time Fourier transform (STFT). The microphone signal in the
T–F domain can be expressed by means of:

𝑌1(𝑖, 𝑛) =
𝐾
∑

𝑘=1
𝑎1,𝑘 𝑆𝑘(𝑖, 𝑛) 𝑒−𝑗 2𝜋 𝑓𝑖 𝑇1,𝑘 (3)

𝑌2(𝑖, 𝑛) =
𝐾
∑

𝑘=1
𝑎2,𝑘 𝑆𝑘(𝑖, 𝑛) 𝑒−𝑗 2𝜋 𝑓𝑖 𝑇2,𝑘 , (4)

where 𝑗 =
√

−1 and 𝑆𝑘(𝑖, 𝑛) is the STFT of the 𝑘th source signal at
frequency index 𝑖 in the framework index 𝑛. The term 𝑓𝑖 is the analog
frequency that corresponds to frequency index 𝑖.

Given this model, the inter-channel phase difference (IPD) is defined
as:

𝜓(𝑖, 𝑛) = ∠
𝑌1(𝑖, 𝑛)
𝑌2(𝑖, 𝑛)

, (5)

where 𝜓(𝑖, 𝑛) is the inter-channel phase difference.
Based on an frame-by-frame scheme, it is assumed that only one

source is active in each frame. In this work, the TDOA is computed from
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Fig. 1. Geometrical interpretation of the relation between direction of arrival, 𝑥, and time
difference of arrival, 𝜏.

IPD by means of the well known GCC-PHAT cross correlation algorithm
(Knapp and Carter, 1976). The GCC-PHAT is computed as follows Wang
et al. (2016):

𝑅(𝑛)(𝜏) = |

|

|

∑

𝑖
𝑒𝑗𝜓(𝑖,𝑛) 𝑒𝑗2𝜋𝑓𝑖𝜏 ||

|

= |

|

|

∑

𝑖
𝑒−𝑗2𝜋𝑓𝑖⋅(𝜏𝑘−𝜏)

|

|

|

|

|

, (6)

From Eq. (6), the TDOA of the active source in the 𝑙th frame is
estimated as 𝜏(𝑛) = argmax𝜏𝑅(𝑛)(𝜏) such that 𝜏(𝑛) ∈

{

𝜏𝑘
}𝐾
𝑘=1. Notice

that, by using this approach, the localization task can be performed in a
specific bandwidth [𝑓𝑖min

, 𝑓𝑖max
]. This feature will endorse this algorithm

with the feasibility of being part of an attentional mechanism that
follows a top-down approach (Basiri et al., 2016). Thus, the bandwidth
can be selected as a decision of the high layers.

In general, if the sources are enough far to consider plane wave
incidence, it can be shown (see Fig. 1) that the lateral localization of
the active source in the 𝑛th frame is given by Eq. (7).

𝑥(𝑛) = arccos
(

𝑐 𝜏(𝑛)

𝑑

)

, (7)

being 𝑥(𝑛) the direction of arrival (DOA) of the active source in the
𝑛th frame, 𝑑 the distance between the microphones, and 𝑐 the speed
of sound.

Hence, the localization from the 𝐾 sources can be estimated via the
TDOA computations of the signals. This process has as the outcome a
set of observated direction-of-arrival angles. This set can be used as the
input of a grouping stage that may integrate the information belonging
to each single sound source. So, similarly to the human auditory system,
only those properties that are needed for the particular task of lateral
localization are extracted, without the necessity of performing the
separation and reconstruction of the individual signals (May et al.,
2013).

To make more efficient the computation of Eqs. (3), (4) and (6), Fast
Fourier Transform algorithm (FFT) is used. The blocks of power-of-two
length 𝐿𝑤 are padded trailing zeros to compute FFTs of size 2⋅𝐿𝑤. In this
manner, the spectral resolution is improved. This scheme is summarized
in Fig. 2.

Blocks with low energy usually correspond to silence periods. Thus,
the DOAs that come from frames with energy below a threshold are not
considered in the subsequent grouping stage.

3. The Kurtosis driven split-EM algorithm

For each frame with enough energy, a dominant source DOA estima-
tion, 𝑥(𝑛), is obtained as explained in Section 2. In Cobos et al. (2011)
it is shown that the Laplacian mixture model fits the distribution of the
arrival angles, where the mixture model order, 𝐾, coincides with the
theoretical number of sources. Thus, our goal is to determine the mixture

Fig. 2. Computation of the dominant direction of arrival in the 𝑛th frame.

parameters, that is to say, the values for 𝚯 =
{

𝛼𝑘, 𝜇𝑘, 𝜎𝑘
}𝐾
𝑘=1, being 𝛼𝑘

the mixing probabilities (a priori probability), 𝜇𝑘 the mean and 𝜎𝑘 the
standard deviation of the 𝑘th Laplacian component.

The estimation of the model parameters 𝚯̂ is performed according to
the maximum likelihood (ML) criterion by maximizing the log-likelihood
function, 

(

𝑋𝑜𝑏𝑠,𝚯
)

. Given a set of 𝑁 DOA observations 𝑋𝑜𝑏𝑠 =
{

𝑥(1),… , 𝑥(𝑁)} =
{

𝑥(𝑛)
}𝑁
𝑛=1, the log-likelihood function corresponding

to a 𝐾-order Laplacian mixture model is:


(

𝑋𝑜𝑏𝑠,𝚯
)

=
𝑁
∑

𝑛=1
log

⎛

⎜

⎜

⎜

⎝

𝐾
∑

𝑘=1
𝛼𝑘

exp
(

−
√

2 ⋅ |𝑥(𝑛)−𝜇𝑘|
𝜎𝑘

)

√

2 ⋅ 𝜎𝑘

⎞

⎟

⎟

⎟

⎠

(8)

The optimization problem 𝚯̂ = argmax𝚯
(


(

𝑋𝑜𝑏𝑠,𝚯
))

has no analyt-
ical solution. In Dempster et al. (1977) the Expectation–Maximization
(EM) algorithm was used to provide a numerical solution. This algo-
rithm produces a sequence of estimations of the model parameters
{

𝚯̂(𝑡)}

𝑡=0,1,2…
by iteratively applying two steps (first Expectation and

then Maximization) until convergence of the log-likelihood is achieved
or the maximum number of iteration, 𝑇max, is reached. Alternating these
two steps, the EM algorithm increases monotonically the likelihood of
the observations𝑋𝑜𝑏𝑠, yielding thus an optimum in the ML sense (Redner
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and Mixture densities, 1984). Although the classic EM algorithm reaches
the ML solution, this technique has two main drawbacks to consider:

∙ The number of components, 𝐾 should be known beforehand.
∙ The algorithm success relays on the correct initialization. Thus,

the number of iterations until convergence may depend on the
initial solution, i.e. 𝚯̂ =

{

𝛼(0)𝑘 , 𝜇(0)𝑘 , 𝜎(0)𝑘
}𝐾

𝑘=1
. In addition, an

inappropriate initialization may lead to a premature convergence
to a local optimum.

In the literature, several methods have been proposed to select
among a set of candidate models (Rissanen, 1989; Schwarz, 1978) the
one that contains the optimal number of components. An approach
based on information theory concept is Rissanen’s minimum description
length (MDL) (Rissanen, 1989). This selection criteria considers the
maximized log-likelihood of each model, the number of adjustable pa-
rameters and the number of samples. The Schwarz’s Bayesian inference
criterion (BIC) (Schwarz, 1978) is a similar approach that formally
coincides with MDL. The main limitation of the MDL criterion is the
assumption that the distribution of interest can be approximated by a
mixture of a unique parametric family (for instance, all Gaussians or all
Laplacians). Thus, if the data distribution corresponding to a particular
component of the mixture drastically deviates from the general family
shape, the MDL criterion may fails choosing the optimal model. Another
limitation of the MDL criterion is the need of estimating the maximized
log-likelihood as it may be difficult when the number of samples is
not large enough or EM algorithm prematurely converges. To overcome
this limitation, in Lu and Traore (2006) the number of components of
a Gaussian mixture has been obtained from a genetic EM algorithm
by defining a proper entropy-based fitness function. In Vlassis and
Likas (1999) the number of Gaussian components has been dynamically
obtained from the overall kurtosis of the mixture. In our approach,
the kurtosis is also used to obtain the model order as it is described in
Section 3.1.

3.1. The Kurtosis-driven split-EM (KDS-EM) algorithm

In order to overcome the drawbacks of the classic EM above men-
tioned, we propose a kurtosis-driven split-EM (KDS-EM) algorithm,
specifically designed for the localization of acoustic sources in reverber-
ant environments. As in Vlassis and Likas (1999) the splitting process
is driven for the value of the kurtosis of all the components that
build the mixture. The main novelty of our approach is the use of a
stochastic mutation procedure to initialize different order classic-EM
executions. Unlike (Vlassis and Likas, 1999) we use real time processed
data approximately fitted to Laplacian mixtures instead of a synthetic
Gaussian mixture data. Our approach also incorporates a stopping
criterion and a mechanism for discarding the non relevant kernels both
particularized to our real acoustic scenario.

The initialization procedure is based on splitting the least Laplacian
kernel of a previous solution obtained by EM. It is well known that the
excess kurtosis of a Gaussian distribution is equal to zero, whereas for a
Laplacian distribution is three, therefore, we can state that the further
the excess kurtosis of a given Kernel is from three, the less Laplacian the
kernel is.

The technique presented here is based on the following main pro-
cesses: (1) exploring a set of candidate models for a range of values of
the mixture order, 𝐾, and selecting the solution that better models not
only the acoustic sources but also the reflections and noisy effects of
the environment; (2) initializing the 𝑚 order model computation with
the modification of the previous solution (reached for the (𝑚 − 1) order
model), by applying a mutational split to the component exhibiting a
excess kurtosis value furthest than 3; and (3) discarding those kernels of
the finally selected model which are less relevant and can be attributed
to undesired effects, such as reflections.

The KDS-EM algorithm is described by the flow diagram shown in
Fig. 3. The computation of the different models is performed by running

the classic EM. This algorithm finishes when 𝑡, the number of iterations,
has reached the maximum allowed value (𝑇max = 50) or the following
convergence criteria is satisfied:
|

|

|


(

𝑋𝑜𝑏𝑠, 𝚯̂(𝑡)) − 
(

𝑋𝑜𝑏𝑠, 𝚯̂(𝑡−1))
|

|

|

< 0.5 × 10−4

The main procedures of the KDS-EM algorithm are described as
follows.

Initialization based on the analysis of the histogram. As it can be seen in
the first stage of Fig. 3, the first execution of the classical EM requires
an initialization that cannot be based on lower order models. Our initial
hypotheses are: (1) each acoustic source has generated at least the 5%
of the whole observation samples; (2) all the kernels corresponding to
each acoustic source have similar standard deviation; and (3) the means
of each kernel are approximately equal to the positions of the histogram
local maximums.

Therefore, we have analyzed the histogram to estimate the number of
acoustic sources (initial mixture order) and compute the initial values
of the parameters of the mixture kernels (mixing probabilities, means
and standard deviations). The initialization is made in accordance with
the following rules:

∙ The initial mixing probabilities are proportional to the height of
the peaks. The peaks corresponding with kernels with a priori
probabilities lower than 𝑈𝑖𝑛𝑖𝛼 = 0.05 are discarded and initially
considered irrelevant.

∙ The number of relevant local maximum of the histogram is the
initial mixture order, 𝐾0.

∙ The initial means of each kernel are initialized with the positions
of the relevant local maximum.

∙ The initial standard deviations of each kernel are initialized with
the same value, which is computed as the standard deviation of
the set of observations divided by the squared root of the initial
mixture order, i.e.:

𝜎𝑘 =

√

∑𝑁
𝑛=1 (𝑥(𝑛))

2

𝑁 −
(

∑𝑁
𝑛=1 𝑥

(𝑛)

𝑁

)2

√

𝐾0
(9)

Mutational splitting driven by Kurtosis analysis. The splitting procedure
provides an initialization of the next order model computation via
running the EM algorithm (see Fig. 3). The goal of this procedure is
minimizing the number of iterations until convergence. The procedure,
which has a random component, consists in obtaining a 𝑚 order model
by slightly modifying the (𝑚−1) order model. This 𝑚 order model is used
to re-start the execution of the EM algorithm. As previously mentioned,
the splitting operation is driven by the excess kurtosis of the (𝑚 − 1)
order model kernels. Once the computation of the (𝑚 − 1) order model
is completed, the excess kurtosis of the 𝑘th component is obtained by
Eq. (10).

𝜅𝑘 =

[

1
𝑁𝑘

𝑁
∑

𝑛=1
𝑃
(

𝑘||
|

𝑥(𝑛)
)

(

𝑥(𝑛) − 𝜇𝑘
𝜎𝑘

)4]

− 3 (10)

The kernel with the excess kurtosis furthest from 3 is selected
to obtain two new components from it, as it is considered the least
Laplacian kernel. The splitting process of the kernel with a set of
parameters

{

𝛼𝑖𝑛𝑖, 𝜇𝑖𝑛𝑖, 𝜎𝑖𝑛𝑖
}

has as output two kernels with parameters
{

𝛼𝑠1 , 𝜇𝑠1 , 𝜎𝑠1
}

and
{

𝛼𝑠2 , 𝜇𝑠2 , 𝜎𝑠2
}

according to the following rules:

∙ The mean of one new kernel is initialized to the mean of the
selected kernel, i.e. 𝜇𝑠1 = 𝜇𝑖𝑛𝑖.

∙ The mean of the second kernel 𝜇𝑠2 , is obtained by means of
a stochastic process similar to the mutation operators used in
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Fig. 3. Flow diagram for the KDS-EM algorithm.

evolutionary algorithms (Beyer and Schwefel, 2002). Thus, the
initial value for the mean of the second kernel is obtained as:

𝜇𝑠2 = 𝜇𝑖𝑛𝑖 ± 𝑠 ⋅ 𝑢 ⋅ 𝜎𝑖𝑛𝑖 (11)

where 𝑢 is a random number from a uniform distribution on the
unit interval and 𝑠 is the mutation strength that in this work has
been fixed to 1. The positive sign in Eq. (11) is selected whenever
the angle of arrival distribution shows more observations with
values higher than 𝜇𝑖𝑛𝑖. Otherwise the negative sign is used.

∙ The mixing probabilities and the standard deviations of the
new kernels are randomly chosen but keeping the following
conditions: (1) 𝛼𝑠1 + 𝛼𝑠2 = 𝛼𝑖𝑛𝑖 and (2) 𝜎2𝑠1 + 𝜎

2
𝑠2

= 𝜎2𝑖𝑛𝑖.

Selection of the best model. In the proposed algorithm the selection of the
best model is a consequence of the stopping criterion used in the splitting
process. The model selected is the one that maximizes the number of
components, with just the limitation of having a minimum distance
between two means greater than 10◦, i.e.: ||

|

𝜇𝑖 − 𝜇𝑗
|

|

|

> 10◦ ∀𝑖 ≠ 𝑗. This
criterion is proposed since in real applications it is reasonable to assume
that two speakers are not usually placed so close to each other (Wang et
al., 2016; May et al., 2013). Moreover, this limitation is also biologically
plausible since it is known that the smallest detectable change in angular
position is about 7◦ in the human localization task of single sinusoidal
sources that get away from the median plane (Stern et al., 2006).

Discarding of the irrelevant kernels. As it can be seen in Fig. 3, the last
stage is the responsible of choosing the relevant sources. The irrelevant
kernels discarded are considered to be the consequence of scattering,
reflections and other undesired noisy effects. Thus, after completing the
model selection and the splitting operations, the model is refined by
removing those kernels having a mixing probability 𝛼𝑘 lower than a
threshold (computed as the 25% of the other kernel mixing probability
average value). We have also considered irrelevant those kernels with
a height lower than the 40% of the other kernels average height, being
the height of the 𝑘th kernel defined by ℎ𝑘 = 𝛼𝑘∕

(

𝜎𝑘
√

2
)

.
As an example, the kernels estimation performed within a fragment

of 2 s (see Section 4) is represented in Fig. 4a. This figure shows that
the two sources are estimated together with reflections and other noisy
artifacts, by means of six kernels. Then the irrelevant ones are discarded,
obtaining an accurate detection as their observations have not been
included in the kernels chosen as sources of interest (see Fig. 4b). Table 1
shows in more detail the values of mean, mixing probability and height
of the kernels involved in the discarding process. The resulting model
shown in Fig. 4b is obtained after applying the discarding process that
removes kernels 1, 2, 4 and 6, highlighting therefore as the relevant
sources those ones having directions of arrival 𝜇3 = 77.8◦ and 𝜇5 =
133.0◦.
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Fig. 4. Relative frequency histogram and probability density function for Laplacian mixture distribution. (a) Model with six kernels for an observation time of 2 s with two real sources
in a reverberant environment. (b) Selected kernels after the discarding process.

Table 1
Mean, mixing probability and height of the kernels (𝜇𝑘 , 𝛼𝑘 , ℎ𝑘) included in the model de-
scribed as an example in Fig. 4a. The parameters of the relevant kernels, which can be seen
in Fig. 4b, are marked in bold.

𝑘th kernel 𝜇𝑘 𝛼𝑘 ℎ𝑘
1 𝜇1 = 29.7◦ 𝛼1 = 0.07 ℎ1 = 0.005
2 𝜇2 = 41.8◦ 𝛼2 = 0.04 ℎ2 = 0.009
3 𝝁𝟑= 𝟕𝟕.𝟖◦ 𝜶𝟑= 𝟎.𝟒𝟎 𝒉𝟑= 𝟎.𝟎𝟓𝟒
4 𝜇4 = 108.3◦ 𝛼4 = 0.14 ℎ4 = 0.007
5 𝝁𝟓= 𝟏𝟑𝟑.𝟎◦ 𝜶𝟓= 𝟎.𝟐𝟔 𝒉𝟓= 𝟎.𝟎𝟒𝟔
6 𝜇6 = 158.7◦ 𝛼6 = 0.09 ℎ6 = 0.008

4. Experiments and results

The main goal of the experiments described is to evaluate the per-
formance of the proposed algorithm (described in Section 3) estimating
the localization of the active sound sources in the surroundings of the
robot. In particular, the algorithm is tested considering its usage for
two purposes, and therefore as part of two different stages of a robotic
platform architecture. First, the feasibility of employing the algorithm as
a type of auditory sensor will be evaluated. This is essential to integrate
acoustic information perceived for a long period of time (Lu et al.,
1992), in this case with the goal of performing the lateral localization
of the sources. In a robotics context this information may be useful as
an input for an inner model of the robot and its surroundings, being
the purpose of this inner model the internalization of the perceived
information coming from multiple sensory sources as a support for
a cognitive architecture (Calderita et al., 2014). Thus, the mean 𝜇𝑘,
mixing probability 𝛼𝑘 and height ℎ𝑘 values of the relevant sources are
interesting parameters to characterize the sound sources included in
this inner model. For such purpose, an analysis time of 10 s has been
established.

Second, the algorithm may also exhibit enough accuracy detecting
sources in shorter temporal segments. Through this second evaluation,
we can also measure the extent to which the KDS-EM algorithm may
serve in a reactive component of a robotic platform. Thus, the estimation
of the audio source in short periods of time can be exploited as an input
for a reactive mechanism (Viciana-Abad et al., 2014).

Considering this experimental rationale, for each experiment pre-
sented, the localization results for a single analysis of 10 s will be shown
(named as long-term analysis or LT-A) together with the results for
shorter segments of 2 s for the same time frame (named as short-term
analysis or ST-A). Shorter observation times could not provide enough
number of samples to obtain accurate results from the EM algorithm. In
the second analysis the results obtained in some of the 2 s segments are
reported.

In addition, a comparison with an alternative Bayesian inference ap-
proach is made with audio recordings that contains two, three and four
simultaneous sources. In this case, 30 realizations of the experiments are
made, with the purpose of analyzing both average and variance values in
the localization task. This comparison also considers the computational
cost and other limitations.

4.1. Experimental setup

A similar robotic head configuration has been used that in Viciana-
Abad et al. (2014). The audio hardware is formed by two AKG C 417
PP omnidirectional microphones that are separated by 13.5 cm, and
connected via an M-Audio USB Interface A/D device working at a sample
frequency of 44.1 kHz. The frames are obtained by windowing with a
Hann window with a 50% overlap. The size of the block 𝐿𝑤 has been
set to 1024 samples, being equivalent to 23.2 ms, that guarantees the
stationarity property of a voice signal. In the frequency domain, the
setup achieves a spectral resolution of Δ𝑓𝑖 ≈ 21.5 Hz. Also a minimum
energy threshold has been established in such a way that just the DOA
estimations of frames with energy over the threshold are considered.
The threshold has been established as the 75% of the average value
considering all the frames within the observation period.

Through the experiments, several speakers have been placed in front
of the robotic head at a distance of 1.5 m and with different azimuth
angles. The speakers have been requested to be simultaneously talking
along the time of the experiments. In addition, a single computer speaker
has been used in some cases in order to introduce in the environment
the sound of an internet streaming radio at a fixed position.

4.2. Experiment 1

This experiment is carried out with different numbers of active sound
sources placed in a large room used as a computing laboratory (from
now on referred as Scenario 1). The Scenario 1 setup is sketched in
Fig. 5.a. Although there are computers, tables, chairs and tool-boxes, this
experiment has been made in a non-highly reverberant environment and
with free space between the sound sources and the microphone array.
The different configurations (type and number of sources) considered
and the results obtained are detailed below.

One speaker. The speaker is placed in 𝑆1 as it is shown in Fig. 5.a. As
can be seen in Table 2, in this situation, results of the LT-A (10 s) report
the same sources positions than results obtained with the ST-A (2 s). The
execution of a KDS-EM algorithm leads to a small number of splitting
processes (1 or 2). Thus, the model obtained was built upon just one
or two kernels due to the low reverberant conditions of scenario 1, the
output of irrelevant kernel discarding process consists of just one kernel
placed at the direction-of-arrival of the speaker, approximately 63◦.

Two speakers. The speakers are placed in 𝑆1 and 𝑆3 as it is indicated
in Fig. 5.a. In this experiment (see Table 2), results of the LT-A are not
coincident with the output of the ST-A in some cases, as in some of these
short periods one of the speakers was silent in nearly all the frames. The
algorithm execution yields to a small number of splitting processes (1 or
2) with an initial model of 2 kernels built upon the histogram analysis. As
in the previous test, the final model does not have a number of kernels
much higher than the number of active sound sources. Thus, in this
case the LT-A exhibits a more accurate estimation of possible speakers
positions (or active sources) while the ST-A highlights the more relevant
source for a reactive behavior.
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Fig. 5. Floor plan of Scenario 1. The microphones are placed in 𝑀1 and 𝑀2 (distance 𝑑 between microphones is not represented at scale, 𝑑 = 13.5 cm). (a) In the experiment 1, the
sound sources can be placed in some of the following positions 𝑆1, 𝑆2 and 𝑆3, depending of the speakers’ number. (b) In the experiment 2, the speaker is placed in the position 𝑃1 and
the musical sound source (loudspeaker) is placed in the position 𝑃2.

Table 2
Results obtained from some realizations of Experiment 1.

Number of
sources

Analysis
time

Number of
kernels/splits

Detected sources 𝑆𝑖 and
kernel parameters (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖)

One speaker LT-A: 2/2 𝑆1(62.2◦ , 0.85, 0.49)
ST-A: 1/1 𝑆1(61.7◦ , 1, 0.27)
ST-A: 1/1 𝑆1(63.7◦ , 1, 0.05)

Two speakers LT-A: 3/2 𝑆1(59.6◦ , 0.38, 0.20)
𝑆3(121.9◦ , 0.48, 0.37)

ST-A: 3/2 𝑆1(59.2◦ , 0.38, 0.21)
𝑆3(121.4◦ , 0.48, 0.55)

ST-A: 2/1 𝑆1(60.2◦ , 0.41, 0.09)

Three speakers LT-A: 3/1 𝑆1(59.2◦ , 0.31, 0.05)
𝑆2(90.9◦ , 0.18, 0.07)
𝑆3(122.4◦ , 0.50, 0.05)

ST-A: 3/1 𝑆1(58.9◦ , 0.40, 0.05)
𝑆2(91.0◦ , 0.14, 0.04)
𝑆3(121.6◦ , 0.46, 0.05)

ST-A: 3/1 𝑆1(58.5◦ , 0.44, 0.56)
𝑆2(90.8◦ , 0.17, 0.07)
𝑆3(123.4◦ , 0.39, 0.03)

ST-A: 4/3 𝑆3(122.0◦ , 0.49, 0.69)
ST-A: 3/1 𝑆2(91.1◦ , 0.33, 0.16)

𝑆3(123.1◦ , 0.54, 0.04)

Long-term analysis (10 s): LT-A; Short-term analysis (2 s): ST-A; Detected Source: 𝑆𝑖;
Mean, mixing probability and height of the kernel corresponding to 𝑆𝑖: (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖).

Three speakers. The speakers are placed in 𝑆1, 𝑆2 and 𝑆3 as it is
indicated in Fig. 5.a. As in the two speakers’ case, all the speaker have
been correctly detected at their positions 60◦, 90◦ and 120◦ in the LT-A
(see Table 2). However, in the ST-A, there are cases where some of the
sources are considered irrelevant, appearing 1, 2 or 3 of them.

In general, in this scenario the ST-A only requires one splitting step.
An exception is marked in bold in Table 2, here the final model needs 3
splitting steps because the initial model (obtained from the histogram)
has a low number of kernels.

Table 3
Results obtained from some realizations of Experiment 2.

Analysis
time

Detected sources 𝑃𝑖
kernel parameters (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖)
without LPF

Detected sources 𝑃𝑖 and
kernel parameters (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖)
with LPF

LT-A 𝑃2(124.7◦ , 0.93, 2.05) 𝑃1(66.4◦ , 0.44, 0.06)
𝑃2(123.4◦ , 0.46, 0.09)

ST-A 𝑃2(124.7◦ , 0.94, 1.96) 𝑃1(59.7◦ , 0.58, 0.03)
𝑃2(123.1◦ , 0.42, 0.07)

ST-A 𝑃2(124.7◦ , 1, 3.04) 𝑃1(65.9◦ , 0.54, 0.07)
𝑃2(123.5◦ , 0.42, 0.06)

Scenario 1 with one speaker (66◦) and one musical source (125◦) without low pass
filter (LPF) and with LPF (cut frequency at 3.4 kHz). Detected Source: 𝑃𝑖; Mean, mixing
probability and height of the kernel corresponding to 𝑃𝑖: (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖).

4.3. Experiment 2

The purpose of this second experiment is to evaluate the performance
of the KDS-EM algorithm with musical sources. Thus, with this goal two
tests have been made in Scenario 1 (computing laboratory already used
for experiment 1) with the sound sources placed as it is shown in Fig. 5.b.
Both tests share the same experimental set-up and the only difference is
the use of a low-pass filter (LPF) with a cut frequency of 3.4 kHz. The
cut frequency is selected to keep only the main spectral components in
the human voice signal (Argentieri et al., 2015).

One speaker and one musical source without filtering. Due to differences
in the bandwidth and the sparsity property, the musical source is the
dominant one in the DOAs estimation in both, LT-A and ST-A. As can be
seen in Table 3, for all the ST-A results the voice source is not detected
and moreover, the mixing probability of the musical source 𝛼𝑘 is nearly
1.0.

One speaker and one musical source with low-pass filtering. In this case,
the results are similar to those obtained with two speakers in the same
scenario (see Table 2); being therefore the low-pass-filtering necessary
to properly discriminate the active speakers from other sound sources.
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Fig. 6. Floor plan of Scenario 2. The microphones are placed in 𝑀1 and 𝑀2 (distance
𝑑 between microphones is not represented at scale, 𝑑 = 13.5 cm). The sound sources are
placed in 𝑆1 and 𝑆2.

4.4. Experiment 3

The third group of tests has been carried out in a different room
(Scenario 2, which is depicted in Fig. 6). In this case, the room is much
smaller and with objects of different types placed near the microphones,
which causes the apparition of acoustic artifacts in the computation
of the direction of arrival values (Perez-Lorenzo et al., 2012) (see
Fig. 4). In this experiment, it has been simulated the situation where
two people are speaking at the same time, with the goal of analyzing
the performance of the KDS-EM algorithm in an scenario featured with
more adverse auditory conditions.

One speaker. Table 4 shows the results with just one voice source active
in the room. Both the LT-A and ST-A detect the source at a position close
to 130◦. Compared with the situation of just one source in Scenario 1
(Table 2), in the Scenario 2 the method has used a greater number
of kernels for the final model. It is said that the algorithm has over-
modeled the active sources. This over-modeling is due to the presence
of acoustic artifacts that correspond with kernels considered irrelevant
in the discarding process. Thanks to this process, they can be isolated to
avoid a lower accurate detection of the source of interest.

Two speakers. As can be seen in Table 4, the KDS-EM algorithm was
able to properly detect and locate the two active sources in both cases,
ST-A and LT-A. Indeed, the performance is similar to that exhibited de-
tecting two speakers in Scenario 1. Again, the main difference between
experiment 1 and 3 is mainly due to the different auditory conditions of
the scenarios. Thus, due to the more adverse conditions of this scenario
(reverberant, undesired effects, etc.) the algorithm has employed models
with a higher number of kernels (3, 4 and even 6) for just two sources.
One of the models obtained in the ST-A has been represented in Fig. 4,
where four splitting processes have been required to obtain the final
model.

4.5. Comparison with a Bayesian inference method

Methods that extend the binaural GCC-PHAT algorithm to simul-
taneously determine the number of speech sources and their lateral
localization in an unsupervised way are not very common in the litera-
ture. Here, the proposed method is compared with the one presented
in Escolano et al. (2014), where the localization of multiple speech
sources is achieved via Bayesian inference to estimate the model that
best fits with a localization histogram, also under the assumption of

Table 4
Results obtained from some realizations of Experiment 3.

Number of
sources

Analysis
time

Detected sources 𝑆𝑖 and
kernel parameters (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖)

Number of
kernels/splits

One speaker LT-A: 𝑆2(132.4◦ , 0.64, 0.17) 4/1
ST-A: 𝑆2(128.8◦ , 0.93, 0.04) 3/2
ST-A: 𝑆2(132.6◦ , 0.55, 0.13) 3/2
ST-A: 𝑆2(130.2◦ , 0.79, 0.07) 3/1
ST-A: 𝑆2(130.4◦ , 0.89, 0.06) 2/1

Two speakers LT-A: 𝑆1(76.5◦ , 0.52, 0.02) 4/1
𝑆2(130.5◦ , 0.36, 0.01)

ST-A 𝑆1(76.8◦ , 0.44, 0.06) 4/3
𝑆2(138.0◦ , 0.30, 0.02)

ST-A 𝑆1(76.6◦ , 0.32, 0.15) 4/3
𝑆2(131.0◦ , 0.47, 0.03)

ST-A 𝑆1(77.8◦ , 0.40, 0.05) 6/4
𝑆2(133.0◦ , 0.26, 0.05)

ST-A 𝑆1(76.8◦ , 0.45, 0.38) 3/1

Long-term analysis (10 s): LT-A; Short-term analysis (2 s): ST-A; Detected Source: 𝑆𝑖;
Mean, mixing probability and height of the kernel corresponding to 𝑆𝑖: (𝜇𝑖 , 𝛼𝑖 , ℎ𝑖).

Table 5
Sources lateral positions in the experiment performed to compare KDS-EM and a Bayesian
inference method (Escolano et al., 2014).

𝑆1 𝑆2 𝑆3 𝑆4

𝜇1 = 53◦ 𝜇2 = 76◦ 𝜇3 = 104◦ 𝜇4 = 127◦

Table 6
Comparison results for two, three and four simultaneous sources. The algorithms are exe-
cuted 30 times for each experiment, and both mean and variance of the sources localization
are computed.

Number of
sources

Method Detected sources
(mean, variance)

Two speakers Nested sampling: 𝑆1(52.24◦ , 0.08)
𝑆2(76.38◦ , 0.05)

KDS-EM: 𝑆1(53.84◦ , 0.55)
𝑆2(79.00◦ , 0.25)

Three speakers Nested sampling: 𝑆1(52.51◦ , 0.07)
𝑆2(76.55◦ , 0.04)
𝑆3(102.51◦ , 0.01)

KDS-EM: 𝑆1(49.43◦ , 0.35)
𝑆2(77.07◦ , 0.10)
𝑆3(102.77◦ , 0.04)

Four speakers Nested sampling: 𝑆1(53.00◦ , 0.15)
𝑆2(76.90◦ , 0.05)
𝑆3(103.29◦ , 0.06)
𝑆4(127.23◦ , 0.17)

KDS-EM: 𝑆1(51.57◦ , 2.04)
𝑆2(78.19◦ , 0.65)
𝑆3(102.56◦ , 0.16)
𝑆4(129.60◦ , 3.42)

a mixture of Laplacian distributions. Using a nested sampling method
to calculate the Bayesian evidence, both the number and position of
the sources are inferred, achieving an accurate localization on binaural
recordings in a real environment. In Escolano et al. (2014), a robotic
head with a configuration similar to the previous subsections was used
in a reverberant room with up to four speakers distributed in the
localizations depicted in Table 5. The experiments are based on the
analysis of binaural recordings with two, three and four simultaneous
speakers with ambient noise, and with a time duration between 10
and 12 s. The algorithm was executed 30 times, in an offline mode,
to compute the mean and variance in the localization task of each
recording, so both robustness and accuracy in the task could be checked.
For comparison purposes, the KDS-EM method has been tested in the
same way. The results obtained to compare the two methods are shown
in Table 6.

As it can be seen, both methods are able to properly detect the
sources present in the experiment. In terms of accuracy, the Bayesian
inference method is more accurate. Thus, the variance exhibited by the
results of this method is at most 0.17 and the highest error committed
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is 1.49◦. However, the performance of the KDS-EM method in terms of
robustness and accuracy is fairly close. Results show a highest value
of variance of 3.42 and a maximum average error in the localization of
3.57◦, which can be considered acceptable in robotics application where
the purpose is to direct the attention to a particular location.

In terms of the computational cost however the KDS-EM method
outperforms the Bayesian inference method. Indeed, it is concluded
in Escolano et al. (2014) that although the nestled sampling approach
presents a better computational cost compared with other Bayesian sam-
pling methods such as Metropolis–Hastings and importance sampling, it
is still not suitable for real-time applications, and some optimizations
should be done to reduce the actual computational time for an online
approach. Thus, the main advantage of the KDS-EM proposal is that it
is suitable for an online situation, since the measured computation time
for a single analysis of these recordings is around 2 s in a standard Intel
i7 CPU (time depends on the number of kernels of the selected model).

Also, the work in Escolano et al. (2014) presents two additional
limitations in the localization task. One is the minimum separation of 10◦
between sources, that actually is also used in the KDS-EM proposal as the
stop criterion. The second limitation corresponds to the requirement of
establishing a priori the number of maximum sources considered in order
to delimit the search space (it has been set to five in the experiments)
of the Bayesian inference method.

5. Conclusions and future works

This study proposes a kurtosis driven split-EM algorithm for the
unsupervised lateral localization of simultaneous sound sources using
a binaural approach. The main novelty of the algorithm is the inclusion
of splitting steps of those sources with a distribution far from being
ideal Laplacian, which is measured by the kurtosis. In this way, the
initial estimation of the number of sources can be corrected and also
the undesired effects for localization tasks can be isolated from the
real sources and subsequently discarded at a final step. Also, when
computing a new model, thanks to the splitting process from a previous
model, less EM iterations are needed until convergence compared to a
completely random initialization.

The algorithm has been used in a robotic head in two different stages
of its architecture. The algorithm has been successfully integrated in a
high-level stage implemented with the goal of supporting deliberative
behaviors that may depend of the task being accomplished. In this case,
the algorithm has been tested within what we have called a long-term
analysis in two scenarios and with different number of speakers. Results
obtained have outlined this approach as useful to incorporate auditory
information within an inner model about the robot and its surroundings,
which is usually built to support autonomous behavior. Indeed, results
obtained of this long-term analysis suggest that the model extracted
about the direction of the active sources could be used as an input to
other architecture stages. For example, to complement an attentional
mechanism based on more reactive responses or a binaural rendering
system, as that proposed to increase the intelligibility of speech in
Nikunen and Diment (2016). The short-term analysis made to serve in
a more reactive stage of the architecture has highlighted the usefulness
of the algorithm ignoring irrelevant or less active sound sources.

Experiments have been carried out in two different environments
and results showed that the KDS-EM algorithm adapts by itself to
reverberant environments on detriment of increasing the complexity of
the model. Also, it has been shown the need of using a vocal band filter
for the simultaneous localization of voice sounds and musical sources,
which present a higher bandwidth and less temporal sparsity than voice.
Finally, the results of a comparison made with a state of the art approach
has probed that KDS-EM algorithm is more suitable for robotics purposes
where the computational demands must be constrained by the capacity
to assist the development of tasks performed in real time, and where
there is not a priori information about the maximum numbers of sources
that can be present.

Future work will include the effective integration of the auditory
system into a robotics middleware such as Robocomp (Calderita et al.,
2014). This inclusion will allow inferring design strategies to better
exploit the capabilities of this algorithm not only at the deliberative
level but also as additional support for a reactive behavior.
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