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New technologies allow users to access huge amounts of data about phenomena in their environment.
Nevertheless, linguistic description of these available data requires that human experts interpret them
highlighting the relevant details and hiding the irrelevant ones. Experts use their personal experience
on the described phenomenon and in using the flexibility of natural language to create their reports.
In the research line of Computing with Words and Perceptions, this paper deals with the challenge of
using ontologies to create a computational representation of the expert’s knowledge including his/her
experience on both the context of the analyzed phenomenon and his/her personal use of language in that
specific context. The proposed representation takes as basis the Granular Linguistic Model of a Phenom-
enon previously proposed by two of the authors. Our approach is explained and demonstrated using a
series of practical prototypes with increasing degree of complexity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction In CWP, a granule is a clump of elements which are drawn to-
Inspired in the way humans use natural language (NL) to de-
scribe phenomena in their environment, our aim is to develop
computational systems in order to provide users with meaningful
linguistic descriptions of data. In these applications, the computer
takes the role of an assistant that uses the available experience to
interpret the input data and to provide a specific user with relevant
information about monitored phenomena in a concrete application
context.

One important issue in this area is that of uncertainty in natural
language, coming from different sources. In particular, humans use
imprecise terms in everyday communication, including data
description. Fuzzy Logic has been shown to be a suitable tool for
representing imprecision when creating computational models of
the meaning of linguistic terms. In recent years, the father of Fuzzy
Logic, Lotfi Zadeh, has proposed a new direction in this research
line, namely extending Fuzzy Logic towards Computing with Words
and Perceptions (CWPs).

The field was introduced in the Zadeh’s seminal paper ‘‘From
computing with numbers to computing with words – from manip-
ulation of measurements to manipulation of perceptions’’ (Zadeh,
1999) and further developed in subsequent papers. CWP provides
a framework to develop computational systems with the capacity
of computing with the meaning of NL expressions, i.e., with the
capacity of computing with imprecise descriptions of the world
in a similar way that humans do it.
ll rights reserved.
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gether by indistinguishability, similarity, proximity or functional-
ity (Zadeh, 1979). The boundary of a granule is fuzzy. Fuzziness
of granules allow us to model the way in which human concepts
are formed, organized and manipulated in an environment of
imprecision, uncertainty, and partial truth (Zadeh, 1997).

A granule underlies the concept of a linguistic variable (Zadeh,
2008). A linguistic variable is a variable whose values are words
or sentences in NL (Zadeh, 1975). The idea of linguistic fuzzy quan-
tifiers was introduced by Zadeh (1983).

In a recent paper, written by Zadeh with others researchers
(Mendel, Lawry, & Zadeh, 2010), they distinguish between two lev-
els of development of CWP:

� In Level 1, the carriers of information are numbers and words,
e.g., ‘‘X = 5,’’ ‘‘X is small’’, and ‘‘If X is small then Y is large’’.
Objects of computation may be viewed as assignment
statements which assign values to variables. Level 1 does not
require any knowledge of the semantics of natural languages.
� In Level 2, the carriers of information are numbers, words and

propositions or collections of propositions drawn from a natural
language like ‘‘Most Swedes are tall’’, and ‘‘It is very unlikely
that there will be a significant decrease in the price of oil in
the near future’’. Level 2 does require some understanding of
how the meaning of a proposition may be composed from the
meanings of its constituents.

Therefore, the current challenge is to extend the existing para-
digm with new capacities for modeling the meaning of complex
linguistic expressions.
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The concept of fuzzy linguistic summary can be considered a
contribution to this objective. The fuzzy linguistic summary has
the general form (w, ‘‘Q objects in database satisfying D are S’’)
where Q is called the quantifier, D is a fuzzy property characterizing
the reference fuzzy set of objects, S is another fuzzy property of the
objects called the summarizer, and w 2 [0, 1] is the degree of valid-
ity of the linguistic clause for representing the meaning in the spe-
cific context (Kacprzyk, Yager, & Zadrozny, 2000; Yager, 1982), e.g.,
(0.7, ‘‘Usually the temperature during midday is warm’’).

This basic concept of linguistic summary has been studied and
extended in different ways, see (Diaz-Hermida, Ramos, & Bugarin,
2011) for a recent review on the state of the research in this field.

One of the limitations of these approaches is that they represent
perceptions directly related with data and they do not allow to
construe second order perceptions, i.e., perceptions elaborated on
first order perceptions. In order to solve this problem, in previous
works, we proposed the idea of Granular Linguistic Model of Phe-
nomena (GLMP). GLMP allows to manage more complex phenom-
ena and therefore more complex linguistic descriptions, including
how some linguistic statements explain others. For example, in
Trivino et al. (2010), we used GLMP to generate linguistic descrip-
tions of the behavior of traffic in a roundabout, in Mendez-Nunez
and Trivino (2010), we generate linguistic reports of financial data
and in Alvarez-Alvarez, Sanchez-Valdes, and Trivino (2011), we
generated linguistic descriptions of the surface of Mars.

In this paper we considerably extend the possibilities of applying
GLMP in the field of linguistic description of data. We implement
the general concepts of our approach to CWP using a high level ontol-
ogy and we generate NL sentences after instantiating application
ontologies. Following Zadeh, our aim consists of using ontologies
to provide ‘‘some understanding of how the meaning of a proposi-
tion may be composed from the meanings of its constituents’’.

The rest of the paper is organized as follows. Section 2 intro-
duces two basic concepts that we use later, namely, Ontologies
and Granular Linguistic Model of Phenomena. Section 3 introduces
the contribution, describing the elements in the high level ontology,
giving our methodology, and explaining its advantages. Sections
4–6 describe three prototypes of application ontologies of increasing
complexity. Section 7 describes how to generate linguistic summa-
ries using the application ontologies and includes an experimental
layout, showing some results obtained when applying our third
prototype to a real dataset. Finally, Section 8 contains our conclu-
sions and points out some future research work.
2. Preliminaries

2.1. Ontologies for representing the experience of experts

According with our goal, one of the simplest visions of the
Ontology concept in Computer Science is proposed by Agarwal
(2005) who states that an ontology is the manifestation of a shared
understanding of a domain that is agreed between a number of agents
and such agreement facilitates accurate and effective communications
of meaning, which in turn leads to other benefits such as inter-opera-
bility, reuse, and sharing. Other definitions are available in (Gómez-
Pérez, Férnandez-López, & Corcho-García, 2003; Staab & Studer,
2004).

In the last decade, ontologies have been widely used as one of
the preferred knowledge representation models especially because
of its usability in the Semantic Web (Berners-Lee, Hendler, &
Lassila, 2001). There are several criteria to classify ontologies that
can be found in the literature, such as (Gómez-Pérez et al., 2003;
Martinez-Cruz, Blanco, & Vila, 2011). One of these criteria
addresses the semantics of the information represented and estab-
lishes three kinds of ontologies as follows:
� Meta-ontologies are those which establish the conceptual vocab-
ulary for representing ontologies. The most common meta-
ontology is therefore the one which defines the concept of clas-
ses, properties, axioms, etc.
� High Level Ontologies describe the more generic concepts or

processes. They are not usually oriented to be directly instanti-
ated, due to the fact that they represent relatively general
concepts.
� Representation Ontologies are the remaining applicable ontolo-

gies: Domain ontologies, process ontologies, task ontologies,
content ontologies, method ontologies, etc. For our purposes
here, application ontologies are specially important, this category
having several subclassifications in the literature.

In their initial inception ontologies represent the reality and its
semantics in a computational way, with no place for uncertainty.
Nevertheless, such statement was revised due to the fact that
uncertainty is a common requirement in real world applications
(Bobillo & Straccia, 2011). Thus, some approximations to repre-
sent uncertainty using ontologies have been faced in the litera-
ture extending ontology languages or frameworks to define
fuzzy concepts and operations. For example, (Bobillo & Straccia,
2011; Bobillo, Delgado, & Gómez-Romero, 2012) extend the
OWL2 standard to manage fuzzy data; (Calegari & Ciucci, 2010)
presents a framework to represent constraints and perceptions
using several ontologies that represent fuzzy concepts; the pro-
posal by (Ghorbel, Bahri, & Bouaziz, 2009) extends the ontology
management framework Protégé with capabilities to manage fuz-
zy data; and (Jiang, Tang, Chen, & Wang, 2011) considers reason-
ing in fuzzy modular ontologies. Several applications of fuzzy
ontologies are described in Lee, Chen, and Jian (2003), Seo, Park,
Lee, and Wang (2009), Lee and Wang (2007), where they are used
for recognition of fuzzy events in summarization and fuzzy deci-
sion support.

2.2. Granular Linguistic Model of a Phenomenon

In this section, we introduce the components of the Granular
Linguistic Model of a Phenomenon (GLMP), our approach based
on CWP for developing computational systems able to generate
linguistic descriptions of data (Mendez-Nunez & Trivino, 2010;
Trivino et al., 2010).

2.2.1. Computational perception (CP)
A CP is the computational model of a unit of information ac-

quired by the designer about the phenomenon to be modeled. In
general, CPs correspond with specific parts of the phenomenon at
certain degrees of granularity. A CP is a couple (A,W) where:

A = (a1,a2, . . . ,an) is a vector of linguistic expressions (words
or sentences in NL) that represents the
whole linguistic domain of the CP. Each ai

describes the value of the CP in each situa-
tion with specific degree of granularity.
These sentences can be either simple, e.g.,
ai = ‘‘The temperature is high’’ or more com-
plex, e.g., ai = ‘‘Some times the room could
not be comfortable’’.

W = (w1, w2, . . . , wn) is a vector of validity degrees wi 2 [0, 1]
assigned to each ai in the specific context.
The concept of validity depends on the
application, e.g., it is a function of the truth-
fulness and relevance of each sentence in
its context of use.

Each pair (ai, wi) is called a computational perception item (CPI).
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2.2.2. Perception mapping (PM)
We use PMs to create and aggregate CPs. There are many types

of PMs and this paper explores several of them. A PM is a tuple (U,
y, g, T) where:

U is a vector of input CPs, U = (u1, u2, . . . , un), where ui = (Ai, Wi). In
the special case of first order Perception mappings (1PMs),
these are the inputs to the GLMP and they are values z 2 R being
provided either by a sensor or obtained from a database.

y is the output CP, y = (Ay, Wy).
g is an aggregation function employed to calculate the vector of

fuzzy degrees of validity assigned to each element in y;Wy ¼
ðw1;w2; . . . ;wny Þ, as a fuzzy aggregation of input vectors,
Wy ¼ gðWu1 ;Wu2 ; . . . ;Wun Þ, where Wui

are the degrees of valid-
ity of the input perceptions. In Fuzzy Logic many different types
of aggregation functions have been developed. For example g
could be implemented using a set of fuzzy rules. In the case
of 1PMs, g is built using a set of membership functions as
follows:
Wy ¼ ðla1
ðzÞ;la2

ðzÞ; . . . ;lany
ðzÞÞ ¼ ðw1;w2; . . . ;wny Þ
where Wy is the vector of degrees of validity assigned to each ay, and
z is the input data.
T is a text generation algorithm that allows generating the sen-

tences in Ay. In simple cases, T is a linguistic template, e.g.,
‘‘The temperature in the room is {high jmediumjlow}’’.

2.2.3. Structure of the GLMP
The GLMP consists of a network of PMs. Each PM receives a set

of input CPs and transmits upwards a CP. We say that each output
CP is explained by the PM using a set of input CPs. In the network,
each CP covers specific aspects of the phenomenon with certain de-
gree of granularity. Fig. 1 shows an example of GLMP. In this exam-
ple, the phenomenon can be described at a very basic level in terms
of three variables providing values z1, z2, and z3 respectively at a
certain moment in time. Each value is in the corresponding domain
of each variable. The most basic linguistic descriptions correspond
to the computational perceptions CP1, CP2, and CP3, each one
consisting of a certain number (not indicated in the figure) of
computational perceptions items (CPIs), i.e., pairs (linguistic
expression, validity). The correspondence between the zi and each
CPI at a certain moment is defined by the corresponding 1PM.

Using different aggregation functions and different linguistic
expressions, the paradigm GLMP allows the designer to model
computationally his/her perceptions. In the case of Fig. 1 other
two, higher-level descriptions of the phenomenon are provided.
These descriptions are given in the form of computational percep-
tions CP4 and CP5. The 2PMs PM4 and PM5 indicate that CP4 and
CP5 can be explained in terms of CP1, CP2, and CP3, i.e., how the
Fig. 1. Example of GLMP.
validity of each item in CP4 and CP5 is explained by those of
CP1-CP3. Finally, the top-order description of the phenomenon is
provided, at the highest level of abstraction, by CP6, explained by
PM6 in terms of CP4 and CP5. Notice that, by using this structure,
one can provide not only a linguistic description of the phenome-
non at a certain level, but an explanation in terms of linguistic
expressions at a lower level.
3. GLMP ontology

The basic idea of our proposal in this paper consists of imple-
menting the concept of GLMP using ontologies. This representation
has three levels:

1. A high level ontology, comprised of superclasses that cannot be
instantiated, that represents the different types of components
of the GLMP introduced in the previous section, namely, Inputs,
CPs, CPIs, and PMs. This part is common to any GLMP ontology.

2. An application ontology, in which classes corresponding to the
specific components of a concrete GLMP are defined as sub-
classes of the corresponding classes in the high level ontology.
This part is designed when the GLMP is created, though part
of it is generated by a population algorithm.

3. A collection of instances with which the ontology is populated
when fed up with input data about the phenomenon, defining
instances of CPIs from which the final linguistic description is
obtained. Using instances of input data we obtain instances of
1CPs, and then instances of 2CPs following the links in the net-
work. Each instance of CP will include instances of valid sen-
tences to describe the phenomenon at different degrees of
granularity. All of these data and CPs will be stored as part of
the ontology. This level of the ontology is hence generated in
running time when using the GLMP for obtaining a linguistic
description of a specific phenomenon in an certain time period.
Finally, a final report consisting of a selection of the CPIs and
input data is produced following the specifications given by a
query to the ontology.

The components of the high level ontology are shown in Fig. 2,
and can be described as follows:

� Input class: is the superclass of all input classes, each one corre-
sponding to one input to the GLMP. Each input class has two
data type functional properties, val, that is the value of the var-
iable, and time, a day/hour data type. These properties allow us
to incorporate in the ontology the time series of values of the
different input variables, as a collection of instances in each
class, when using the ontology for generating a linguistic report.
� Computational_Perception_Item class: is a superclass for all sub-

classes representing CPIs of the form (ai, wi), with a variable
validity representing the validity of the CPI, that is inherited
by the subclasses. The subclass corresponding to the sentence
ai is annotated with this sentence, since this is a common, static
property of all the instances of the class.
� Computational_Perception class, is the superclass for all compu-

tational perceptions classes. Every CP class is related via its cor-
responding CPI class to a set of CPIs.
� Perception_Mapping class: this is the superclass of all PM classes

and has two subclasses, 1PM and 2PM, corresponding to first-
order and second-order perception superclasses. The output,
which is common for both 1PM and 2PM, is defined by the func-
tional object property produces, and correspond to a CP. Regard-
ing the input, which is different in both classes, the 1PM class
defines the class of its input value, by means of the get_input
functional property, from the Input class, while the 2PM class



Fig. 2. High level ontology.

Fig. 3. GLMP for prototype 1 including several instances of generated sentences.
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has as input a set of CPs from specific CP classes, as indicated by
means of the get_cpinput property. Finally, PM is annotated with
g and T functions, referring to a predefined collection of func-
tions performing aggregation and text generation.

As a high-level ontology, none of these superclasses can be
instantiated; instead, subclasses inheriting certain class properties
can be added in order to obtain an application ontology (description
of a specific GLMP). As we indicated before, the high-level ontology
provides us with a way to give an easy methodology for generating
application ontologies. A sketch of this methodology, applied to the
example in Fig. 1, is the following:

1. Generate one subclass of the class Input for each input variable
in the GLMP (three in this case).

2. Generate one subclass of Computational_Perception_Item and
one subclass of Computational_Perception for each CP (six in
Fig. 1). Then, for each possible sentence defining a CPI for a
given computational perception CP, generate one subclass of
the corresponding CPI superclass. For example, if CP6 in the
GLMP in Fig. 1 had associated four possible output sentences
(not indicated in the figure, just an hypothesis), then we have
to define one subclass CP6 of Computational_Perception, another
subclass CPI6 of Computational_Perception_Item, and four sub-
classes of CPI6, each annotated with one sentence. The genera-
tion of these subclasses may be done either manually or by an
initial population process based on the function T for text
generation.

3. Constraint some object properties to their specific ranges (sub-
classes) using the Universal restriction (only). These constraints
must be declared in the produces, get-input, get-cpinput and
composed_of properties.

4. Constraint the CP class property composed_of to all the subclass-
es of its corresponding CPI, setting the cardinality constraint to
one. This means that every instance of a CP is associated to a
single instance of each of the subclasses, that is, to a single pair
(ai, wi) for each ai.

In order to better illustrate the definition of GLMPs via ontolo-
gies, we show in the following sections examples of this methodol-
ogy for developing three prototypes of increasing complexity. The
corresponding application ontologies define three computational
systems using a set of classes, properties, constraints and instances.
In prototype 1, we introduce a very simple computational applica-
tion based on a single 1CP. We show how to generate linguistic
descriptions of data using this basic schema. Then, in prototype 2,
we introduce 2CPs to describe more complex perceptions, i.e., we
show how to explain a perception by means of a ‘‘explanatory’’
structure based on more basic perceptions. Finally, in prototype 3,
we use the concept of fuzzy summarizer to introduce a second type
of 2CP that allows to aggregate the values of a time series of CPs
during a period of time. This corresponds specifically to Level 2 of
applications in CWP, as explained in the introduction.

Finally, let us remark that the approach outlined in this section
offers several advantages, at least:
� All the information, including general concepts about GLMPs,
data, and particular elements of the GLMP for the specific appli-
cation, are represented using a single, well known scheme, an
ontology that integrates and relates all the information.
� General concepts related to linguistic description via GLMPs are

identified and described via the high-level ontology, improving
the understandability of the approach. In addition, they provide
a very good basis for guiding the process of building a GLMP for
a specific application, by means of instantiation/particulariza-
tion of the general GLMP.
� The language of ontology definition provides us with an imple-

mentation language for GLMPs in which there is no necessity
for coding a program for each model. Only a general program
valid for any model, and the description of the GLMP and its ele-
ments, are necessary.
� The generation of a linguistic description for a specific data set

can be implemented as a process of population of the ontology
using a general procedure, valid for any GLMP.
� The representation using ontologies is a way to integrate other

elements related to the application domain, like typical linguis-
tic expressions, and other aspects of the context, with the GLMP.
For instance, we can choose the sentences that will be provided
depending on the kind of user. For this purpose, we are working
on representing the domain of the application and the context
using ontologies, that will be easily integrated with the GLMP
ontologies.

4. Prototype 1

This prototype is a very simple example of a computational sys-
tem for generating linguistic descriptions of data. It uses the values
provided by a temperature sensor to generate sentences describing
this value, i.e., in this basic example the computational system re-
ceives as input a real number and it produces the following three
sentences: ‘‘The temperature is cold’’, ‘‘The temperature is warm’’,



Fig. 4. Scheme of the application ontology for prototype 1.

Table 1
Some instances obtained when populating the application ontology for prototype 1 with the input value 22.5.

Instance name Class Values Description

I1 InputTemp 22.5 Value got from a temperature sensor
CPI1 CPIhot 0.6 Computational perception for a temperature of 22.5 �C and the ‘‘The temperature is hot’’ sentence
CPI2 CPIwarm 0.4 Computational perception for a temperature of 22.5 �C and the ‘‘The temperature is warm’’ sentence
CPI3 CPIcold 0 Computational perception for a temperature of 22.5 �C and the ‘‘The temperature is cold’’ sentence
CP1 1CPtemp Composed_of: CPI1, CPI2, CPI3 Computational perception got for a temperature of 22.5 �C
1PM 1PMtemp Input:I1 (22.5 �C), Produces: CP1 Perception mapping that relates each input with the output (CP)

Fig. 5. GLMP for prototype 2 including several instances of generated sentences.
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and ‘‘The temperature is hot’’ with their associated degrees of valid-
ity. The structure of a GLMP for this problem is shown in Fig. 3.

This computational system has a unique 1PM that we call
1PMtemp = (z, CPtemp, g, T) where:

z is the input given by the sensor.
CPTemp is the output CP.
g is implemented using a strong fuzzy partition of trapezoidal
membership functions, i.e., it returns the three membership
values corresponding to z.
T provides three possible sentences: ‘‘The temperature is cold’’,
‘‘The temperature is warm’’, ‘‘The temperature is hot’’.

Fig. 4 shows the Prototype 1 Application Ontology, with the fol-
lowing elements:

The InputTemp is the class of the measures given by the temper-
ature sensor. This class includes two properties, called val and
time, that represent the temperature value and the daytime
respectively.
CPITemp class (computational perception items for temperature
class) is the superclass of all the CPIs for temperature. The sub-
classes of this class corresponding to each of the three CPI for
Temperature are annotated in the sentence annotation label in
each one of three subclasses:

� CPIHot class: ‘‘The temperature is hot’’.
� CPIWarm class: ‘‘The temperature is warm’’.
� CPICold class: ‘‘The temperature is cold’’.

The CPTemp class corresponds to the CP related with the temper-
ature. The object property composed_of is constrained in this
class in two senses: by setting the cardinality value to 1 per
each subclass of CPITemp and establishing the only (universal)
restriction to the CPITemp class.1
1 These restrictions are not shown in Fig. 4 for simplicity, but are specified using
OWL2 when implementing the ontology. We will use this criterion in the rest of our
graphical representations of ontologies along this paper.
The 1PMTemp class represents the 1PM that produces computa-
tional perceptions of temperature. 1PMtemp class includes infor-
mation about the algorithms associated with it using two
annotations labels:
� g is called Temperature_membership_function. It generates

the validity degree of each linguistic expression.
� T generates the set of sentences included as annotations of

CPITemp subclasses. This algorithm is called Temperature_
text_generator.

The population of this application ontology consists of two
phases:

� Initialization: The definition of the problem involves the defini-
tion of a set of possible sentences. This phase is executed once
at the beginning of the process and it is made either by hand
by the designer or by the annotated algorithm Tempera-
ture_text_generator. After this algorithm is executed the sub-
classes of CPITemp are annotated with the sentence property.



Table 2
Set of fuzzy rules employed by 2PMcomf in prototype 2.

Rule Description

R1 IF temp IS cold AND light IS low THEN comfort IS bad
R2 IF temp IS warm AND light IS low THEN comfort IS medium
R3 IF temp IS hot AND light IS low THEN comfort is bad
R4 IF temp IS cold AND light IS medium THEN comfort IS medium
R5 IF temp IS warm AND light IS medium THEN comfort IS good
R6 IF temp IS hot AND light IS medium THEN comfort is good
R7 IF temp IS cold AND light IS high THEN comfort IS medium
R8 IF temp IS warm AND light IS high THEN comfort IS good
R9 IF temp IS hot AND light IS high THEN comfort is medium
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� Generation of computational perceptions: The population of the
following classes is performed in this phase: Input, 1PMTemp,
CPTemp, and CPIs. Each time a temperature is given or taken from
a data source, a new input instance with time and value is gen-
erated, a new PM instance is also generated, and a new CPtemp

is produced. This information is represented by the object func-
tional property called produces. In this phase the algorithm Tem-
perature_membership_function is called to get the values of the
CPITemp instances.

As an example, Table 1 shows the instances generated in using
this ontology when a value of 22.5 �C is got by the temperature
sensor.
5. Prototype 2

In this prototype, we increased the complexity of the problem
introducing a 2PM, i.e., the combination of different CPs. Here,
the computational system must provide sentences describing the
perception of comfort in a room depending on the temperature
and light intensity values. Thus, we used a light intensity sensor
as an additional input. Fig. 5 shows the GLMP that defines the rela-
tionships among the CPs of temperature, light and comfort (CPtemp,
CPlight, and CPcomf) respectively.
Fig. 6. Scheme of the applicatio
This computational application increases the Prototype 1 with
two new PMs:

1PMlight is defined by (z, CPlight, g, T) where

z is the input given by the light sensor, provided in mV in the
interval [0, 1000].
CPlight is the output.
g is implemented using a strong fuzzy partition of trapezoi-
dal membership functions.
T provides three possible sentences: ‘‘The light is low’’, ‘‘The
light is medium’’, ‘‘The light it high’’.

2PMcomf is defined by (U, CPcomf, g, T) where
U are the inputs given by CPtemp and CPlight.
CPcomf is the output.
g is a function which is implemented using the set of fuzzy
rules shown in Table 2. This function returns the member-
ship degree for three different fuzzy sets, i.e., good, medium
and bad.
T is implemented using a linguistic template that provides
three possible sentences: ‘‘The comfort is bad’’, ‘‘The comfort
is medium’’ and ‘‘The comfort is good’’.

The new ontology is shown in the Fig. 6 and the new elements
(the light and comfort measures) are defined as follows:

Inputlight class is defined by two functional properties called val
(light intensity) and time.
CPlight is a CP related with the light input.
CPcomf is a computational perception related with the comfort
output. Like in the previous definition, the object property com-
posed_of is constrained in two senses: by setting the cardinality
value to 1 per each subclass of CPIcomf and establishing the only
(universal) restriction to the CPIcomf class.
CPIlight is associated to CPlight and has the three following sub-
classes:

� CPIhigh class. The sentence annotation value is set to ‘‘The
light is high’’.
n ontology for prototype 2.
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� CPImedium class. ‘‘The light is medium’’.
� CPIlow class. ‘‘The light is low’’.

CPIcomf is associated to CPcomf with three subclasses:

� CPIhigh class. ‘‘The comfort is good’’.
� CPImedium class. ‘‘The comfort is medium’’.
� CPIlow class. ‘‘The comfort is bad’’.

1PMlight class represents the productions of computational per-
ceptions of light. Each time a level of light is given a new PM
instance is generated and a new CPlight is produced (produces
property). It includes two annotations labels:

� g is called Light_membership_function.
� T generates the set of sentences included as annotations of

CPIlight subclasses. This algorithm is called Light_text_ gener-
ator.

2PMcomf class generates a second order computational percep-
tion of comfort (produces property). Input property of this class
are one CPtemp and another CPlight instances. Similarly to 1PM
classes, 2PM classes include information about the algorithms
associated with it:

� g calculates the membership degree of each linguistic
expression in CPI. This algorithm is called Comfort_
membership_function.
Fig. 7. GLMP for prototype 3 including several instances of generated sentences.
� T generates the set of sentences defined as annotations of
CPIcomf subclasses. This algorithm is called Comfort_text_
generator.

Since we have already illustrated the population of the applica-
tion ontology for the previous prototype, we are not doing it for this
second prototype. We will provide a more detailed example for the
third prototype.
6. Prototype 3

In this prototype we add a new 2PM to aggregate the CP of com-
fort during a period of time. The new GLMP is shown in Fig. 7. The
new 2PM has been called 2PMdaycomf and its output CP is CPdaycomf.
This CP yields sentences that quantify the comfort in a room during
a period, e.g., ‘‘Usually the comfort is good’’.

2PMdaycomf is formally defined by (u, CPdaycomf, g, T) where:

u is a time series comprising the validities given by CPIs of
CPcomf during a period of time.
CPdaycomf is the output.
g is a function that summarizes the time series by means of the
evaluation of a quantified sentence of the form ‘‘Q of the times,
the comfort was S’’, with Q one of the quantifiers Sometimes,
Usually and Few times, and S one of the possible comfort values
bad, medium, and good given by CPcomf. For the evaluation of
the quantified sentences we used method GD introduced in
Delgado, Sánchez, and Vila (2000).
T is implemented using a linguistic template that provides the
following sentences: ‘‘Usually the comfort is bad’’, ‘‘Usually the
comfort is medium’’, ‘‘Usually the comfort is good’’, ‘‘Sometimes
the comfort is bad’’, ‘‘Sometimes the comfort is medium’’, ‘‘Some-
times the comfort is good’’, ‘‘Few times the comfort is bad’’, ‘‘Few
times the comfort is medium’’, and ‘‘Few times the comfort is
good’’.

In this prototype a new set of ontology constituents related
with the definition of 2PMdaycomf are added to the application ontol-
ogy of prototype 2, and shown in Fig. 8 with gray background color.
The classes added to the new ontology are:

The CPdaycomf class is a summarized degree of comfort for a per-
iod of time. This class has some restrictions related with the
object property composed_of: a cardinality restriction set to 1
per each subclass of CPIdaycomf and an Universal (only) restriction
set in the CPIdaycomf class.
CPIdaycomf is the superclass of all classes corresponding to sen-
tences associated to CPdaycomf.
2PMdaycomf generates the perception of degree of comfort for a
period. The algorithms associated with this PM are:
� day_aggr_function (g).
� day_text_generator algorithm (T).

We show in Fig. 9 an integrated view of the high level and appli-
cation ontologies for this prototype, where classes with gray back-
ground represent the high level ontology, and the others are the
application ontology classes.

In the next section, we use this prototype in order to illustrate
how to use GLMP ontologies for generating linguistic reports from
data.
7. Generating linguistic descriptions using GLMP ontologies

In previous sections we have shown how to design a GLMP
by using an ontology, and we have illustrated our proposals with



Fig. 8. Scheme of the application ontology for prototype 3.
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different prototypes. In this section, we explain how GLMP
Ontologies may be used to provide final linguistic reports, and
we illustrate this with an example using the prototype 3 described
in the previous section, and a real dataset.

7.1. Generating the descriptions

In order to generate the linguistic descriptions we need two
main components: the designed GLMP Ontology and an input data-
set. The creation of the linguistic report has two main parts:

1. Population of the application ontology on the basis of the data-
set. Data are incorporated to the ontology as instances of the
input classes. Instances of 1PMs, their output CPs and corre-
sponding CPI subclasses are also generated for each instance
of the input classes. This process is repeated recursively for
the 2PMs along the network following the input–output direc-
tion. Finally, the ontology is populated not only with data, but
also with a collection of CPIs corresponding to specific time-
stamps or time intervals.

2. Construction of the final report by a suitable selection and com-
bination of the statements in the CPIs obtained. Note that, in
general, taking advantage of the ontology representation, we
can see the report template as a query to the ontology.

For the implementations we have used the Protégé 4.1 software
tool to define the ontology structure, restrictions, and instances.
The ontology was codified in OWL2 language. The implementation
of the computational processes were developed in Java as a plug-in
of the Protégé 4.1 framework. This plug-in is a generic tool that al-
lows the user managing GLMP Ontologies from two different
perspectives:

� Supporting the designer to generate the application ontology. The
membership functions, fuzzy rules, and variable descriptions
need to be defined conforming with the JFuzzyLogic API library2
2 http://jfuzzylogic.sourceforge.net/html/index.html.
in a text file. This tool generates classes and constraints automat-
ically. In the current version, some specifications like annotations
should be done manually, but we are working on another version
in which this is performed automatically. The use of this function-
ality is optional.
� Generating the results of the GLMP computational application

as an ontology. This procedure requires the input data format
definition in the source code. After that, the validity degree
for each computational perception is calculated automatically.
Finally, the report is generated by choosing the CPIs that are rel-
evant to the user, that can be specified using a suitable ontology
query language like SPARQL3

Let us remark again that one of the main advantages of our ap-
proach is that, by implementing generic algorithms for performing
the aforementioned tasks, the implementation of a system for the
linguistic description of data only requires collecting the data and
designing an application ontology representing the desired GLMP.
Part of our future research effort will be devoted to continue devel-
oping this general implementation.
7.2. Practical example

In order to illustrate the approach, we have considered the Pro-
totype 3 application ontology and we have collected an input data
set. For getting these data, we set sensors of temperature and light
intensity on a window in our research center facilities, and we con-
nected them to a data acquisition system plugged to a personal
computer. With this simple platform, we obtained temperature
and luminosity measures each minute during 10 days, that were
stored in a plain file. These data are represented graphically in
Fig. 10. Using this data we have populated the Prototype 3 applica-
tion ontology. Obviously, it is not possible to show here the whole
populated ontology for all classes related with temperature, light
and comfort, during such a period of time. Table 3 shows some
3 http://www.w3.org/TR/rdf-sparql-query/.

http://jfuzzylogic.sourceforge.net/html/index.html
http://www.w3.org/TR/rdf-sparql-query/


Fig. 9. Integrated high level (classes with light gray background) and application ontology for prototype 3. Only classes and high level restrictions are shown.
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Fig. 10. Temperatures and light intensity got with the sensors, one each hour from
September 23rd at 15:57:43 during 10 days.

Table 3
Some instances generated when populating the application ontology for prototype 3
with data shown in Fig. 10.

Instance
(name)

Class of Validity Sentence

CPI10 CPIalmostgood 0 ‘‘Few times comfort is
good’’

CPI11 CPIalmostbad 1 ‘‘Few times comfort is bad’’
CPI12 CPIalmostmedium 0 ‘‘Few times comfort is

medium’’
CPI13 CPIsometimesgood 0.3 ‘‘Sometimes comfort is

good’’
CPI14 CPIsometimesbad 0 ‘‘Sometimes comfort is bad’’
CPI15 CPIsometimesmedium 0.5 ‘‘Sometimes comfort is

medium’’
CPI16 CPIusuallygood 0.7 ‘‘Usually comfort is good’’
CPI17 CPIusuallybad 0 ‘‘Usually comfort is bad’’
CPI18 CPIusuallymedium 0.5 ‘‘Usually comfort is

medium’’
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instances of classes generated when populating the Prototype 3
application ontology with data in Fig. 10.

Two basic ideas are learned with these results: (i) There are
evaluated sentences that return valid assessments because they
have a high validity value, e.g. The ‘‘Usually the comfort is good’’,0.7.
(ii) There are many sentences that do not give any information.
Specially, those with a very low degree of validity, e.g. ‘‘Usually
the comfort is bad’’,0 or ‘‘The temperature is cold’’, 0.

Furthermore, we specified the form of the final report by using a
SPARQL query in which we selected the sentence with the greatest
degree of validity among those expressing what happens some-
times or usually, adding also as more detailed information the max-
imum and minimum values of temperatures. This way, the final
report obtained for our data was ‘‘During this period, usually the
comfort was good; the maximum and minimum temperatures
were 27 �C and 19 �C, respectively’’.
8. Conclusions

In this paper, we contribute to the field of CWP by using ontol-
ogies as a tool for modeling the meaning of perceptions about com-
plex phenomena. We describe how to use ontologies to implement
computational models of phenomena by defining a network of
granular perceptions (GLMP). The obtained results open the way
for using different types of aggregations indicating the way some
statements are consequence of others, hence allowing us to model
more complex sentences and linguistic reports. Remarkably, only
an application ontology consisting of classes and restrictions must
be designed. The population of the ontology with data provides
automatically the information to populate also with statements
and their validity degree, which can be employed finally for build-
ing the final report as a query to the ontology. A good part of the
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power of our approach lies in the actual possibility of developing
generic algorithms for performing the ontology population.

A lot of work remains to be done. It is worth remarking that the
text generation algorithm (T) is the gate to link this model with the
field of Computational Linguistics. An extension of the ontology to
manage more complex linguistic expressions including contextual
information will increase the usability of these computational
applications, making the system closer to human’s adaptive man-
agement of natural language.

Our experimentation shows that, in the current state of devel-
opment, this new technology can be applied to solve practical
projects.
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