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A B S T R A C T

Postural changes while maintaining a correct body position are the most efficient method of preventing pressure
ulcers. However, executing a protocol of postural changes over a long period of time is an arduous task for
caregivers. To address this problem, we propose a fuzzy monitoring system for postural changes which re-
cognizes in-bed postures by means of micro inertial sensors attached to patients’ clothes. First, we integrate a
data-driven model to classify in-bed postures from the micro inertial sensors which are located in the socks and t-
shirt of the patient. Second, a knowledge-based fuzzy model computes the priority of postural changes for body
zones based on expert-defined protocols. Results show encouraging performance in the classification of in-bed
postures and high adaptability of the knowledge-based fuzzy approach.

1. Introduction

Pressure ulcers (PUs), as a medical condition, are defined as loca-
lized lesions on the skin or underlying dermal tissue, usually appearing
over a bone prominence as result of body pressure [1]. The problem of
PUs has been on the rise recently and has been described as a living and
alarming epidemic that lives under the sheets of patients at different levels of
care. Consequently, it has been identified as a critical shortcoming in
the care of patients [2]. There is a higher prevalence of PUs among
adults over 60 years of age (51%) [3]. PUs also appear in patients with
limited movement, such as cases of amyotrophic lateral sclerosis or
paraplegia. Treatments need to be customized and planned individually
for each patient [3]. For PU lesion treatment, intervention methods
involve electrical stimulation or ultrasound applied directly to the le-
sions, making the process painful for patients and expensive for the
healthcare system.

Studies on the cost analysis of PUs [4] have concluded that: (i) the
cost of treatment increases with the severity of the ulcer because of the
longer healing/recovery time; and (ii) this cost includes expenses in
material inputs, nursing time and hospitalization charges for the
healthcare system, resulting in a significant impact of PUs on the na-
tional healthcare system and government budget; therefore, (iii) pre-
vention is the best strategy to address this public health problem [5].

Postural changes are the main method for preventing pressure ul-
cers [6], whereby patients need to change their position by themselves
or with the support of an assistant. Handling these changes of posture,
however, can result in excessive physical and emotional stress for
caregivers [7]. Given the existence of advanced technologies that aim to
improve living conditions, we face the challenge of creating new
technological health models to monitor in-bed postural changes for the
prevention of PUs. In this work, we present[8] an intelligent system to
monitor in-bed posture of patients using wearable inertial sensors as a
control and decision-making tool.

The goal of this paper is to develop a data-driven classification for
in-bed postures using inertial sensors attached to clothing, which en-
able us to describe the posture of the patient and orientation of body
zones accurately and in a non-invasive way. Second, modeling a secure
and flexible approach to compute the priority of postural changes ac-
cording to a given expert-defined protocol is key to the knowledge-
based fuzzy approach.

The remainder of the paper is organized as follows: in Section 2 we
detail the review of works related to our proposal; Section 3 presents
the proposed methodology to develop a data-driven classification for in-
bed postures using inertial sensors attached to clothing; Section 4 in-
troduces the results of a dataset with postural change protocols mod-
elled under our approach. Finally, conclusions and ongoing works are
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discussed in Section 6.

2. Related works

In recent years, academic and industrial research initiatives on
smart systems have been developed for healthcare with the aim of
supporting future healthcare demands for dependent people to improve
their quality of life, reduce healthcare costs, and complement specific
medical delivery services [9].

In the scope of this work, despite the impact of the problem, there
are not many technology-based works aimed at improving care and
monitoring postural changes for PU prevention. We outline the most
relevant below.

One of the first developments was proposed in 1995, where the
authors [10] defined a pressure sensing device to evaluate the periods
during which the skin has been exposed to the measured pressure.
Following this initial idea, in [11], the design of a pressure sensor
placed between skin and surface was proposed. In [12], an ad-hoc
computer application for PU management enabled monitoring of pa-
tients suffering from PUs for risk assessment by collecting images and
recording PU data, thus favoring the exchange of data between pro-
fessionals and different levels of care to support decision-making.

Recently, in [13], patient body movement was recorded over time to
determine whether the movement of the patient is adequate so as to
prevent PUs. However, this patent lacks a description of the metho-
dology to process the data, generate a classification of in-bed postures
and configure the protocol of postural changes. In [14], the company
Ortopedia Moverte developed a product which is described as a rotating
wall clock to prevent ulcer formation by allowing the creation of a
personalized protocol of postural changes for each patient, by using
graphic illustrations of patient positions within a timeframe to be in-
terpreted easily and intuitively. The product [15], a wound analysis
application, collects patients’ photographs and records, authorized by
patients who provide written consent to carry out the treatment. This
application defines an objective curve on the evolution of the wounds
and also enables consultations among professionals by sharing cases
through the application. Another product for patients at risk of suf-
fering PUs [16] is called integrated system for the prevention of pressure
ulcers (smart PUs). This application collects information from the pa-
tient and applies risk scales to create a personalized guide of preventive
actions.

The application integrated system for the management of wounds
(HELCOS) [17] is a tool that targets both professionals and patients for
wound management. The application allows for teleconsultation with
experts from other disciplines through a chat function provided for each
specific case. The application pressure ulcer guide [15] provides in-
formation and prevention strategies on pressure ulcers, eschars or
wounds. It uses a tool called Braden’s Scale to evaluate the risk of
pressure ulcers or decubitus eschar.

In [18], the design carried out by Aguagüiña and Granizo had the
objective of contributing to patient care during rehabilitation. The
system detected body movements and positions using video footage
acquired through a Raspberry PI 3 card, receiving image data through a
webcam located in front of the patient’s bed at a certain distance. In
another study conducted by [12], a computer application was presented
to standardize the criteria for the prevention, treatment, and follow-up
of PUs during patient hospitalization. The system consists of an appli-
cation used by nurses to collect information in real time, using software
capable of interpreting and evaluating the type of control performed on
the patient through decision algorithms.

Another noteworthy project is In-bed Pose classification from
Pressure Mat Sensors for the Prevention of Pressure Ulcers using
Convolutional Neural Networks[19]. In this work, the authors propose
a methodology to classify in-bed human positions for the prevention of
pressure ulcers using pressure mat sensors. First, they provide a visual
representation using fuzzy processing from raw pressure data to gray

scale. Second, they define CNN Convolutional Neural Networks models
to evaluate the impact of layers on the performance of in-bed posture
classification.

In the previous work [20], In the previous work a prototype for
monitoring and care of pressure ulcers through an intelligent system
based on smart inertial watches was presented. The system detects the
position of patients with reduced mobility while in bed, walking or
standing, providing data to medical staff and caregivers. In this work,
we present a substantial development of the previous prototype by
evaluating ad hoc in-bed postures and including a knowledge-based
fuzzy approach computing the priority of postural changes in real-time,
which enables clinicians to model postural protocols and configure
reminders. In order to provide a summary of the strengths and limita-
tions of previous works, we present a table with the most relevant
works on technological approaches for PU prevention.

In this work, a new methodology to monitorize in-bed postural
changes for PU prevention with inertial sensors attached to clothing is
presented. In this way, taking into account all the described literature
and previous works, we propose:

• Integration of non-invasive inertial sensors attached to clothing,
which send inertial data in real-time. A data-driven model to classify
in-bed postures from the micro inertial sensors.

• A knowledge-based fuzzy approach to compute the priority of pos-
tural changes in real-time.

• The approach enables clinicians to model postural protocols to
configure reminders to be notified in an interpretable and perso-
nalized way for injured body zones.

We describe the proposed methodology in detail in the following
section.

3. Methodology

In this section, the proposed methodology is presented to classify
human in-bed posture for theONE devices were integrated into two
socks and one t-shirt, as described in prevention of pressure ulcers using
inertial sensors attached to clothing and a knowledge-based fuzzy ap-
proach to compute the priority of postural changes. The main compo-
nents configuring the approach are: (i) inertial sensors attached to
clothing, which describe the orientation of patients’ body zones in a
non-invasive way; (ii) a data-driven model for recognizing in-bed pos-
tures, which segments inertial data and classifies the poses; (iii) a
knowledge-based fuzzy approach, which computes the priority of pos-
tural changes for each body zone according to a defined protocol and
the time elapsed from previous in-bed postures; and (iv) a reminder to
advise caregivers when the degree of priority of postural change
reaches a configurable threshold. In Fig. 1, we show the architecture of
components described in the approach, which are detailed in the fol-
lowing sections.

3.1. Inertial sensors attached to clothing

In this section, we describe the micro inertial sensors proposed for
sensing in-bed postures, which were attached to patients’ clothes in a
non-invasive way. In this line, e-textiles [21] have provided a new
perspective for wearable non-invasive data sensing from patients. In
particular, integrating low-cost micro inertial measurement units [23],
which have been demonstrated to describe 105 patient postures [20] or
gait speed[22].

For this purpose, we selected the Tactigon ONE device1 [24] due to
its suitable specifications: lightweight (2.5 g device and 6.3 g battery)
and small size (5.0 × 1.67 × 0.56 cm). Moreover, the affordable price

1 Tactigon ONE device https://www.thetactigon.com/products/.
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(78 euros) and the open SDK, which enables us to code the board for
full configuration (sample rate, communication, sensors, etc.), were the
key points in selecting the device.

Three Tactigon ONE devices were integrated into two socks and one
t-shirt, as described in Section 2. Acceleration and gyroscope data from
the miniature boards were sent under Bluetooth Low Energy (BLE) at a
frequency of 20 samples per second.

3.2. Data-driven model for recognition of in-bed postures

Following a formal definition, a sensor s collected data in real time
in the form of a pair =s s t{ , }i i i , where si represents a given measure-
ment and ti the time-stamp, respectively. Thus, the data stream of the
sensor s is defined by = …S s s{ , , }s i0 . In this work, a tri-axial inertial
representation (x,y,z) provided three data streams S S S, ,X Y Z from the
sensors on acceleration and gyroscope for each inertial device.

Next, a temporal segmentation was defined by a window size W
[25] to aggregate the samples si by a given function T S t( , )t s . The ag-
gregation value defines a feature Tt of the inertial sensors Ss in a given
time t .

= >T S t s t t W t t, , ,t s
s

s
i i i

i

i

(1)

Therefore, starting from a set of sensors = … …S S S S{ , , , , }s S1 and a
set of aggregation functions = … …T T T T{ , , , , }t T1 , we defined a total
number of features S x T which describe the segment of sensor data W
for each given point of time t [26]. Since our model is based on a data-
driven supervised approach, the features which describe the inertial
sensors are associated with a label L t( ) for each point of time t :

… …T S t T S t T S t L t( , ), , ( , ), ( , ) ( )t s T S l1 1 (2)

where L t( )l defines a discrete value for each point of time t between
= … …L L L L L{ , , , , }l1 , which identifies a given in-bed posture. In this

work, six in-bed postures for the prevention of pressure ulcers were
classified: supine, left-side, right-side, Fowler’s, supine with bent right
leg and supine with bent left leg, which are described in Fig. 3 and
represent common in-bed postures for evaluation purposes [27].

Finally, the previously defined features and labels were used to train
a data-driven classifier. Among the broad spectrum of models, we

focused on light and efficient classifiers, which enable training and
evaluation on micro boards in real time under Fog Computing en-
vironments[28]. Specifically, in this work, we evaluated three classi-
fiers: K-nearest neighbors (kNN) and support vector machine (SVM) as
they provide the best performance in posture classification from inertial
sensors [20], together with decision tree (C4.5).

3.3. Knowledge-based fuzzy approach to compute the priority of postural
changes

In this section, we detail a knowledge-based fuzzy approach to
compute the priority of postural changes from an expert-defined pro-
tocol, which is defined by a set of postures L which are changed every
time interval T.

First, a given in-bed posture Ll was associated with one or more
body zones of the patient = … …Z Z Z Z Z{ , , , }z1 by a membership func-
tion ×µ Z L: [0, 1]Z which determines a degree of pressure between
0 and 1. For example, for body zone =Z shoulderblade1 and in-bed
postures = = =L Supine L Fowler L lateralposition, ,1 2 3 , we defined

= = =µ Z L µ Z L µ Z L( , ) 1, ( , ) 0.5, ( , ) 0Z Z Z1 1 1 2 1 3 . Then, as the postures
are recognized in a point of time t , a body zone is affected by a pressure
degree over time as =Z t Z L t( ) ( ( ))z L

L
z ll .

Second, we applied Fuzzy Temporal Windows (FTW) and fuzzy
temporal aggregation [29] over time to compute the degree of pressure
of the body zone Z t( )z

j from previous time-stamps t j to the current time
t . FTWs were described straightforwardly according to the distance
from the current time t to the previous timestamps t j as =t t tj j

using a membership function µT t( )K j [30]. Intuitively, a given FTW Tk
can be defined by four values TS T T T T( , , , )K K K K1 2 3 4 , which determine a
trapezoidal membership function [8] (referred to in Appendix B. In
concrete terms, we propose a FTW which covers two time intervals T of
postural changes, whose membership function is defined by:

=µ TS T T(0, 0, , 2 )T t( )K j .
The aggregated degree Z Tz k of body zone Zz within temporal

window TK was computed using a fuzzy weighted average [31] (de-
tailed in Appendix A), which is proposed as a suitable representation for
high sample rate sensors[29]. The temporal aggregated degree was
defined as Z T t( )z k for each point of time t . In Fig. 4, we show an
example of the aggregated degree of body zones =Z shoulder1 and

=Z left right hip/1 within the FTW =T TS h h h h(0 , 0 , 2 , 8 )1 per minute t
over a 24-h timeline using a basic protocol of postures that are changed
in two-hour time intervals supine right lateral fowler leftlateral.

Finally, a fuzzy quantifier Qz [32] was applied in order to provide an
interpretable representation of the priority of postural changes for body
zone Zz from the aggregated degree of a body zone Z Tz k. A fuzzy
quantifier was directly defined to associate both terms by a membership

function ×µ : 0, 1 0, 1Qq , which should fulfill the principles of

monotony and zero-aggregation [33]. In order to model the fuzzy
quantifier straightforwardly, the expert only needs to define two or

Fig. 1. Architecture of components: (i) inertial sensors attached to clothing, (ii) data-driven model for recognizing in-bed postures, (iii) knowledge-based fuzzy
approach to compute the priority of postural changes for body zones, and (iv) a configurable threshold for notifications to caregivers.

Fig. 2. Tactigon ONE: (left) inertial sensor embedded into board; center and
(right) Tactigon ONE attached to socks and t-shirt of patient, respectively.
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more control points [34]. A control point is defined by a 2-tuple t Q{ , }j j ,
which associates the aggregation degree of the body zone in a point of
time t j with the degree of priority of postural change Q j modeled by the
expert. For the sake of simplicity, the control points were defined by the
expert in a beginning tA and an end point of time tB for the postural
change which affects this body zone, representing minimum and max-
imum priority degree, respectively. For the remaining values of the
temporal aggregated degree of a body zone Z Tz k, a linear inter-
polation of the control points defines the membership function (de-
tailed in Appendix C) to compute the priority degree of postural change
[0, 1]. In Fig. 5, we show an example of the fuzzy quantifier defined by
two control points for the body zone left-hip whose degrees of priority
were defined at the beginning and end of the postural change.

3.3.1. Configurable threshold of postural changes according to caregivers’
needs

In the previous Section 3.1, we have described a knowledge-based
fuzzy approach to compute the degree of priority of postural changes for
body zone Zz from the in-bed postures classified by the inertial sensors.
This degree provides interpretable and valuable information to caregivers
in order to make the postural changes in a flexible and suitable way.

Moreover, the priority degree for postural changes was defined in
the range [0, 1], an cut [0, 1] to notify the caregiver when the
degree surpasses the threshold. We note z can be defined for each body
zone Zz; however, for the sake of simplicity, we take to refer to any or
all of them.

So, given the flexibility provided by the knowledge-based fuzzy
approach in computing the priority degree for postural changes, the

-cut can be modified over time in order to define a more relaxed or
strict threshold and therefore increase or reduce the time between
postural changes, depending on the caregiver’s time constraints or the
patient’s wishes. In this way, 0 is associated with the minimum
time when postural change affects the body zone, and 1 is asso-
ciated with maximum recommended time, respectively.

We note the priority degree for postural changes is ultimately
modeled by: (i) the fuzzy quantifier defined by experts using controls
points, so there is a relation of interpretability between the alerts ob-
tained by and the fuzzy quantifier Qq modelling; and (ii) the Fuzzy
Temporal Windows, defining a long-term aggregation (usually in a
range of hours) of the degree of pressure in a body zone. So, for ex-
ample, if a postural change has been delayed, the model wisely reduces
the time to the next postural change (for the same body zone) since

Fig. 3. Classified in-bed postures for the prevention of pressure ulcers (from left to right): supine, left-side, right-side, Fowler’s, supine with bent right leg and supine
with bent left leg.

Fig. 4. Fuzzy processing from a basic sequence of postural changes to compute the aggregation degree of pressure of the body zones shoulder and left/right hip over
two time intervals T of postural changes.
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threshold was reached earlier.
In Section 4.2, we detail several in-bed postural protocols which

have been modelled using the described methodology.

4. Evaluation

In this section, we describe the results of a dataset and three pos-
tural change protocols for PU prevention which have been modelled
under our approach.

4.1. Evaluation of in-bed posture recognition by inertial sensors attached to
clothing

Firstly, the in-bed posture recognition by inertial sensors attached to
clothing was evaluated.

The experimental development of this research study took place at
the CEATIC (Centro de Estudios Avanzados en Tecnologías de la
Información y de la Comunicación)2 of the University of Jaen (Spain).
Three Tactigon ONE devices were integrated into two socks and one t-
shirt, as described in Section 3.1. There were 7 participants (3 male and

4 female). For this case study, the total sample comprised 7 students: 4
women and 3 men with an average age of 24.75 years, an average
height of 1.68 m and an average weight of 73 kg. The subjects were
students and staff of the University of Jaen Campus. During the ex-
periment, two professionals from Neurobase, a neuro-rehabilitation
clinic, participated in the data collection and indicated the postural
change protocol for preventing pressure ulcers. They voluntarily signed
a consent form to share their data, agreeing to be part of the research
effort, understanding the objectives, possible risks, the procedures and
benefits. The results of this research study are reported or published for
academic purposes, so the names and personal data of the participants
have been omitted. In the case study, they wore the clothes with at-
tached sensors in six different in-bed postures: supine, left-side, right-
side, Fowler’s, supine with bent right leg and supine with bent left leg,
which are detailed in Fig. 2. For evaluation purposes, we gathered two
datasets of the six in-bed postures for each participant, recording ap-
proximately 10 min per posture and 1 h per participant. More than
500,000 samples were collected from inertial sensors in the case study,
during which an external observer labelled and timed the postures. The
dataset is publicly available in3 https://github.com/AmsterdamVibes/

Fig. 5. Fuzzy quantification defined by two control points, defined at the beginning and end of the postural change, to compute the priority degree of postural
changes for the body zone. In figure, we show in Fig. 5 the priority degree of postural changes over one day, which evolves according to the postural changes made by
caregivers.

2 UJAmI Smart Lab https://ceatic.ujaen.es/ujami/en/smartlab. 3 Dataset of In-bed Postures for the Prevention of Pressure Ulcers using
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inertial-inbedpostures.
The inertial data were divided into 2.5 s segments [20] and the

proposed aggregation functions were: maximal, minimal, average and
standard deviation [26]. Three classifiers: K-nearest neighbors (kNN),
decision tree (C4.5) and support vector machine (SVM) were evaluated.

Two evaluation methods were carried out. First, an evaluation
based onpersonalized learning,where only one dataset per participant
was used for training and testing. In this case, one dataset was used for
training and the other one for testing (two datasets with six in-bed
postures were collected for each participant). Second, an evaluation
based on unseen participantwas analyzed to compare learning and
training capabilities using unseen data for each participant. In this case,
two datasets for each participant were used as testing data and the
other datasets for the rest of the users were used as training data. Both
in personalized and non-personalized learning, a leave-one-participant-
out cross-validation was performed, obtaining the results described in
Tables 1 and 2,respectively. In addition, the confusion matrix for each
evaluation and classifier is described inFig. 6.

4.2. Modelling of heterogeneous in-bed postural protocols

Next, we implemented three heterogeneous in-bed postural proto-
cols under the knowledge-based fuzzy approach proposed in this work.
The same methodology was followed for both in-bed postural protocols:

• A set of postures L and sequence of postural changes within a time
interval T were defined for each protocol.

• A set of body zones Z were related to each posture L l_ by a degree of
pressure.

• FTW Fuzzy Temporal Windows with a size of two time intervals
covered a long-term evaluation of postural changes to compute body
zone pressure over time.

• A fuzzy quantifier Q z_ was defined to determine an interpretable
priority degree of postural changes for each body zone.

• A configurable threshold was set for the notification to remind the
caregiver to change the patient’s posture according to their wishes.

4.2.1. Model A: basic postural protocol with two-hour change time intervals
First, a basic postural protocol was defined by 4 in-bed postures:

supine, left lateral decubitus, Fowler’s and right lateral decubitus,
which were changed between two-hour time intervals [35]. Each pos-
ture was associated with the body zones of the patients - shoulder,
heels, gluteus, left hip and right hip - by a degree of pressure Z z_ ,
which is described in Fig. 7 together with the postures and the cycle of
postural changes. Next, two control points, which were defined by the

expert in the beginning t A_ and end point of time t B_ for two-hour long
postural changes, determine the degree of priority Q _j of postural
change for the body zones = =Q Q{ _ 0, _ 0.8}A B . In this way, the
notification threshold for reminders was set to =cut 0.8 for all body
zones, alerting caregivers every two hours if they did not change the
patient’s posture. The complete configuration for this postural protocol
and an example of priority degree for postural changes over one day is
shown in Fig. 7.

4.2.2. Model B: Dynamic postural protocol with adaptive change time
interval

Second, we defined a dynamic protocol where the elapsed time for
postural changes can be partially extended to four hours [36,37]. The
same postures and body zones from the previous section were used
here; however, in order to facilitate the caregiver’s sleep, postural
changes at night (from 00 h to 8 h) were extended to four hours while
keeping to two hours during the day (from 8 h to 24 h). To model this
adaptive protocol, a third control point tC was defined in the end point
of four-hour postural changes with the maximal priority degree of
postural change =Q _ 1C , obtaining =Q{ _A

= =Q Q0, _ 0.8, _ 1.0}B C to be applied at night. To make things
simple for caregivers, the configurable notification threshold of re-
minders was set to =cut 0.8 during the day and =cut 1.0 at
night to enable knowledge-based fuzzy model dynamic reminders for
postural changes between 2 and 4 h respectively. We note that

cut [0.8, 1] can be set by caregivers to compute reminders pro-
gressively from 2 to 4 h.

The configuration of parameters of this model together with an
example of priority degree for postural changes over 2 days is shown in
Fig. 8. We note that in this model we detail 2 days of postural changes
to show the four in-bed postures at night.

4.2.3. Model C: postural protocol for preventing pressure over injured body
zones

Third, an adapted model for preventing pressure on injured body
zones is presented. Among PUs, the sacrum and heels were the most
affected locations [38]. As the use of attached inertial sensors enables
us to determine the orientation of body zones when they are located
appropriately, the particular monitoring of injured areas is made pos-
sible. In order to show the recognition of body zone orientation, in this
work the following additional in-bed postures were evaluated: supine
with bent right leg and supine with bent left leg [27].

In this context, we describe a scenario where the patient suffers an
emerging PU in the right heel. In this case, supine posture with bent
right leg by knee flexion [39] avoids pressure on the injured area over
time. So, in this adapted model, the classic posture supine is replaced
with supine with bent right leg to protect the right heel from pressure
caused by the postures described in previous sections. This small
change enables a 66% reduction in average pressure per time unit in the
given zone, as detailed in Table 3.

Table 1
Metrics of precision (P), recall (R) and f1-score (F1) with personalized learning
in data evaluation.

SVM kNN J48

F1-sc P R F1 P R F1 P R

S1 1.00 1.00 1.00 1.00 1.00 1.00 0.37 0.33 0.41
S2 1.00 1.00 1.00 1.00 1.00 1.00 0.59 0.66 0.54
S3 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.63 0.40
S4 1.00 1.00 1.00 1.00 1.00 1.00 0.55 0.66 0.47
S5 1.00 1.00 1.00 1.00 1.00 1.00 0.36 0.33 0.41
S6 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.66 0.55
S7 1.00 1.00 1.00 1.00 1.00 1.00 0.61 0.52 0.74

Average 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.54 0.50

Table 2
Metrics of precision (P), recall (R) and f1-score (F1) with unseen participant
learning in data evaluation.

SVM kNN J48

F1-sc P R F1 P R F1 P R

S1 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00
S2 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.75
S3 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.94
S4 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
S5 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.83 0.93
S6 0.97 1.00 0.94 0.99 1.00 0.99 0.96 1.00 0.93
S7 1.00 1.00 1.00 0.99 1.00 0.99 0.69 0.65 0.74

Average 0.99 1.00 0.99 0.99 0.99 0.99 0.91 0.87 0.90

(footnote continued)
Inertial Sensors Attached to Clothing. https://github.com/AmsterdamVibes/
inertial-inbedpostures.
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In order to model the adaptation of the injured body zone to the
protocol, three steps were followed. First, the left and right heels were
included separately as new body zones, which were then associated
with the in-bed postures: supine with bent right leg, left lateral,
Fowler’s and right lateral by a degree of pressure Z z_ . Second, the
control points for the injured left heel were decreased to

= = =Q Q Q{ _ 0, _ 0.25, _ 0.5}A B C to represent the need for spe-
cial attention, determining the priority degree of change in the

beginning tA, indicating postural change at two-hours tB and at four-
hours tC for the in-bed posture (Fowler’s) which affects this body zone
(left heel). As in the previous section, the value of the notification
threshold for reminders was set to =cut 0.8 during the day and

=cut 1.0 at night for all body zones except the left heel whose
threshold was set to =rightheel_ 0.25 during the day and

=rightheel_ 0.5 at night. In Fig. 9, we describe the parameters of this
model. We note that the decreasing degree of control points and the

Fig. 6. Confusion matrix: (A) SVM- Support
Vector Machine with personalized learning, (B)
KNN K-nearest neighbors with personalized
learning, (C) C4.5 Decision Tree with persona-
lized learning, (D) SVM Support Vector Machine
with unseen participant learning in data eva-
luation, (E) KNN K-nearest neighbors with un-
seen participant learning in data evaluation and
(F) C4.5 Decision Tree with unseen participant
learning in data evaluation.

Fig. 7. Basic postural protocol for 4 in-bed postures changed over two-hour time intervals.
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notification threshold for the left heel would provide caregivers with
more interpretable information on this body zone.

5. Discussion: limitations and strengths of deployment in a real-
world environment

In this section, we discuss the limitations and strengths of the pro-
posed methodology to be deployed in a real-world environment. First,
we detail the strengths identified in real-time monitoring of postural
changes for PU prevention using non-invasive inertial sensors:

• We use inertial micro-sensors to detect bed postures, which adhere
to patients’ clothes in a non-invasive way. The algorithm performs
lightweight and optimized processing, which can be integrated into
low-cost devices, since it does not require deep learning models.
Among the wide spectrum of models, we focus on lightweight and
efficient classifiers, which enable real-time training and evaluation
on micro-boards in fog computing environments.

• Feature extraction by sliding windows is very agile (2.5 s). This has
been shown to be suitable for evaluating inertia activity data and the
delay in the response to estimating the classification is negligible.
The set of features extracted from the inertial sensors included

maximum and minimum values, averages and standard deviation,
which have proven to be efficient and suitable to describe inertial
sensors in Activity Recognition (AR) and allow the identification
and recognition of actions or objectives of the inhabitant. The alert
system notifying caregivers does not require a critical response that
is sensitive to delays in the communication process of sensors or in
the classification of positions. A response time close to some minutes
is more than enough and allows work in real time.

• The system does not require customization to obtain high perfor-
mance, although customization of data is sensitive to decision tree-
based classifiers and we observed that the best classification is ob-
tained using customization. So, training data from the patient is key
to improve precision performance in real conditions, which would
require a shorter phase for pre-training the model.

Having discussed the strengths, it is also necessary to advance in
solving certain limitations, issues and open challenges to deployment in
real-world conditions:

• The case study carried out in this work was collected from 7 users in
controlled environments at the University of Jaen. Although the
postural changes of patients at risk of suffering PUs have been
guided by rehabilitation experts, future works on patients without
mobility will be developed in real conditions according to expert
criteria in order to evaluate potential differences between subjects.

• The intelligent system integrates a battery that lasts 48 h. Therefore,
support by medical staff is required to replace or recharge the in-
ertial devices every two days and to avoid loss of data.

• One of the relevant points for the success of the project is training
medical staff regarding the correct use of the technological devices
in order to guarantee correct data collection and obtain the desired
results. Staff training and their relationship with new technologies
and devices can be a determining factor.

Fig. 8. Dynamic protocol for extending the change time interval from two hours during the day to four hours at night.

Table 3
Average pressure degree per time unit for models A, B and C.

Body zone Model A/B Model C

Gluteus 0.38 0.38
Heel right 0.38 0.13
Heel left 0.38 0.38
Shoulder 0.38 0.38
Left hip 0.25 0.25
Right hip 0.25 0.25

E. Bernal Monroy, et al. Journal of Biomedical Informatics 107 (2020) 103476

8



• Taking into account that the proposed intelligent system is con-
sidered a tool to support medical staff decision-making, it does not
present an intervention protocol considering that it does not comply
with medical device regulations.
The device developed in this proposal is a decision support system
with many benefits such as:
– Improving medical staff efficiency: the alert system allows them to

monitor patient posture and times in real time.
– Speeding up the decision-making process: the device generates

information that makes it possible to support patient diagnosis
and treatment through the data analysis process.

– Faster problem solving: a specialized team can effectively monitor
the study because they are getting data in real time.

– Convenience: it is a simple device that is easy to install and use by
the end user.

– Improving internal organizational communication: it makes it
easy to communicate relevant information with medical staff.

– Cost reduction for tasks that require decisions: the treatment of
PUs can generate high costs for a medical institution; however,
use of the device and timely data analysis can prevent the ap-
pearance of PUs, shortening patient hospital stays.

– The developed device does not require any technical knowledge
for its use or installation.

5.1. Towards a clinical and technological deployment protocol for PU
prevention

Future works could evaluate an inclusive care service model for
preventing PUs at home based on the proposed methodology for pa-
tients and the involved stakeholders. However, in order to advance in
the future deployment of the proposed system in real conditions,

involving the health systems, caregivers, clinicians and patients at risk
of suffering pressure ulcers, we propose the following actions for the
deployment of a PU prevention protocol integrated in the phases out-
lined below.

Phase 1: Defining the patients at risk of pressure ulcers. This phase
consists of the following actions:

• Action 1: Defining and applying a patient assessment tool using the
Braden Scale which allows the risk of developing pressure ulcers to
be evaluated.

• Action 2: Previous approval from a research ethics committee, de-
termining the number of participants, duration and supervision of
clinical trials.

• Action 3: Sharing and signing voluntary consent forms containing
personal data, information related to the project, the objective of the
research study, the risks, procedures, and benefits of participating in
the study.

Phase 2:Defining and classifying the patient care model with clinics
and caregivers according to the devices designed in the system.

• Action 1: Designing the protocol according to the patient’s condi-
tion. In this stage, it is important to consider the Braden scale to
predict the risk of pressure ulcers, which identifies patients as: high
risk, moderate risk or low risk.

• Action 2: Designing the levels of care or protocol according to the
patient’s score through the evaluation of different aspects such as
sensory perception, exposure to moisture, activity, mobility, nutri-
tion, friction and risk of injury.

• Action 3: Defining the type of alerts issued by the devices for each
level of care. A notification in the information system will record the

Fig. 9. Adapted protocol for preventing pressure over injured body zones.
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time and position of the patient.

Phase 3: Design and implementation of service provision in the
administrative structure of ulcer rehabilitation clinics and health sys-
tems. The system will be integrated with the clinical history of the
patient to prevent it from being isolated under secure cloud services for
health data, which is key in the development of Sensor-Based Health
Systems [40].

• Action 1: Modeling the extramural service that incorporates the use
of the device and system in the care provided within the institu-
tional portfolio. Designing a medical protocol for use of the device
and data collection at home is required for the proper functioning of
the intelligent system.

• Action 2: Generation of medical performance indicators, such as
reduction of hospital complications, adherence to treatment, service
satisfaction, and administrative management indicators.

Phase 4: Training all the actors involved in the care of PU patients. It
is relevant to make device manuals and train the medical team and
caregivers to guarantee the proper functioning of the proposed system.

Phase 5: Continuing the evaluation and monitoring of the proposed
model over 6 months, bearing in mind the previous phases, which is
crucial.

• Action 1: Performing tests, applying the designed model, and using
the devices created to verify the proper functioning of the system
and make the appropriate adjustments.

Phase 6: Evaluation and monitoring the performance of the tech-
nological device. Ulcer rehabilitation experts have defined a checklist to
validate the device.

• Action 1: Analysis and evaluation of the information obtained
during the application of the proposed model.

• Action 2: Readjusting the parameters of the model which define the
time and sequence of patient postural changes by clinicians on a
personalized basis.

Finally, we note that in this work we propose the implementation of
clinical decision support systems for the prevention of PUs. The support
devices aim to aid healthcare professionals in decision-making and
contribute to improving the interaction between scientific evidence and
patient information. The data is presented in an organized way and is
available for medical and nursing staff at the appropriate times and in
order to improve the quality of care, patient safety and efficiency of
hospital processes. This research study proposes a system that works as
a clinical support tool, as it allows PU monitoring without interfering in
treatment or diagnosis and does not satisfy the requirements of medical
devices established by the World Health Organization.

6. Conclusions and ongoing works

In this work, a fuzzy monitoring system for postural changes which
recognizes in-bed postures by means of non-invasive inertial sensors
attached to patients’ clothes has been proposed. First, an evaluation of
six in-bed postures by inertial sensors attached to clothing has been
performed. The case study shows excellent performance in classifying
in-bed postures both in personalizing learning using individualized data
for each user and unseen data among users. The performance of the
SVM Support Vector Machine classifier is higher than 99%. Second, we
have modeled three heterogeneous in-bed postural protocols under the
knowledge-based fuzzy approach described in this work. From (i) a
basic protocol for 4 in-bed postures changed over two-hour time in-
tervals, we have modeled more complex real and practical contexts: (ii)
a dynamic model for extending the change time interval from two hours
during the day to four hours at night; and (iii) an adapted protocol for
preventing pressure over injured body zones, where the use of attached
inertial sensors has successfully described the orientation of patients’
heels. Taking into account that the outcome was obtained using a low-
cost device, in future work we will analyze the possibility of evaluating
the device in other regions or developing countries. Moreover, we are
working on attracting interested parties to provide patients so that we
can carry out an evaluation of one or several protocols of postural
changes within certain segments of patients. Finally,we will explore the
application of multi-granular fuzzy linguistic approaches [41] to com-
pare the findings of experts with different criteria on the modeling of
postural changes.
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Appendix A. Aggregating Fuzzy Temporal Windows and Terms

For a given body zone Z z_ and fuzzy temporal window T k_ , we define the fuzzy aggregation Z z T k_ _ in a given current time t as:

= =

= <

Z z T k t Z z t T k t t t t

Z z T t t Z z T k t

_ _ ( ) _ ( ) _ ( ),

_ ( ) _¯ _ _ ( )

j j

k jt tj
(A.1)

Using weighted average [29] as an operation to model the t-norm and co-norm, we obtain:

= ×
<

<Z z T k t
t T k t

t Z z t T k t_ _ ( ) 1
_ _ ( )

_ _ ( ) _ 0, 1
j t t j

j t t j j
j

j

(A.2)

E. Bernal Monroy, et al. Journal of Biomedical Informatics 107 (2020) 103476

10



Appendix B. Representation of fuzzy temporal windows using trapezoidal membership functions

Each FTW T k_ is described by a trapezoidal function based on the time interval from a previous time t j to the current time
t T k t l l l l: _ ( )[ _1, _2, _3, _4]j and a fuzzy set characterized by a membership function whose shape corresponds to a trapezoidal function. The well-
known trapezoidal membership functions are defined by a lower limit l_1, an upper limit l_4, a lower support limit l_2, and an upper support limit
l_3 (refer to Eq. (B.1)):

=
< <

< <
TS x l l l l

x l
x l l l l x l

l x l
l x l l l x l

l x

( ) _1, _2, _3, _4

0 _1
( _1)/( _2 _1) _1 _2
1 _2 _3
( _4 )/( _4 _3) _3 _4
0 _4 (B.1)

Appendix C. Representation of fuzzy quantifiers using control points

A control point is defined by a 2-tuple =Q t Q{ , _ }j j j , where t j is a point of time and Q _j is the degree of priority of postural change defined by
the expert.

First, we compute the aggregation degree of the body zone Z z T k_ _ in the point of time t j obtaining a new 2-tuple
= =Q d r Z z T k t Q{ , } { _ _ ( ), _ }j j j j j .
Next, a linear interpolation L x Q( , )j of the control points defines the membership function =µ Q q L Z z T k t Q_ _ ({ _ _ ( ), )j j which is defined from

the domain Z z T k_ _ [0, 1] to the range of priority degree [0, 1]

= + +L x
x d

r x d r d d x d
d x

( )
0

( )/( )
1

i i i i i i

N

0

1

(C.1)
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