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Wireless  sensor  networks  comprise  an  important  research  area  and  a near  future  for  industry  and  com-
munications.  Wireless  sensor  networks  contain  resource-constrained  sensor  nodes  that  are  powered  by
small  batteries,  limited  process  and  memory  and  wireless  communication.  These  features  give sensors
their  versatility  and drawbacks,  such  as their  limited  operating  lifetimes.  To  feasibly  deploy  wireless
sensor  networks  with  isolated  motes,  several  approaches  and  solutions  have  been  developed;  the  most
common,  apart  from  using  alternative  power  sources  such  as solar  panels,  are  those  that  put  sensors  to
sleep  for  time  periods  established  by  the  application.  We  thus  propose  a fuzzy  rule-based  system  that
estimates the  next  duty  cycle,  taking  the  magnitude  being  tested  and  battery  charge  as input.  To  show
ulti-agent system
ireless sensor network

uzzy rule based system

how  it works,  we  compare  an analytical  delta  system  to  our contribution.  As an application  to test  both
systems,  a sound  pressure  monitoring  application  is  presented.  The  results  have  shown  that  the  fuzzy
rule-based  system  better  predicts  the  evolution  of the  magnitude  by  which  errors  committed  by idle
periods  decrease.  This  work  also  shows  that  application-oriented  duty  cycle  control  can  be an  alternative
for  measuring  systems,  thus  saving  battery  and  improving  sensor  node  lifetime,  with  a  reasonable  loss
of precision.
. Introduction

Wireless sensor networks (WSNs) [1] have become an important
tudy and development area for many applications [2],  including
istributed processing, video acquisition, intelligent agriculture,

ndustrial control, intelligent buildings, environmental monitoring
ystems, surveillance, health monitoring and traffic monitoring. A
ain feature of WSNs is that they contain a variable number of

ensor nodes, where each node has a processing unit with limited
omputational capability and memory, wireless communication
apabilities, a set of probes and actuators to measure and modify
he environment and they are usually only powered by batter-
es. Though sensor nodes are resource-constrained devices, several
oft computing technologies have been adapted to WSNs, includ-
ng genetic algorithms [3], particle swarm optimization [4] and
uzzy rule-based systems (FRBSs) [5] to improve the efficiency of

he processes that involves sensor nodes in a WSN  and avoid deep

athematical calculus.
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To prolong sensor lifetime, a common solution [6,7] is to stay
as idle as possible and only wake up when necessary. Sensor nodes
thus operate in a work cycle in which they first execute the appli-
cation (e.g. measure, calculate outputs, actuate), decide if it is
necessary to transmit any information and go to sleep mode for
an interval calculated for each application. This interval generally
remains constant, even for MAC  layers such as S-MAC [8].

An important topic examined in WSN  applications is power con-
sumption optimization [9].  Multiple approaches exist forgetting
a suitable solution, as presented by [10]; his algorithm dynami-
cally adjusts the MAC  duty cycle, observing the residual energy in
the nodes and the network traffic applying FRBS. Estimating the
sleep mode interval (SMI) is an important factor in WSN  power
saving techniques and is usually calculated with coverage and
routing restrictions [11,12] or based on environmental evaluation.
However, less attention has been paid to estimating the SMI  by eval-
uating the magnitude of the surrounding environment that can be
useful for an event-driven WSN. This is explained in further detail
below.

This work presents three contributions: an FRBS to estimate the
SMI, applying that estimator to an environment-based duty cycle

controller and demonstrating that FRBS can be easily setup for this
type of monitoring applications instead of analytical solutions.

We first propose a duty cycle scheduler based on an FRBS that
estimates the next SMI, taking the values of the magnitude being

dx.doi.org/10.1016/j.asoc.2012.10.005
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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ested and battery charge level as input. This system aims to opti-
ize the isolated sensor lifetime for sensing applications using a

uty cycle schedule that keeps the node idle when it is not neces-
ary to take measures due to the FRBS estimation. The improved
attery lifetime is due to the power drawn in the active mode com-
ared to idle modes. Using Sun Spot WSN  technology [13], the
urrent in idle mode falls to 24 mA  from a range of 70–120 mA
n active mode (400 mA  if the sensing board is used) and can be
ecreased to a minimum of 32 �A in deep sleep mode.

Our second contribution is completing an environment-based
uty cycle controller that can help other estimators obtain the best
uty cycle. The motivation for using FRBS is that system tuning can
e performed only in the rule and fuzzy set setup.

The last contribution of this work is comparing our new FRBS for
MI  estimation to an analytical differential system (DS) presented
y Cuevas-Martinez et al. [14]. The DS is based on a set of analyt-

cal functions that take the absolute value of the magnitude being
ested, the difference between the current and previous measures,
revious estimated SMI  and battery charge as input, resulting in
he new estimated SMI. We  show that FRBS can obtain good pre-
ictions over real magnitudes without a complex model. Moreover,
RBS can suit any other magnitude analysis without any sensor re-
rogramming; a new knowledge base is instead sent to the affected
otes.
With these contributions, we consider the trade-off between

agnitude sensing and battery lifetime with low computational
ost that can be used in stand-alone or other applications, e.g. ambi-
nt intelligence [15], to elongate the sensor lifetime. The impact
n battery use for such systems should be low enough to allow
ong operation periods, i.e. days or weeks, because their estimations

ust consume less than any sensing or transmission operation. This
aper shows that both systems accomplish that condition and can
e suitable for long sensing applications due to very low power
onsumption results.

The remainder of the paper is organized as follows. The
ollowing section presents related work. Section 3 describes
he FRBS proposed to obtain the SMI  on a sensor. Section 4
hows the experimental results with a system adaptation for a
ound pressure monitoring application. Section 5 concludes the
ork.

. Related work

The multi-agent theory and its applications have been studied
or several years and have become a real solution for many complex
roblems, including industrial applications [16], intelligent build-

ngs [17] and ambient intelligence [18]. Another important area in
ulti-agent systems is how they consider treating the environment

19]. There are many definitions and theories about what agents
eally are and what they should do [20]. One theory defines the
gent as intentional systems [21] with certain purposes to achieve.
n this work, the multi-agent system is embedded inside sensor
odes to manage certain sensor decisions in a smart way to accom-
lish their tasks efficiently.

WSNs [22] have become a new important area to study due
o their possible applications, including easy deployment, dis-
ributed processing, mobility, data acquisition and controlling
angerous processes. However, WSNs have significant constraints,
ainly when sensor nodes are isolated, e.g. limited power source,

omputational capacity, wireless interference and routing. Appli-
ations with WSNs must consider most of those limiting features;

sing intelligent systems to manage sensor node behavior is thus
ommon. Moreover, WSNs represent an ideal scenario for integrat-
ng intelligent agents that can accomplish complex applications
espite the WSNs’ constraints [23].
t Computing 13 (2013) 967–980

To achieve that premise, new applications have been adapted to
WSNs, although sensor nodes have highly constrained resources.
One such application is integrating soft computing (SC) technolo-
gies into sensor nodes, including fuzzy logic, neuronal networks
and FRBSs [24].

FRBSs are considered knowledge-based systems in which sys-
tem knowledge is represented using a set of “IF–THEN” rules
whose antecedents and consequents comprise fuzzy logic state-
ments (fuzzy rules). A main characteristic of these systems is the
capacity to incorporate human knowledge by accounting for its
lack of accuracy and uncertainty or imprecision. WSNs thus rep-
resent an ideal scenario for integrating intelligent agents ruled by
FRBS that can accomplish complex applications despite the WSNs’
constraints.

Multi-agent architectures have recently been preferentially
used over WSNs and with obvious limitations; they can approach
tasks for which WSNs are typically applied in a different way. That
is the case of WISMAP [25], a WSN  application management pro-
tocol that defines a special multi-agent based system to build a
new framework over WSNs. WISMAP encloses communications,
application process, data format, resource hierarchy and agent
interaction inside and outside the sensor node. That framework
shows that multi-agent systems can be perfectly inserted into a
sensor node to efficiently manage WSN  resources.

An important handicap of WSNs is that their power sources are
limited in most applications; thus, sensor nodes usually remain in
power saving modes and enter active mode for very short periods
of time. This SMI  is one parameter being studied.

There are different approaches to SMI estimation. Most
solutions try to schedule communications to avoid periods of
unnecessary radio activity and increase node lifetime. One of the
first solutions presented is the S-MAC protocol, which adds a slot-
based fixed transmission scheduling to the MAC  layer to allow
sleep periods between radio activity periods. However, S-MAC has
high latency rates due to those fixed slots. This step is necessary
step for starting the sleep scheduling evolution in the MAC  layer
([26] reviews those protocols) that allowed the IEEE 803.15.4 [27]
to incorporate some improvements, including the beacon-enabled
mode and using sleep scheduling for energy saving in final devices.
That scheduling has been recently improved by contributions such
as the algorithm proposed by De Paz Alberola [28], where beacon-
enabled devices can also fall into sleep mode using a duty cycle
learning algorithm (DCLA) that uses traffic to estimate the SMI.

A previous study reviews other power efficiency solutions [29],
which are divided between two main classes: topology control
and power management. The present paper only considers solu-
tions for power management and sleep/wakeup protocols. Under
the sleep/wakeup protocols topic, three types of them appear: on-
demand, scheduled rendezvous and asynchronous. Our approach
falls into the asynchronous type, similar to a previous approach
[30] where each sensor uses a symmetric design for the wakeup
schedule function. In our approach, nodes have an independent
scheduling based on the measured magnitude and history or past
values to allow them to sense for as much time as possible.

A different SMI  estimation approach [31] uses stochastic meth-
ods, but it needs networks with rigid constraints and does not
support node mobility. Although it can achieve good results for
the modeled networks, they are based on coverage or latency, not
sensing magnitude.

Another type of SMI  scheduling is the one used in event-driven
WSN, where events detected by sensors produce an important
increase in network traffic. This effect is accomplished in the MAC

layer [32] by using a non-uniform distribution for the wait time
after a collision is detected. This solution tries to minimize the effect
of events simultaneously detected by several sensors; it does not
estimate when an event is going to occur, but it reacts after an event
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s detected. Conversely, another previous algorithm [33] estimates
 duty cycle by predicting the occurrence of an event by analyzing
ensed data and neighbor traffic. This last solution is closer to our
pproach because the SMI  is estimated using external and internal
arameters. In that case, the event prediction needs information
rom neighbor nodes that can derive higher power consumption
han our FRBS based on the magnitude being tested.

SMI  estimation can be achieved in different ways and with many
pplications. For our application, we have used an asynchronous
cheduler based on the FRBS estimation of the next SMI. The FRBS
stimator is described below.

. SMI estimation based on FRBS

The systems under study, i.e. DS and the new FRBS, estimate
he SMI  using external and internal parameters to improve battery
ifetime for WSN  nodes in sensing applications. Both have been
eveloped to be implemented inside the multi-agent architecture
xplained in the WISMAP framework [25]. Moreover, two  FRBS
pproaches have been tested on two different knowledge bases.
he first one tries to save as much battery life as possible while
inimizing the error, whereas the second is more conservative and

hus infers a longer SMI  for the same conditions than the first one.
oth knowledge bases are explained in further detail in Section 3.2.

The upgrade to the WISMAP framework, its architecture and the
S are briefly explained below.

.1. WISMAP framework upgrade

Each sensor node deployed in our WSN  runs multi-agent
pplication software. This architecture comprises three agents:
anagement, application control and communication. The man-

gement agent aims to control the execution of resources available
n the sensor, like the other two agents, but it is not intended to be
n operating system. The management agent executes the applica-
ion control agent, which controls the execution of different sensor
pplications (e.g. measures probes such temperature or humidity,
ctivates diverse actuators, infer an output in a FRBS, infer and col-
aborate in FRBS). The communication control agent incorporates
he application protocol that allows sensor nodes to communicate
ith other sensor nodes, neighboring sensors and a base station.

he application protocol used is WISMAP [25], which is resource-
riented and specifically designed for WSNs.

.1.1. Sleep/operation decision subsystem
Two new FRBS estimators have been implemented inside the

anagement agent because it controls the duty cycle in the initial
esign. The new sleep/operation decision subsystem (SODS) has
hus been installed in that agent. When the SODS is active, it con-
rols the sensor sleep–awake cycle. It calculates the new SMI  based
n the FRBS (described below), programs the sensor node in idle
ode and allows it to return to operation mode.
Fig. 1 shows the multi-agent structure and SODS placement.

.1.2. Differential system
The differential system (DS) [14] to estimate the next SMI  is

n analytical system based on several parameters: the difference
etween the variable values measured in the present cycle, its val-
es obtained in previous cycles and battery charge. The range of the
easured variable is also divided into several regions, each limited
y a set of thresholds. To calculate the SMI, the system considers the
ifference of the value between different moments and the change

n the region.
The method algorithm is comprised of three steps:
t Computing 13 (2013) 967–980 969

First: the sensor node measures the value of the object variable
and calculates the difference between the present value and the
values obtained in previous cycles.
Second: the sensor node verifies whether the present value
belongs to a different region than the previous values. The sensor
node may  consider whether the present value belongs to a critical
region.
Third: considering the difference in values, change of zone, critical
regions, battery levels and previous SMIs, the sensor calculates the
next SMI.

The way in which the SMI  is calculated depends on the applica-
tion and must be adapted to its objective because parameters such
as thresholds are bound to the magnitude being tested.

3.2. FRBS interval estimation

The FRBS contains input and output interfaces, scaling functions,
fuzzification and de-fuzzification interfaces, knowledge bases and
an adapted inference engine. Each FRBS infers its own  output using
its inputs and knowledge base (KB). To incorporate this FRBS, it
is thus necessary to design a KB, defining the input variables, their
value ranges and membership functions, a set of IF–THEN rules and
the range and membership functions of the output variable that
represent the next cycle sleep interval. Although the KB depends on
the application and must be adapted to its objective, the rules and
fuzzy sets can be approximately designed, avoiding any detailed
physical model of the magnitude at its initial approaches. Only a
set of thresholds is used to mark the boundaries of different per-
formance states of the system to measure. To design the knowledge
base that runs the FRBS in the sensor, it is necessary to define input
and output variables, their fuzzy sets and the rules that manage
them.

3.2.1. Input variables
Our approach uses following variables as input for the FRBS that

infers the next cycle’s SMI:

• Absolute measured level of the magnitude under study. The FRBS
output changes depending on the absolute value read. Too high or
too low values are treated as non-desirable conditions and must
be checked in more detail than values read in normal working
conditions. This variable is called sound pressure and is measured
in dBA.

• Sensor input variations.  The sleep interval may  increase if the input
variables have small variations and decrease if input variables
present large increments. This variable is called increment and is
measured in dB.

• Battery level. In some applications, it is desirable to increase the
sleep interval when the battery level is low and prolong the sensor
node lifetime, though the sensor node may  lose part of the signal
being measured. This variable is called battery and is measured
in percentage.

3.2.2. Output variable
The FRBS output variable is the estimation for the next SMI

used in the sensor. This variable is called SMI and is measured in
milliseconds.

3.2.3. Knowledge base 1 (KB 1): initial approach for inertial
signals
The first approach tries to model signals that represent an iner-
tial magnitude, such as sound pressure. The first KB focuses on
conservative battery use. When the battery charge is assumed as
HIGH, the SMI  can be inferred as SHORT (Table 1). The other main
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Fig. 1. Multi-agent structure fo

ffect, which tries to save as much energy as possible, is the incre-
ent between measures; for LOW increments, the system tries

o give as long an SMI  as possible. The third adjustment to SMI
s caused due to the absolute level of the sound pressure magni-
ude, which makes shorter SMIs for HIGH magnitude values. For
eriods of low magnitude variation, the FRBS infers long SMIs to
ave as much battery as possible. When Battery is HIGH and the sys-
em detects high magnitude variations, it tries to reduce the error
nd infers shorter SMIs. That behavior is modeled with the rules
etailed in Table 1.

Fig. 2 shows the corresponding fuzzy sets of the input and output
ariables.

The fuzzy sets used and their special features are only examples
or our test scenario. Due to the versatility of FRBS, they can be
uned or changed easily to suit any sensing application.

For the Increment variable, the chosen difference ranges from 5
o 20 dB. The higher limit of the range is 20 dB because our system
ims to be deployed in controlled environments where the instant
hanges are not usual. The minimum level of 5 dB is employed to
void minimum differences due to failures in microphone calibra-
ion or electrical noise.

Battery charge is considered in two levels that represent a fully
harged battery (100%) and a completely depleted one (0%) because
ore complex fuzzy sets domains have been tested and do not

resent better results. The rules base grew, making the system

lower. To show the battery effect, all tests are repeated for six
ifferent battery charges: 5%, 15%, 30%, 75%, 99% and 100%. Those
ests are performed because the power consumption of the FRBS

able 1
ule base for the initial approach (for KB 1).

Rule Increment Battery Sound pressure SMI

1 Low Low Long
2  Low High Low Long
3 Low High Medium Medium
4 Low High High Short
5  High Low Medium
6 High High Short
sor with WISMAP framework.

and the DS SMI  estimator is so low that both can be repeated for
days to consume only 1% of the battery load.

The Sound pressure variable is divided among three fuzzy sets
to model the silence threshold (40 dBA), the sound pressure for a
normal working duty (65 dBA) and the threshold of a disturbing
noise or a failure (90 dBA). Higher limits could be used, but in this
application, we have assumed that measures over 90 dBA are all
considered HIGH levels.

The output variable, SMI, has been designed with three fuzzy
sets to give a versatile estimation, as the fuzzy engine must be
implemented into a highly constrained device. The rule base must
therefore be designed carefully to avoid unnecessary or redun-
dant rules that model residual behaviors. With these fuzzy sets,
the knowledge base can give low SMIs for intervals with measures
near the limits or high differences, medium SMI  values for transi-
tional periods and long SMIs for measures with values under normal
thresholds.

3.2.4. Knowledge base 2 (KB2): adjustment for further battery
saving

The rules enumerated above confirm that one of the two KBs has
been tested to infer the SMI  using FRBS. To detect different behav-
iors of the magnitude under evaluation, another rule base has been
tested. This approach is more conservative: it gives longer sleep

periods and shows a different behavior of the estimation system
by changing a few bits inside a sensor. The FRBS with KB2 infers
a longer SMI  than FRBS with KB1 due to rules 3, 4 and 5. Table 2
details the rule base. The fuzzy sets used are the same as in KB1.

Table 2
Rule base for the less conservative approach (KB 2).

Rule Increment Battery Sound pressure SMI

1 Low Low Long
2  Low High Low Medium
3 Low  High Medium Long
4 Low  High High Medium
5  High Low Long
6 High  High Short
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ig. 2. Fuzzy sets for the three input variables and the output variable SMI: (a) in
harge in a percentage of the sensors, (c) input variable for the instant sound pressu

Differences between KB1 and KB2 can be explained by battery
aving. KB1 tries to save as battery as a priority, but the FRBS with
B2 is more conservative and infers longer SMIs in high variation
eriods for the magnitude being tested.

.3. Advantages of FRBS

One main advantage of using FRBS over WISMAP is that the sys-
em can be adapted to a new environment by deploying a new
nowledge base through a WISMAP protocol. This advantage makes
his solution more versatile than analytical systems that usually
equire software re-coding for each platform. Moreover, minimal
hanges to a KB can provide new capabilities that can adapt the
stimation system to new conditions.

. Experiments and results

The delta system [14] and FRBS have been compared using three
ifferent groups of thirty input signals to analyze the error accumu-

ated in the measures when the SMI  is not constant. Those signals
ry to model the same inertial system under slightly different envi-
onmental situations. These comparisons seek to demonstrate that
he FRBS can obtain enough measurements to detect the evolution
f inertial magnitudes without any analytical model and, in some
ases, with fewer work cycles than the DS. A good study of the
hresholds for the different environment magnitudes used as input
s required.

For the error generated due to lost measures, the sampling
nstant with FRBS is expected to be more accurate than using the DS,

ainly due to the difficulties of finding a precise analytical model
or the tested magnitudes. The error introduced by FRBS should
hus be insignificant compared to the obtained increase in battery
uration.

.1. Sound pressure monitoring application
The applications covered by this type of estimation systems have
n inertial behavior, e.g. room temperature or the revolutions per
inute of an engine. Each magnitude must be studied and modeled

eparately before it can be used with this application.
riable for increment in the magnitude being tested, (b) input variable for battery
d (d) output variable for the next cycle sleep time interval.

4.1.1. Sound pressure
The magnitude used to compare the DS with FRBS is sound pres-

sure. This magnitude is used to measure the loudness of sound in
one area for a certain period of time. Sound pressure is a typical
magnitude in acoustical pollution that WSNs can measure [34].
With the right tuning, it can be used to control other systems,
e.g. working machinery using only sound (or vibrations) [35,36].
These mechanical systems produce similar sound patterns when
engines or moving parts are working and thus, several sound pres-
sure ranges can be assigned to different workloads or failures.

The parameters of the approach used in these experiments are
based on empirical values extracted from studying sound pres-
sure values from different CPU fans. The parameters can be divided
into three categories, related to the difference in measured values,
sound pressure level and battery level.

4.1.2. Differential system parameters
The DS is based on several thresholds that limit the behavior of

the functions that estimate the new SMI. The way that FRBS calcu-
lates the new SMI  must therefore be equivalent. To allow a good
comparison between the systems, FRBS has been setup with equiv-
alent values in fuzzy sets and scales as DS, e.g. 20 and 300 s for the
minimum and maximum SMI, respectively. The DS parameters can
be found in Section 3.1.2 or a previous study [14] in further detail.

4.2. Experimental description

This work aims to achieve a system that can predict the evo-
lution of a magnitude to dynamically schedule the sleep time for
a sensor, allowing it to stay idle for as much time as possible. Both
systems have been tested with three different groups of thirty
pseudo-random sound pressure signals based on real sound pres-
sure measures obtained from working computers where the main
sound sources are the fans (i.e. power supply, microprocessor,
case) and hard disks. These measures have been obtained with
a simple analog circuit equipped with an electret microphone.
This circuit has been incorporated into a Sun SPOT sensor [13].

Systems with spinning parts, as explained in Section 4.1.1, are
used to achieve a non-intrusive failure detection system into
already deployed machinery, including engines, extractor fans or
conveyor belts. A main feature of those systems is that they are
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Table 3
Mean quadratic error of the samples of the input signals obtained with a static duty
cycle.

Test signal type 20 s 40 s 150 s 300 s

A 0.0001 0.0008 0.0343 0.1703
B 0.0066 0.0414 0.4765 1.1478

300 s of sleep time.
To check the significance of the results, an ANOVA is performed

for the Error variable using two factors: SMI  estimator and battery
72 J.C. Cuevas-Martinez et al. / Appli

ighly inertial in normal work duty. Moreover, the sound produced
y spinning parts should keep constant pattern overtime, only
hanging when the working duty increases or there is a failure.

The pseudo-random signals (test signals) consider those fea-
ures and have been generated with values of sound pressure from
0 to 90 dBA. The normal working sound pressure value measured

s approximately 60 dBA; 40 dBA is close to silence and 90 dBA is
he louder sound pressure expected due to a failure. These pseudo-
andom input signals model the sound pressure with values every
econd that simulate the magnitude that a sensor would read when
t wakes up. Those signals have been generated using the following
lgorithm. To obtain the values that form a pseudo-random signal,
his algorithm is repeated to obtain a value at each of P seconds.
he random function follows a uniform distribution.

 = 0
O

If s > S THENn = m + (R*sign(i))
ELSE n = m + (N*sign(i))
IF n > T THEN n = T
IF n < B THEN n = B
G(i*P) = n

HILE (i*P < duration)
The parameters used to generate those signal are the following:
G, generated signal; P, interval between algorithm executions;

uration, time to be generated in seconds; m, previous value
btained using the algorithm. The first value is 60 dBA; n, next sig-
al value to generate; s, random value used for Stability from 0 to
; i, random value used for increment from −0.5 to 0.5; base (B),
inimum signal value; top (T): maximum signal value; Normal

ncrement (N), absolute increment for the magnitude to gener-
te when the signal should be stable; Rare increment (R), absolute
ncrement for the magnitude to generate when the signal fluctu-
tes; Stability (S), the probability (0–1) that marks signal steadiness.
igher values generate steadier signals. For random values lower
r equal than Stability, the equation uses the Normal increment to
enerate the next magnitude value to generate. For random values
ver the Stability parameter, the equation uses the Rare increment
alue.

The signals used to test the SMI  estimation system have been
enerated using the following parameter configurations:

Signals type A: N = 0.5, R = 2.0, Steady = 0.9, P = 120 s.
Signals type B: N = 0.2, R = 2.0, Steady = 0.9, P = 25 s.
Signals type C: N = 0.2, R = 0.5, Steady = 0.9, P = 25 s.

.3. Real system

To measure the sound pressure and avoid the effects of differ-
nt battery consumption among sensor nodes and distance to the
ound source, the same sensor is used to take the real sound pres-
ure samples. The real system used to take sound pressures is an
pen computer case with an additional fan that can be manipulated
o change its spinning speed and simulate failures, including col-
isions with other parts of the machine, sudden speed changes or
ack of lubrication.

Both systems, FRBS and DS, have almost equal processing times,
.g. approximately 730 ms  running on a Sun SPOT with the sound
ressure calculus included; thus, either could be used with no extra
ower consumption. The processing time of a sensor node test-

ng the instant sound pressure takes approximately 725 ms  and

herefore, the penalty of those systems per work cycle is insignif-
cant. These values are later used to check the real reduction in
rocessing time gained or lost due to using an FRBS instead of fixed
ime sampling.
C  0.0010 0.0061 0.0683 0.1661

4.4. Tests

The tests for the FRBS SMI  estimation, both knowledge bases
and DS have been simulated for ten hours of continuous work-
ing. The estimation results for the FRBS are compared to those for
the DS for six different initial battery charges: 5%, 15%, 30%, 75%,
99% and 100%. The battery charge values have been used are per-
centages to avoid differences between sensors and their built-in
batteries. The signals used to model the magnitude being tested
have been generated using the algorithm explained in Section 4.2.
They are grouped into three series of thirty signals. Each group rep-
resents different environmental conditions. To have a reference for
the obtained error values in the tests, the signals have been sampled
every 20, 40, 150 and 300 s to obtain other measures, as if they were
taken by a sensor with a static duty cycle. Those sampling periods
give 1800, 900, 240 and 120 awake times, respectively. Table 3
shows the mean quadratic error of the thirty signals obtained from
interpolating those measure points compared to the test signals
used.

4.4.1. Error measures
The error indicator used to evaluate the SMI estimation systems

and the statically scheduled system (SSS) is the mean quadratic
error, obtained by subtracting the interpolated signal values gen-
erated in the measurement points of FRBS, DS and SSS from the
test signals. With fewer measures, the possibility of losing sig-
nificant values increases. In WSNs, the cost of losing measures is
more acceptable than excessive power consumption only when
the global error introduced by the dynamic SMI  estimation system
(FRBS-based or DS) is lower than or almost equal to the error pro-
duced when the sensor has a statically scheduled duty cycle with a
similar number of awake times (e.g. SSS) (Figs. 3–5).

The mean quadratic errors for the both FRBS and DS are shown
below. Table 4 also shows the mean quadratic error for SSS with
Fig. 3. Mean quadratic error for type A signals of the FRBS SMI  estimator with the
two knowledge bases, DS and SSS with 300 s of sleep time.
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ig. 4. Mean quadratic error for type B signals of the FRBS SMI  estimator with the
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harge. The interaction between the error and SMI  estimator
hows that one of the estimators has a significantly different mean
Table 5).

To detect the estimator or estimators that have a significantly
ifferent mean, the Tukey honestly significant difference (HSD)
est is performed. The results (Table 6) show that both FRBS-based
stimators achieve a significantly lower error than DS. Table 6 sum-
arizes those results and Figs. 6–8 show the differences in the
ean levels for the three signal types.
In some cases with low battery charge, FRBS with KB1 does not

ave a significantly better mean than FRBS with KB2. FRBS with KB2
ith low battery charges thus obtains similar errors but with fewer

wake times. Figs. 6–8 present those exceptions, marked with an
rrow.

To check the effect on error with different battery charges, the

NOVA shows that the difference between means for some battery

evels is also significant. Both systems, FRBS and DS, are battery-
ependent; thus, the results can be used to tune them and reduce
he error. Table 7 shows the ANOVA results for error variable and

able 4
ean quadratic error for sampling the input signals with the proposed FRBS SMI  estimat

System Signal type Battery charge

5% 15% 

FRBS KB1 A 0.3483 0.3196 

FRBS  KB2 A 0.3907 0.346 

DS  A 0.5487 0.5494 

STATIC 300 s A 0.1703 0.1703 

FRBS  KB1 B 1.7075 1.6029 

FRBS  KB2 B 1.8643 1.7469 

DS  B 2.4387 2.4849 

STATIC 300 s B 1.1478 1.1478 

FRBS  KB1 C 0.2595 0.2448 

FRBS  KB2 C 0.2829 0.261 

DS C  0.3614 0.3664 

STATIC 300 s C 0.1661 0.1661 

able 5
NOVA results for Error using the SMI  Estimator factor.

Type of signals Df Sum

A SMI  estimator 2 7.0
Residuals 537 3.1

B SMI  estimator 2 75.5
Residuals 537 61.4

C SMI  estimator 2 1.9
Residuals 537 0.8

*** Significance codes: 0.
Fig. 5. Mean quadratic error for type C signals of the FRBS SMI estimator with the
two knowledge bases, DS and SSS with 300 s of sleep time.

battery charge and Table 8 shows the Tukey HSD. The different
battery levels denoted as B followed by a number represent the
percentage of battery charge used in the test, e.g. B05 indicates a
5% battery charge. The comparisons for non-significant factors are
summarized in the last row for each signal type. To avoid unnec-
essary redundancy, the results for a 99% battery charge are used in
the analysis due to their similarity to the values for 100% battery
charge.

These results are for both methods, FRBS (with two knowledge
bases) and DS. The significant values show that only when the sen-
sor battery decreases more than 70%, the effect of the three methods
is significant. Therefore, to investigate the real influence of the bat-
tery on each method, a new ANOVA is performed using the error
variable and battery charge for the error measured for that estima-
tor. To summarize the data, Table 9 only shows the significance of

the test for each method for the three signal series.

The above results show that DS does not have a significant mean
difference for the different battery charges for signal types A and C.
FRBS with both knowledge bases achieves a significant difference

or, DS and SSS with 300 s of sleep time.

30% s 75% 99% 100%

0.2834 0.2282 0.2062 0.2061
0.328 0.2929 0.2755 0.2751
0.5423 0.5294 0.5062 0.5062
0.1703 0.1703 0.1703 0.1703
1.4711 1.2596 1.124 1.1265
1.6388 1.5102 1.3757 1.3784
2.3878 2.2767 1.9764 1.9764
1.1478 1.1478 1.1478 1.1478
0.2269 0.2020 0.1802 0.1799
0.2484 0.2438 0.232 0.2319
0.3642 0.3585 0.3408 0.3408
0.1661 0.1661 0.1661 0.1661

 Sq Mean Sq F value Pr(>F)

86 3.543 606.9 <2e−16***

35 0.006

2 37.76 330.3 <2e−16***

0 0.11

096 0.9548 590.9 <2e−16***

677 0.0016
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Table 6
Tukey comparisons of means with 95% family-wise confidence level for the three signal groups for the SMI  estimator factor.

Type of signals SMI  estimator Difference Lower Upper p adj
A FRBSKB1-DELTA −0.26505481 −0.28398367 −0.24612595 0

FRBSKB2-DELTA −0.21227714 −0.23120600 −0.19334828 0
FRBSKB2-FRBSKB1 0.05277767 0.03384881 0.07170653 0

B FRBSKB1-DELTA −0.8753200 −0.9590903 −0.7915498 0
FRBSKB2-DELTA −0.6715803 −0.7553505 −0.5878100 0
FRBSKB2-FRBSKB1 0.2037398 0.1199695 0.2875100 1e−07

C FRBSKB1-DELTA −0.13979145 −0.14975004 −0.12983287 0
FRBSKB2-DELTA −0.10535054 −0.11530913 −0.09539196 0
FRBSKB2-FRBSKB1 0.03444091 0.02448233 0.04439950 0

Fig. 6. Differences in mean levels of the three estimator systems for Type A signals: (a) 5% battery charge, (b) 15% battery charge, (c) 30% battery charge, (d) 75% battery
charge, (e) 99% battery charge and (f) 100% battery charge.
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Fig. 7. Differences in mean levels of the three estimator systems for Type B signals: (a) 5% battery charge, (b) 15% battery charge, (c) 30% battery charge, (d) 75% battery
charge,  (e) 99% battery charge and (f) 100% battery charge.

Table 7
ANOVA results for error with the battery charge factor.

Type of signals Df Sum Sq Mean Sq F value Pr(>F)

A SMI  estimator 5 0.778 0.15565 8.802 4.87e−08***

Residuals 534 9.443 0.01768

B SMI  estimator 5 22.17 4.433 20.63 <2e−16***

Residuals 534 114.76 0.215

C SMI  estimator 5 0.1941 0.03881 8.023 2.62e−07***

Residuals 534 2.5833 0.00484

*** Significance codes: 0.
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etween battery charges. Table 10 summarizes the significance of
he Tukey HSD for all cases. The significant values appear in bold
ont.

Table 10 shows that FRBS obtains better results than DS, giving
ignificant values for charge differences of only 10%. Moreover FRBS
ith KB1 achieves better results than FRBS with KB2, in order of

ignificance of its performance with different battery charges for
ignals Type C, whereas both are almost equivalent for signals Type

 or B.
.5. Explanation of the results

The experimental results show that DS awakes fewer times than
oth FRBS (Table 11).  One reason for this behavior is that DS has
5% battery charge, (b) 15% battery charge, (c) 30% battery charge, (d) 75% battery

more inertia than FRBS and cannot follow a signal with fast changes
because DS must use previous SMIs to obtain the new estimation.
With FRBS, the estimation is independent of the previous results;
FRBS can thus follow the magnitude under control with more accu-
racy.

Although DS may be sufficient to manage the SMI  for a sen-
sor, comparing the error values for similar or fewer awake times
of the FRBS (marked with ‘a’ in Table 11)  reveals that FRBS is more
accurate, as observed in the following figures (Figs. 9–11).
Moreover, the penalty for the larger number of times can be
assumed by reducing the error due to a best prediction of the signal
evolution and the wider spread of signals that can be modeled with
FRBS.
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Table  8
Tukey multiple comparisons of means with 95% family-wise confidence level for the three signal groups for the battery charge factor.

Type of signals SMI  estimator Difference Lower Upper p adj

A B100-B05 −0.09994576 −0.15664227 −0.04324925 0.0000094
B75-B05 −0.07908576 −0.13578227 −0.02238925 0.0010595
B15-B100 0.07574261 0.01904610 0.13243912 0.0020514
B15-B05 (0.82), B30-B05 (0.21), B30-B100 (0.06), B75-B100 (0.89), B30-B15 (0.90), B75-B15 (0.06) and B75-B30 (0.50)

B B100  − B05 −0.5114560 −0.7091050 −0.3138070 0.0000000
B75  − B05 −0.3213377 −0.5189867 −0.1236887 0.0000613

B15  − B100 0.4528874 0.2552384 0.6505364 0.0000000
B30  − B100 0.3405021 0.1428531 0.5381511 0.0000164

B75  − B15 −0.2627691 −0.4604181 −0.0651201 0.0022015
B15-B05 (0.95), B30-B05 (0.13), B75-B100 (0.06), B30-B15 (0.58) and B75-B30 (0.25)

C B100-B05 −0.0504013 −0.0800557 −0.0207469 0.0000227
B75-B05 −0.0331810 −0.0628353 −0.0035266 0.0181305
B15-B100 0.0398462 0.0101918 0.0695006 0.0018836
B15-B05 (0.91), B30-B05 (0.30), B30-B100 (0.06), B75-B100 (0.55), B30-B15 (0.9), B75-B15 (0.24) and B75-B30 (0.86)

Table 9
ANOVA results for error with factor battery for each estimator separately.

Signals type A Signals type B Signals type C

Method Pr(>F) Pr(>F) Pr(>F)
FRBS with KB1 <2e−16*** <2e−16*** <2e−16***

FRBS with KB2 1.78e−14*** 1.78e−15*** 5.03e−10***

Delta 0.262 5.9e−07*** 0.204

*** Significance codes: 0.

Table 10
Summary of the Tukey HSD for each estimator for the three signal groups for the battery factor.

SMI  estimator Signal type Battery comparisons

B100-B05 B15-B05 B30-B05 B75-B05 B15-B100

FRBS (KB1) A 0.000* 0.119 0.000* 0.000* 0.000*

B 0.000* 0.378 0.001 0.000* 0.000*

C 0.000* 0.216 0.000* 0.000* 0.000*

FRBS (KB2) A 0.000* 0.011 0.000* 0.000* 0.000*

B 0.000* 0.211 0.001 0.000* 0.000*

C 0.000* 0.022 0.000* 0.000* 0.001
Delta A  0.314 1.000 0.998 0.907 0.297

B 0.000* 0.987 0.982 0.407 0.000*

C 0.406 0.993 0.999 0.999 0.195

B30-B100 B75-B100 B30-B15 B75-B15 B75-B30

FRBS (KB1) A 0.000* 0.349 0.023 0.000* 0.000*

B 0.000* 0.141 0.162 0.000* 0.003
C 0.000* 0.015 0.079 0.000* 0.004

FRBS  (KB2) A 0.001 0.699 0.671 0.001 0.076
B  0.000* 0.109 0.287 0.000* 0.138
C  0.156 0.469 0.407 0.125 0.969

Delta A  0.483 0.834 0.998 0.895 0.978
B 0.000* 0.013 0.832 0.168 0.752
C  0.278 0.559 1.000 0.963 0.989

* Significance codes: 0.

Table 11
Mean awake times for the proposed FRBS SMI  estimator, DS and SSS with 300 s of sleep time.

System Signal type Battery charge

5% 15% 30% 75% 99% 100%

FRBS KB1 A 82.233 87.633 93.000 106.167 115.000 115.033
FRBS  KB2 A 78.000a 82.933 86.767 93.733 99.233 99.300
DS  A 64.000 65.133 66.800 70.467 76.967 76.967b

STATIC 300 s A 120.000 120.000 120.000 120.000 120.000 120.000
FRBS  KB1 B 85.600a 92.267 98.600 116.033 134.133 134.433
FRBS  KB2 B 78.100 84.100a 88.800 97.200 104.833 104.833
DS  B 64.100 65.400 68.533 76.567 91.567b 91.567
STATIC 300 s B 120.000 120.000 120.000 120.000 120.000 120.000
FRBS  KB1 C 81.233 86.467 92.500 106.733 114.200 114.200
FRBS  KB2 C 78.000a 82.167 85.033 88.567 92.167 92.167
DS  C 64.033 65.233 67.567 71.400 77.467 77.467b

STATIC 300 s C 120.000 120.000 120.000 120.000 120.000 120.000

a In this case the FRBS obtain less error than the DS with similar awake times (see Table 4).
b Error compared with the FRBS.
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Fig. 9. Interpolation signals for the wake up points for seconds 2000–4000 for meas-
ures simulated by signal 2 of the Type A group.

Fig. 10. Interpolation signals for the wake up points for seconds 2000–4000 for
measures simulated by signal 2 of the Type B group.

Table 12
Mean energy consumption and process time for SMI  estimators in a Sun SPOT sensor.

SSS Delt

Energy consumption (mAh) 0.02135 0
Process time (ms) 727.11 730

Table 13
ANOVA results for energy consumption and process time with the SMI  estimator factor.

Df 

Energy consumption SMI  estimator 2 

Residuals 102 

Process
time

SMI  estimator 2 

Residuals 102 

Table 14
Energy saved (mAh) for ten hours of working compared to the SSS with 300 s of sleep tim

System Signal type Battery charge

5% 15% 

FRBS KB1 A 0.78192984 0.6650316 

FRBS  KB2 A 0.87830119 0.77181201
DS A 1.19461587 1.17040721
FRBS  KB1 B 0.70904162 0.56471559
FRBS  KB2 B 0.87614248 0.74661986
DS B  1.19247919 1.16470226
FRBS  KB1 C 0.80357766 0.69027296
FRBS  KB2 C 0.87830119 0.78834773
DS  C 1.19391077 1.16827053
Fig. 11. Interpolation signals for the wake up points for seconds 2000–4000 for
measures simulated by signal 2 of the Type C group.

Comparing the results from FRBS to the different KBs shows that
each can be applied in different situations to obtain better results.
KB1 thus minimizes the error and KB2 minimizes the awake times.

4.6. Energy consumption

To test the effective energy consumption of each method, both
systems have been deployed in the same sensor with the same
starting battery charge. The node is a Sun SPOT sensor with
720 mAh  rechargeable lithium-ion battery and the circuit is pre-
sented in Section 4.3.  To acquire the real power consumption under
the same constraints, both tests obtain the available battery charge
after waking from sleep mode, the sensor then calls the SMI  estima-

tor (FRBS or DS) based on the sound pressure monitoring and sleeps
for a fixed SMI. A fixed SMI  is used to compare the effective energy
consumption under the same conditions. With fewer awake times,

a FRBS with KB1 FRBS with KB2

.02137 0.02165 0.02159

.83 737.60 737.29

Sum Sq Mean Sq F value Pr(>F)

1.620e−06 8.089e−07 1.281 0.282
6.442e−05 6.316e−07

1169 584.3 1.181 0.311
50,464 494.7

e.

30% 75% 100%

0.54884773 0.26381085 0.07188126
 0.68904706 0.5386713 0.41849589

 1.13478865 1.05643636 0.91755173
 0.42761993 0.05023343 −0.3480865
 0.64516048 0.46382881 0.29905445

 1.09775987 0.92609848 0.6055955
 0.55967164 0.25155819 0.08991389

 0.72647909 0.65019027 0.5724767
 1.11840027 1.03650107 0.9068683
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ess battery consumption is required. Table 12 shows the result of
his experiment.

As Table 12 shows, the power consumption for each SMI  esti-
ator is almost equal (battery measurement circuit fluctuations

re assumed). To check this finding, an ANOVA is performed for the
nergy consumption and process time variables with SMI  estimator
s factors that effectively verify that there are no significant differ-
nces between the estimators (Table 13 shows the test results). The
ower saved in each method depends only on the times that each
ne awakes and thus, less energy is consumed with fewer awake
imes.

Table 14 shows the power saved compared to the SSS with 300 s
f sleep time in the test period for a fully charged sensor.

Those results can be compared with the energy consumed by a
ensor for 5 min  of sleep, approximately 0.024 mAh, to achieve an
dea of the relative power saving for any of the methods.

. Conclusions

This work has compared two methods that obtain signal
ynamic parameters to estimate the next sleep time to reduce the
umber of cycles and prolong the sensor node lifetime. The result
f the comparison shows that FRBS can be adapted to more types
f signals than DS, although DS saves more battery life with less
ccuracy in the measures. Both systems demonstrate that simple
stimation methods with low computational costs can save battery
ife in continuously sensing applications with a reasonable preci-
ion loss and that they can help cover and route estimation methods
o synchronize a sleep time for sensors working in clusters that test
imilar magnitudes.

Future work will focus on designing and developing a FRBS
o infer other parameters inside the sensor and collaborate with
eighbor nodes to infer better estimations.
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