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Abstract. This paper deals with the application of adaptive signal mod-
els for parametric speech and audio compression. The matching pursuit
algorithm is used for extracting sinusoidal components and transients in
audio signals. The resulting residue is perceptually modelled as a noise
like signal. When a transient is detected, psychoacoustic-adapted match-
ing pursuits are accomplished using a wavelet-based dictionary followed
of an harmonic one. Otherwise, matching pursuit is applied only to the
harmonic dictionary. This multi-part model (Sines + Transients + Noise)
is successfully applied for speech and audio coding purposes, assuring
high perceptual quality at low bit rates (close to 16 kbps for most of the
signals considered for testing).

1 Introduction

Parametric coding of audio signals has become a popular tool for representing
these signals at very low bit rates [1–3]. A wide range of audio signals intuitively
fit into the three-part model of Sines, Transients and Noise. Transients describe
drum hits and the stacks of many instruments, sines describe signal components
that have a distinct pitch, and noise often describes the rest of the signal that
is neither sinusoidal nor transient. This model consists of three parts that work
together and complement each other to form a complete and robust signal model,
which makes possible a highly optimized audio compression scheme. To alleviate
model mismatch problems, the three part of the model operate in series. First,
transients are modelled and removed, leaving a residual signal. Then, sinusoids
are modelled and removed, leaving a noise-like signal for the noise model. As
such, each model captures signal components that are coherent to its underlying
assumptions.

The classical sinusoidal or harmonic model has been applied with success
for the purpose of coding speech signals [4]. This model comprises an analysis-
synthesis framework that represents a signal as the sum of a set of sinusoids
(partials) with time-varying frequencies, phases, and amplitudes. A large number
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of methods have been proposed for estimating the parameters of the sinusoidal
model. Estimation of parameters is typically accomplished by peak picking the
Short-Time Fourier Transform (STFT) [4]. Usually, analysis by synthesis is used
in order to verify the detection of every spectral peak.

On the other hand, transients extraction is useful for those parts of audio
signals with sharp attacks, because sinusoidal and noise models cannot repre-
sent them efficiently. In [3, 5, 6] different approaches for transient modelling are
presented.

The three-part signal model is completed with a noise model for noise-like
signals. Noise modelling has seen attention in the literature. LPC based schemes
are the subject of much research. Another promising noise model has perceptual
roots in that it uses energy on an Equivalent Rectangular Bandwidth (ERB)
scale [7]. In this paper the three-part signal model is completed with a wavelet-
based noise model.

This paper proposes an efficient, accurate and flexible multi-part model for
wide-band speech and audio coding. The matching pursuit algorithm is used
in order to iteratively select the functions that best match the current audio
frame for representing transients and sinusoids. Sinusoids are modelled using
sets of complex exponential functions, while transients are modelled using sets of
wavelet functions. The matching pursuit algorithm operates with both sinusoids
and wavelet functions.

2 Matching Pursuit

The matching pursuit algorithm was introduced by Mallat and Zhang in [8]. So
as to explain the basic ideas concerning this algorithm, let’s suppose a linear ex-
pansion approximating the analyzed signal x[n] in terms of functions gi[n] chosen
from a over-complete dictionary D = {gi ; i = 0, 1, . . . , L}. The L elements of
the dictionary span CL and are restricted to have unit norm.

At the first iteration of matching pursuit, the atom gi[n] which gives the
largest inner product with the analyzed signal x[n] is chosen. The contribution
of this vector is then subtracted from the signal and the process is repeated on
the residue. At the m-th iteration, the residue is:

rm[n] =
{

x[n] m = 0
rm+1[n] + αi(m) · gi(m)[n] m �= 0 (1)

where αi(m) is the weight associated to the optimum atom gi(m)[n] at the m-th
iteration, and i(m) the dictionary index of that atom.

By computing the orthogonal projections of residue rm[n] on elements gi[n] ∈
D, the weight associated to each element at the m-th iteration is got:

αm
i =

〈rm[n], gi[n]〉
〈gi[n], gi[n]〉 =

〈rm[n], gi[n]〉
‖gi[n]‖2

= 〈rm[n], gi[n]〉 (2)
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The l2 norm of rm+1[n] can be expressed as:

||rm+1||2 = ||rm||2 − |〈rm, gi〉|2 = ||rm||2 − |αm
i |2 (3)

which is minimized by maximizing |αm
i |2 = |〈rm, gi〉|2.

Therefore, the optimum atom gi(m) at the m-th iteration is obtained as:

gi(m) = arg min
gi∈D

‖rm+1‖2 = arg max
gi∈D

|αm
i |2 (4)

It is simply equivalent to choosing the atom whose inner product with the
signal has the highest value.

The computation of correlations 〈rm[n], gi[n]〉 for all gi[n] ∈ D at each it-
eration is highly computational consuming. As derived in [8], this computation
effort can be substantially reduced using an updating formula based on equation
(1). The correlations at the m-th iteration are given by:

〈rm+1[n], gi[n]〉 = 〈rm[n], gi[n]〉 − αi(m) · 〈gi(m)[n], gi[n]〉 (5)

where the only new computation required for the correlation updating procedure
refers to the cross-correlation term 〈gi(m)[n], gi[n]〉, which can be pre-calculated
and stored, once overcomplete set D has been determined.

3 The Proposed Wide-Band Speech and Audio Coder

The proposed parametric wide-band speech and audio coder is defined with three
meaningful components:

– Transient modelling using energy-adaptive matching pursuit with a dictio-
nary of wavelet functions.

– Sinusoidal modelling using psychoacoustic-adaptive matching pursuit with
a dictionary a complex exponentials.

– Residue modelling as a noise like signal.

Figure 1 shows the encoder stage of the proposed parametric wide-band
speech and audio coder.
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Fig. 1. Block diagram of the encoder stage.
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The proposed wide-band speech and audio coder extracts from the input
audio signal a set of different parameters to be sent to the decoder. These pa-
rameters represent the information provided by the three-part model (Sines +
Transient + Noise). They are quantified using psycho-acoustical information to
ensure that decoded signals are perceptually identical to the original ones.

Before transient modelling, transient detection is required. Our transient de-
tector is based on sudden energy change detection. Besides, an adaptive tiling
of the time axis is required to achieve a right performance of the proposed audio
coder. We have used the algorithm proposed in [9].

3.1 Transient Modelling

We propose using matching pursuits with a dictionary of orthogonal wavelet
functions for transient modelling. The overcomplete dictionary D is made up
with those functions which give rise to the J-depth full Wavelet-Packet (WP)
decomposition, being MWP = J · N the WP dictionary size, and N the frame
length. The inner products of the signal with the wavelet-based atoms in set
D lead to all the wavelet coefficients that can be considered in the J-depth
full WP tree. These coefficients can be identified using three indexes, {i, j, k},
which indicate the sub-band at a given decomposition depth, the decomposition
depth and the delay, respectively. The wavelet coefficients at the m-th iteration
of matching pursuit and the wavelet-based atoms can be expressed as follows:

αm
{i,j,k} = 〈rm[n], g{i,j,k}[n]〉 (6)

g{i,j,k}[n] = g{i,j}[n − 2jk] (7)

According to (5), the only necessary correlations to implement the matching
pursuit are 〈x[n], g{i,j,k}[n]〉 and 〈g{i1,j1,k1}[n], g{i2,j2,k2}[n]〉. The first ones are
obtained from the WP transform of x[n], while correlations between atoms are
pre-calculated and memory stored. These cross-correlations are formulated in
[6] when wavelet-based dictionaries built from orthonormal wavelets are used,
which results in:

〈g{i1,j1,k1}[n], g{i2,j2,k2}[n]〉 =




δ[k2 − k1] i1 = i2, j1 = j2
0 i2 �= � i1

2j1−j2 �
g{i,j,k1}[k2] i2 = � i1

2j1−j2 �
(8)

where j = j1 − j2 and i = ((i1))2j . Therefore, according to (8), the iterative
procedure to update correlations requires impulsive responses of the synthesis
WP tree branches to be stored [6].

3.2 Sinusoidal Modelling

For sinusoidal modelling, we propose using matching pursuits with a dictionary of
windowed complex exponential functions, instead of a set of windowed sinusoidal
functions, in order to reduce the computational complexity. Using windowed



Adaptive Signal Models for Wide-Band Speech and Audio Compression 575

complex exponential sets, only the frequency of every exponential function must
be determined, which involves a significant reduction of the dictionary size [10].
The functions that belong to the considered set can be expressed as follows:

gi[n] = S · w[n] · ej 2πi
2L n, i = 0, . . . , L (9)

The constant S is selected in order to obtain unit-norm functions, w[n] is
the N -length analysis window, and L+1 the number of frequencies within the
dictionary. Amplitude, frequency and phase are the three parameters that define
each extracted tone by the sinusoidal model.

The implemented matching pursuit algorithm for sinusoidal modelling is
psychoacoustic-adaptive as in [11]. According to this approach, the extracted
tone at each iteration is the perceptually most important one. Psychoacoustic-
adaptive matching pursuits [11] define a perceptual distortion measure as

‖PDi‖2 =
∫ 1

0

â(f)|( ̂w[n](αm
i gi[n]))(f)|2 df (10)

where ˆ indicates the Fourier transform, w[n] is a window defining the signal
segment, and â the inverse of the masking threshold, which is computed on the
basis of the reconstructed signal that changes at each iteration.

In our implementation, the perceptual distortion measure in equation (10) is
slightly modified by integrating directly along the bark scale, which results in a
complexity reduction.

3.3 Residual Modelling

After sinusoidal and transient modeling, the residue is considered to be a noise
like signal. For audio applications, psychoacoustic phenomena have to be incor-
porated into the noise model. For noise perception, the exact shape of the magni-
tude spectrum is not as crucial as the energy at each critical band. According to
this principle, the ERB noise modelling is proposed in [7]. In our approach, the
ERB model is approximated by the Discrete Wavelet Transform (DWT). In this
case, DWT dictates the form of the filter bank, performing a dyadic partition in
frequency, which plays a central role in many aspects of perception.

The proposed noise model is composed of two stages: analysis and synthesis.
The DWT-based analysis stage divides each frame into J + 1 wavelet bands
(being J the decomposition depth), and estimates their energy. For the l-th
frame, the energy of the r-th wavelet band is found as:

El
r =

∑
m∈βr

|X l(m)|2 (11)

where βr contains the indexes of the r-th wavelet band, and X l(m), m ∈ βr,
represents the wavelet coefficients of the r-th wavelet band for the l-th frame.

The energy parameters approximates a power spectrum with piecewise con-
stant energy according to the DWT filter bank. These parameters are used for
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the DWT-based synthesis stage. In the synthesis stage the wavelet coefficients
are initialized to white noise using each band energy to control its respective
gain, which results in the synthesized noise. Subjective listening tests pointed
the necessity of improving the time characteristics of the synthesized noise in
order to avoid spreading effects. LPC filtering has been included in the proposed
noise model to achieve a time shaping of the synthesized noise. We have applied
an Auto-Regressive all poles model with 4 poles as maximum. The number of
poles in the model is given by the prediction gain. A lattice structure is adopted
to achieve an efficient quantization of the AR model information included in our
noise modelling approach.

4 Results and Discussion

To assess the performance of the proposed wide-band speech and audio coder, we
have obtained some subjective and objective results. The configuration parame-
ters are: 32-coefficient Daubechies filters and 4-level full WP decompositions (J
= 4) for transient modelling, 4096 frequencies (L = 4096) within the dictionary
for sinusoidal modelling, and 32-coefficient Daubechies filters and 9-level depth
for DWT in noise modelling. Twelve music samples considered hard to encode
have been used. They are 15 seconds-length CD-quality one channel speech and
audio signals. Special attention has been paid to signals with impulsive energy
bursts, which are extremely susceptible to the presence of ’pre-echoes’, and we
have made sure that the chosen set of source material covers a wide variety of
signals.

4.1 Objective Results

The resulting binary rates obtained with the proposed wide-band speech and
audio coder are presented in table 1. It contains the partial bit rates resulting for
the synthetic signals obtained from sinusoidal, transient and residual modelling
and the final bit rates resulting for the decoded signals (in kbits/s).

In order to illustrate the performance of the proposed wide-band speech and
audio coder, let’s consider an audio frame with an impulsive energy burst. Figure
2(a) represents the original audio signal, while figures 2(b) and 2(c) represent
the synthesized transient and sinusoidal components, respectively, when they are
modelled using the above described approaches. Finally, figure 2(d) shows the
noise-like residual signal. It can be observed that the synthetic signal in figure
2(b) properly represents the sharp attack in the original one.

4.2 Subjective Results

The subjective tests have been performed on headphones under the A-B-C rule
using the twelve sequences shown in table 1. The A-B-C methodology, known
as a triple-stimulus double blind test with hidden reference, is recommended
by ITU-R in the BS. 1116-1 recommendation. Tests have been carried out with
twenty trained listeners, and the results are shown in table 2.
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Table 1. Bit rates.

Item Description Tones Transients Residue Decoded signals

es01 Suzanne Vega 12.14 0.98 3.34 16.52
es02 German male speech 12.48 0.78 3.37 16.69
es03 English female speech 13.94 0.97 3.00 17.98
si01 Harpsichord 11.73 0.25 2.54 14.60
si02 Castanets 11.84 4.30 2.38 18.61
si03 Pitch pipe 8.21 0.15 3.50 11.90
sm01 Bagpipes 9.22 0.17 3.75 13.20
sm02 Glockenspiel 3.76 0.67 2.36 6.85
sm03 Plucked strings 13.94 0.14 2.80 16.93
sc01 Trumpet solo and orchestra 13.00 0.45 2.87 16.38
sc02 Orchestra piece 12.76 0.20 2.25 15.26
sc03 Contemporary pop 15.60 0.21 2.85 18.73
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0 500 1000 1500 2000
−1

−0.5

0

0.5

1

samples

no
rm

al
iz

ed
 a

m
pl

itu
de

(b) TRANSIENT MODEL
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(d) RESIDUAL MODEL

Fig. 2. Synthetic signals obtained from transient, sinusoidal and residual modelling.

5 Conclusions

This paper deals with parametric representation for wide-band speech and audio
coding. The used model considers the speech and audio signals composed of three
kinds of components: sinusoidal, transients and noise like components. For esti-
mating the parameters of the sinusoidal and transient models, matching pursuit
with dictionaries of complex exponentials and wavelet functions, respectively,
is used. A novel wavelet-based noise modelling is applied for residue modelling,
which is completed with LPC filtering to achieve Time Noise Shaping (TNS). The
proposed wide-band speech and audio coder achieves nearly transparent coding
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Table 2. Subjective results under the ITU-R BS.1116-1 recommendation.

Test Items Orig. MOS Decoded MOS ∆MOS

es01 5.00 4.19 0.81
es02 5.00 4.02 0.98
es03 5.00 4.12 0.88
si01 4.97 4.63 0.34
si02 5.00 4.55 0.45
si03 5.00 4.33 0.67
sm01 4.99 4.51 0.48
sm02 4.98 4.68 0.30
sm03 4.97 4.75 0.22
sc01 5.00 4.40 0.60
sc02 5.00 4.28 0.72
sc03 5.00 4.33 0.67

at very low bit rates (close to 16 kbit/seg). Hence, our coder is a good proposal
for audio coding applications at very low bit rates, as Internet streaming.
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