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The localization of active speakers with microphone arrays is an active research line with a consid-

erable interest in many acoustic areas. Many algorithms for source localization are based on the

computation of the Generalized Cross-Correlation function between microphone pairs employing

phase transform weighting. Unfortunately, the performance of these methods is severely reduced

when wall reflections and multiple sound sources are present in the acoustic environment. As a

result, estimating the number of active sound sources and their actual directions becomes a chal-

lenging task. To effectively tackle this problem, a Bayesian inference framework is proposed.

Based on a nested sampling algorithm, a mixture model and its parameters are estimated, indicating

both the number of sources—model selection—and their angle of arrival—parameter estimation,

respectively. A set of measured data demonstrates the accuracy of the proposed model.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4740489]

PACS number(s): 43.60.Jn, 43.72.Ne [ZHM] Pages: 1257–1260

I. INTRODUCTION

Sound source localization in multi-source environments

is a challenging task. To this end, microphone arrays are

commonly employed in many signal processing tasks such

as source tracking, source separation, speech enhancement,

and noise reduction. Algorithms for sound source localiza-

tion using microphone arrays can be broadly divided into

indirect and direct approaches.1 Indirect approaches usually

follow a two-step procedure where they first estimate the

time difference of arrival2 between microphone pairs and,

afterwards, they estimate the source position based on the

geometry of the array and the estimated delays. On the other

hand, direct approaches compute a cost function over a set

of candidate locations and take the most likely source posi-

tions. Most of these algorithms are based on the Generalized

Cross-Correlation (GCC) method,3 which calculates the cor-

relation function by using the inverse Fourier transform of

the cross-power spectral density function multiplied by a

proper weighting function. The most widely used weighting

function is the phase transform (PHAT), which has been

shown to be optimal in reverberant environments.4

Localization of multiple sound sources using only two

microphones has been receiving increasing attention in the

last years. In this context, while a number of sparse methods

working in the time-frequency domain have been developed

by exploiting the sparsity properties of speech in this do-

main,5 algorithms for multi-source localization based on

GCC-PHAT have been rarely described. This is due to the

fact that most of these algorithms are based on a single-

source signal model and are not suitable to localize multiple

sources. As a result, a multi-source localization framework

based on GCC-PHAT analysis seems to be specially mean-

ingful to tackle the problem from the well-known GCC per-

spective, even when the number of sources is a priori
unknown.

This letter presents a multiple source localization system

based on GCC-PHAT and Bayesian inference, allowing one

to determine both the number of sound sources and their

actual directions of arrival (DOAs).

II. SOUND SOURCE LOCALIZATION

A. Signal model

Consider two microphone signals x1(t) and x2(t) follow-

ing the anechoic mixture model,4

xmðtÞ ¼
XN

n¼1

amnsnðt� smnÞ; m ¼ 1; 2; (1)

where N is the number of sources, snðtÞ are the time-domain

source signals, amn are scalar coefficients, and smn are the

source-to-sensor time delays. If the sources are assumed to

a)Author to whom correspondence should be addressed. Electronic mail:

escolano@ujaen.es
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be located in the far field, the DOAs of the sources can be

directly related to the inter-sensor time delays sn ¼ s2n � s1n

¼ ðd=cÞ cos ĥn, where d is the inter-microphone distance, c
is the speed of sound, and ĥn is the DOA angle of the nth

source.

B. GCC

Considering the above-presented model, a time delay

estimate of the predominant sound source, s~n , can be

obtained by means of the GCC as

ŝ~n ¼ arg max
s

Ef½x1ðtÞ( w1ðtÞ�½x2ðtþ sÞ( w2ðtÞ�g; (2)

where Ef�g is the statistical average over time and ( denotes

time convolution. The impulse responses w1ðtÞ and w2ðtÞ are

the weighting functions applied to each microphone signal,

respectively. In practice, s~n is computed via the Fourier

transforms of the microphone signals and the weighting

functions. To make the estimator robust to reverberation, the

well-known PHAT weighting is used,

W1ðxÞW�2ðxÞ ¼ kX1ðxÞX2ðxÞk�1: (3)

This time delay, and therefore, its associated angle, is calcu-

lated every time frame and each result is used to construct an

histogram that represents a probability function H(h) of

where a source is situated. When multiple speech sources are

measured, based on the superposition principle, each source

is represented by a particular area of the histogram.

III. BAYESIAN INFERENCE

A. Parameter estimation

The starting point of Bayesian inference is the Bayes’

theorem. For a given model H and a given dataset D, formed

by a vector with K components as a function of an angle vec-

tor h, the posterior probability distribution of the model pa-

rameters H is calculated as follows:

pðHjH;D; IÞ ¼ pðDjH;H; IÞpðHjH; IÞ
pðDjH; IÞ ; (4)

where I is the relevant background information encapsulat-

ing that model H represents the data D well. The term

pðDjH;H; IÞ represents the likelihood function, indicating

the resemblance of the data D and the model H for a given

parameter set H, i.e., it grows when the difference error

decreases. This distribution is assigned according to the

background information I. Appealing to the maximum en-

tropy and after marginalizing about an unknown variance

error, the likelihood distribution may be assigned to a Stu-

dent t-distribution as follows:6

pðDjH; H; IÞ � LðHÞ ¼ 1

2
C

K

2

� �
EðHÞ

2p

� ��K=2

; (5)

where EðHÞ ¼ RK
k¼1kDðhkÞ � HðhkÞk2

, Cð�Þ is the gamma

function, and hk is the kth element of vector h.

The term pðHjH; IÞ corresponds to the prior distribution

of the parameters. This distribution is usually assigned

uniformly to avoid any subjective preference. The term

pðDjH; IÞ is known as a marginal likelihood or Bayesian

evidence. In most parameter estimation problems, the evi-

dence is a normalization constant, but it plays a fundamental

role in the model selection, as will be shown in Sec. III B. In

order to act as a normalization constant, evidence Z is calcu-

lated as

pðDjH; IÞ � Z ¼
ð

H
pðDjH;H; IÞpðHjH; IÞdH: (6)

B. Model selection

According to Bayes’ theorem, the posterior probability

of a model Hi, given data D and relevant background infor-

mation I is given by

pðHijD; IÞ ¼
pðDjHi; IÞpðHijIÞ

pðDjIÞ : (7)

The idea behind model selection is to compare the posterior

probability of a set of competitive models and to select the

one with the highest posterior probability to the data.

Assigning the competing models equal prior probabili-

ty,i.e., no model is favored against the other, the model

selection is determined in terms of the marginal likelihood

function. However, it should be observed that the above-

presented likelihood function equals the evidence term in the

parameter estimation task [see Eq. (6)]. Therefore, the model

selection can be carried out just by comparing evidence

obtained within the effort of the parameter estimation.

Bayesian model selection favors a simpler model instead of

the model that better fits data, which equivalently represents

a quantitative implementation of Ockham’s razor.7

IV. MODEL IMPLEMENTATION

A. Nested sampling

The main difficulty in Bayesian model selection lies in

the analytical intractability of Eq. (6), since it is a generally

multi-dimensional integral and the computation burden

becomes prohibitive when the model becomes more com-

plex. Therefore, an approximation is necessary to overcome

this handicap. An alternative to calculate this integral is to

use the nested sampling algorithm.8 The nested sampling

algorithm was developed specifically to approximate these

marginalization integrals, and it has the added benefit of gen-

erating samples from the posterior distribution pðHjH;D; IÞ.
Comprehensive tutorials and practical details on the nested

sampling may be found in Refs. 8 and 9.

The basic idea behind the nested sampling is to rearrange

Eq. (6) as a one-dimensional integral, just considering a con-

strained prior mass, nðkÞ 2 ½0; 1�, that represents the amount

of prior in the region where the likelihood is greater than a

certain value k. Then, the evidence may be rewritten as9

Z ¼
ð1

0

LðnÞdn: (8)

This one-dimensional integral can be solved numerically,
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Z ’
X1
i¼1

LiDni with Dni ¼ ni�1 � ni; (9)

where n0 ¼ 1, n1 ¼ 0, and L1 ¼ Lmax <1.

Starting with a set of M initial random samples Hm from

the prior and their associated likelihoods Lm, where

m 2 ½1;M�, the parameters with the lowest likelihood value,

labeled as ½H1;L1�, are stored and replaced by a new random

parameter Hnew under the constraint Lnew > L1, remaining

again M samples.9 In the ith iteration, the same process is

repeated with a new selected sample with the lowest identi-

fied likelihood, ½Hi;Li�. Repeating this process, the evidence

is accumulated according to Eq. (9).

For practical implementations, elementary prior mass

Dni can be statistically approximated by Dni � e�1=i. Equa-

tion (9) will keep accumulating up to logðZiÞ � logðZi�1Þ
< d, with Zi ¼ LiDni.

B. Histogram model

The histogram can be modeled by a mixture of Lapla-

cian distributions to represent the angles resulting from a

scatter plot of a two-channel mixture.10 Therefore, the model

used is HðhÞ ¼
PN

n¼1Ane�kh�lnk=rn , where ln is the mean, rn

is the variance, and An is the amplitude of each one of the

Laplacian functions.

One of the key points of this work is to determine the

number of sound sources N, which determines the model.

Therefore, given a number of potential sources, the model

selection will estimate the number of sources consistent with

data and prior information, and the parameter estimation

H ¼ fl; r; Ag with information where speech sources are

located.

V. EXPERIMENTAL SETUP AND RESULTS

In order to validate the above-described methodology, a

two-microphone array with a separation of 13.5 cm between

microphones was placed in the middle of a room. The array

consists of two omni-directional AKG-C417PP micro-

phones. The room has a volume of 248.64 m3 and the meas-

ured reverberation time is approximately 1 s. Four speakers

were distributed between 0� and 180�, following the scheme

presented in Table I.

A text is read by all the speakers at the same time and

then recorded simultaneously. Two scenarios were used:

Two speakers located at angles ĥ2 and ĥ4 (labeled as E1) and

four speakers located at all the angles described in Table I

(labeled as E2). In both cases, the signal-to-noise ratio was

found to be approximately 30 dB. Once the recording was

finished, the two microphone signals were processed using

the PHAT algorithm in order to obtain the histogram4 using

a Hann window of 25 ms and 50% overlap for each observa-

tion. The number of histogram bins, or equivalently, the D

vector length, has been set as the square root of the number

of observations, in order to obtain smooth histograms with-

out losing relevant information. In this particular case, the

number of bins equals K¼ 30.

Regarding the nested sampling algorithm, the initial

population has been set to M ¼ 1000 samples, and the stop

condition has been forced to be d < 10�4. The models under

evaluation, i.e. number of sources, are set from N ¼ 1 to

N ¼ 5. Each model is run 100 times, and the estimated

parameters and log-evidence value are stored. From the

log-evidence data, some statistics are calculated: First, the

average and standard deviation are calculated for each

experiment (see Table II). The highest mean corresponds to

two speakers in the experiment E1 and four speakers in the

experiment E2, which evidences the accuracy of the method.

It should be mentioned regarding E1 that from N¼ 2 to

N¼ 5 the log-evidence value is quite similar. Despite the

corresponding log-evidence value of N¼ 2 being the highest,

all these models seem to be competitive; Ockham’s razor

suggests that one prefers the simplest model. Model N¼ 1

has to be clearly dismissed due to considerable difference

regarding the rest. Regarding the second experiment, E2,

clearly the most competitive models are N¼ 4 and N¼ 5;

based on the aforementioned criteria, the simplest of the

most competitive models is selected, corresponding to the

correct number of speakers for that experiment, N¼ 4. For

comparison purposes, the Bayesian Information Criterion
(BIC) is included in Table II. Both techniques show a

TABLE I. Speakers’ angular distribution (ĥ i) around the two-microphone

array.a

ĥ1 ĥ2 ĥ3 ĥ4

53.1� (2 m) 69.4� (1.70 m) 113.6� (1.78 m) 149� (2.33 m)

a The distance to the array is indicated in parentheses.

TABLE II. Average log-evidence values (up) and BIC (down) difference

and their corresponding standard deviation for the five competitive models

in each experiment, where the selected model has been highlighted.

1 2 3 4 5

E1 60 6 0.3 76.9 6 4.9 76 6 4.2 76.2 6 5.5 74.9 6 5.8

E2 54.7 6 0.2 70.3 6 1.8 72.9 6 5.2 76.6 6 7 76.3 6 7.6

E1 119.6 6 0.0 161.8 6 11.1 154.2 6 10.7 149.2 6 14.5 139.9 6 17

E2 109.1 6 0.0 142.3 6 2.4 145 6 25 148 6 18.6 143.3 6 18.8

FIG. 1. Log-evidence model probability distribution for each of the models

under evaluation corresponding to (a) experiment E1 and (b) experiment E2.
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consistent result within the model selection, supporting the

performance of the model selection based on an evidence

comparison. However, it should be pointed out that the BIC

approach assumes that the likelihood distribution of interest

can be approximated by a multi-variant Gaussian in the vi-

cinity of the global extreme, but for many applications this is

not the case, particularly multi-modal distributions. If the

shape of the likelihood distribution deviates drastically from

a multi-variant Gaussian, the estimates can be extremely

poor to be able to correctly rank the models.

The algorithm has been validated based on its log-

evidence average values. In order to give more support to

the validity of the aforementioned conclusions, a boxplot
representation of the values helps corroborate them and

obtain a compact way to represent the log-evidence distribu-

tion for each model (see Fig. 1). In both cases, the highest

modes confirm two speakers for E1 and four speakers for E2.

Regarding parameter estimation, Fig. 2 shows both the

measured and the estimated histograms. The estimated histo-

gram with the highest evidence has been chosen from the

selected model in each case. Regarding the specific problem

of the localization, DOAs are described on the basis of the

mean of each Laplacian function. Table III list the resulting

means, showing a maximum deviance lower than 3� with

respect to the real position and evidencing the considerable

resemblance between measured and estimated histograms.

For the highest models, reflections are identified as speakers,

but the posterior probability is barely changed, making the

simplest model the most suitable. This will occur once the

histogram area corresponding to reflections, i.e., its energy,

is considerably smaller than the speech contributions. For

PHAT algorithm, this is valid when the signal-to-noise ratio

is higher than 20 dB.

VI. CONCLUSIONS

In this letter, a Bayesian inference model is presented

for multi-speaker detection and localization using a two-

microphone array. Based on the use of a GCC-PHAT algo-

rithm, a Laplacian mixture is employed to model the

histogram resulting from time-delay estimates, using Bayes-

ian nested sampling to determine the number of active

speakers and their actual angular distribution. The algorithm

has been evaluated in a real scenario, demonstrating the ac-

curacy of the method. The simplicity and elegance of the

GCC-PHAT, together with Bayesian inference allows an

unsupervised solution, even if the number of sources is

unknown a priori. The advantage of the nested sampling

relies on the fact that the model selection and parameter esti-

mation are performed simultaneously, with no additional

effort.

More research should be timely done testing this algo-

rithm in scenarios with different signal-to-noise ratios and to

be used using alternative localization methods in applications

such as sound source separation and on-line detection.11

Moreover, a thoughtful comparison with some other evidence

estimation methods such as annealed importance sampling12

should be done in order to definitively evidence nested sam-

pling as the right choice in this application.

1N. Madhu and R. Martin, Advances in Digital Speech Transmission,

(Wiley, Chichester, UK, 2008), pp. 135–166.
2J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room acous-

tic environments: An overview,” EURASIP J. Appl. Signal Process 2006,

1–19 (2006).
3C. H. Knapp and G. C. Carter, “The generalized correlation method for

estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process.

24, 320–327 (1976).
4T. Gustafsson, B. D. Rao, and M. Trivedi, “Source localization in rever-

berant environments: Modeling and statistical analysis,” IEEE Trans.

Speech Audio Process. 11, 791–803 (2003).
5S. Mohan, M. E. Lockwood, M. L. Kramer, and D. L. Jones, “Localization

of multiple acoustic sources with small arrays using a coherence test,”

J. Acoust. Soc. Am. 123, 2136–2147 (2008).
6T. Jasa and N. Xiang, “Efficient estimation of decay parameters in acousti-

cally coupled spaces using slice sampling,” J. Acoust. Soc. Am. 126,

1269–1279 (2009).
7D. J. C. McKay, Information Theory, Inference, and Learning Algorithms
(Cambridge University Press, Cambridge, UK, 2003).

8J. Skilling, “Nested sampling for general Bayesian computation,” Bayes-

ian Anal. 1, 833–860 (2006).
9D. Silvia and J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford

University Press, New York, 2006).
10N. Mitianoudis and T. Stathaki, “Batch and online underdetermined source

separation using Laplacian mixture models,” IEEE Trans. Audio, Speech,

Lang. Process. 15, 1818–1832 (2007).
11M. Cobos and J. J. L�opez, “Two-microphone separation of speech

mixtures based on interclass variance maximization,” J. Acoust. Soc. Am.

127, 1661–1673 (2010).
12R. Neal, “Annealed importance sampling,” Stat. Comput. 11, 125–139

(2001).

FIG. 2. Measured (dashed grey line) and estimated (solid black line) histo-

gram corresponding to (a) experiment E1 and (b) experiment E2.

TABLE III. Estimated DOAs, ĥ i, for each experiment, obtained as the esti-

mated mean of each Laplacian function.

ĥ1 ĥ2 ĥ3 ĥ4

E1 � 68.3� � 148.2�

E2 50.2� 67.0� 114.0� 146.1�

1260 J. Acoust. Soc. Am., Vol. 132, No. 3, September 2012 Escolano et al.: Letters to the Editor

 13 M
ay 2025 11:17:18


