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This paper proposes a novel approach for visual features detection, which is based on the presence of objects whose shape can be
modelled using cylinders or generalized cylinders. These specific structures are commonly found on indoor and outdoor scenarios,
and their image representations, the so-called curvilinear regions, automatically deform with changing viewpoint as to keep on
covering identical physical parts of a scene. The method is based on Marr’s visual theory that proposes that visual objects can be
decomposed in generalized cylinders. Also, part of the method can be compared to the behavior of AOS neurons, placed in the
caudal intraparietal sulcus, that respond when an elongated object is visualized. Our detector reliably finds the same curvilinear
regions under different viewing conditions. Evaluation results are given to demonstrate the performance of the approach and its
ability to be applied for visual features detection in a mobile robot navigation framework.

1. Introduction

An autonomous robot must be capable of managing real
situations in dynamic and complex environments and
of interacting with people and/or other robots. Among
other components, navigation is a fundamental capacity
that requires the integration of different modules. Self-
localization and environment mapping are two that are
essential, as they are needed at different levels from low-
level control to higher-level strategic decision making or
navigation supervision. In order to solve the localization and
mapping problems, it is necessary to describe the robot’s
environment. One popular choice is to use a feature-based
map. These maps represent the environment by a set of
features or landmarks, such as lines, points, or circles. Local-
ization in these maps is performed by extracting features
from the sensor data and associating them with the features
in the map. Recognizable landmarks are then essential since
they will be used as reference marks to identify locations
in the world [1]. There are some advantages to using these
maps; their representation is more compact and accurate,

is better suited to representing dynamic objects, and is closer
to people’s perception than other approaches, such as grid
maps. Besides, these approaches allow one to use multiple
models to describe the measurement process from different
sensors and parts of the environment and to represent the
uncertainty for the map and the robot pose. Feature maps are
particularly appropriate for structured environments, but it
is difficult to model unstructured ones.

Feature-based navigation approaches mainly differ in
the method employed to represent the belief of the mobile
robot about its current pose or to find and track a safe
path to a goal. Furthermore, they can be differentiated
according to the type of sensor information that they use.
Although range and bearing sensors have been successfully
used for feature extraction in mobile robot applications,
vision systems constitute an interesting alternative. These
systems are passive and of high resolution, and they provide
a huge amount of information (color, texture, or shape)
which allows disambiguating landmarks for subsequent data
association purposes [2]. In this framework, this paper
describes a vision-based approach for features detection.
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The proposed method exploits a particular object structure,
that which can be modelled using cylinders or generalized
cylinders. The choice of this type of structure is based on
Marr’s visual theory, being the biological inspiration of this
work. Marr suggests that visual objects can be divided into
generalized cylinders that are combined to form objects [3]
and therefore can be used to identify and recognize them.
The biological inspiration for the choice of the visual features
will allow to use regions with a high semantic significance
for future applications. The detection of these cylinders in
the image could be considered the main disadvantage of the
approach, as it depends on the presence of these specific
structured landmarks in the scene. However, as it has been
aforementioned, feature-based maps allow one to employ
different models to describe the perceived environment. In
a mobile robot navigation system, this detector could be
combined with other visual feature detectors to increase the
number of extracted landmarks.

The image representation of each detected landmark will
be a curvilinear region. A curvilinear structure represents
a line or curve with some width [4]. Thus, curvilinear
features differ from conventional line or curve features,
which are typically obtained based on edges, and they
contain more information. Besides, they constitute semilocal
structural items which are more robust to intensity, color,
or pose changes than local interest points or intensity-
based interest operators [5]. In our approach, curvilinear
regions are chosen from the image partition generated by
the modified version of the Bounded Irregular Pyramid
(BIP) proposed by Vázquez-Martı́n et al. [2]. The uBIP is
a hierarchical structure, whose data structure merges the
regular and irregular data structures to obtain a scale-space
representation of the input image. In this hierarchy, each level
is a reduced version of the level below, and it is constituted
by nodes which are joined to irregular-shaped regions at the
input image [2, 6]. This decimation process allows one to
obtain the set of nodes whose associated regions define a
domain-independent segmentation of the image pixels into
regions. These nodes are located at different scales, and their
associated regions are perceptually homogeneous according
to certain criteria. The shape of these regions is adapted to
real items of the scene. Hence, continuous geometric changes
of the view point transform pixels from a single connected
region to a new single one (see Vázquez-Martı́n et al. [2]
for further details). This is one of the main differences with
respect to other curvilinear detectors, which typically employ
the first steps of Steger’s curvilinear detector algorithm [7].
From the obtained image partition, the proposed approach
chooses the set of curvilinear regions applying a set of
geometric and chromatic conditions. Experimental results
show that this detector could be used to build sparse maps,
where landmarks are perceptually distinguished and, besides,
they usually have an underlying semantic significance.

The paper is organized as follows. After discussing
related work to the proposed detector and the biological
inspiration in Section 2, the approach for the acquisition
of curvilinear visual landmarks is described in Section 3.
Section 4 deals with some obtained experimental results.

Finally, the paper concludes along with discussions and
future work in Section 5.

2. RelatedWork and Biological Inspiration

Feature-based vision systems for mobile robot localization
and navigation identify each scenario or environment pose
with a set of features and their spatial distribution. These
landmarks must own some invariant and stable properties in
order to be detected with high repeatability in images taken
from arbitrary viewpoints. Visual feature detectors can be
classified into intensity-based detectors and structure-based
detectors. The advantage of intensity-based detectors is that
no model of landmarks has to be specified to the vision
system a priori. Besides, these approaches can generate dense
occupancy maps, but comprising of landmarks which do
not necessary present an underlying semantic significance.
The disadvantage of such systems is scalability. Thus, these
systems are usually implemented in environments, where the
number of detected landmarks is relatively small [8]. Moving
the robots to a larger environment requires the management
and recognition of a much larger number of landmarks. An
excessively huge number of landmarks can provoke that the
reliability and repeatability of visual features can not always
be guaranteed, appearing outliers in feature matching which
can lead to unreliable data association [9]. This problem has
been addressed by grouping local interest points together and
using these groups as landmarks [9] or by imposing a fixed
number of landmarks (e.g., the iterative SIFT [10]). Other
solution has been suggested by model-based visual landmark
detectors. These detectors are employed to build sparse
maps using landmarks that have an underlying semantic
significance. Thus, image edges [11] or planar quadrangles
[12, 13] can be employed to match images. Environment-
specific features like walls or doors are used by Horswill [14].
To deal with outdoor environments, Asmar et al. [8] propose
a tree detection approach.

In our work, although curvilinear regions are based
on the existence of generalized cylinders, a 3D framework
is not built. In fact, this work is more similar to the
intensity-based models because it works with the projections
of the features. These projections are transformed in a
way that can be interpreted as an extended intensity-based
approach according to Tarr and Bulthof [15]. Given a set
of images taken from different viewpoints, the process of
finding the projections on each image of real 3D surface
patches must deal with the problem that image regions
associated to the projections change covariantly with the
class of transformation induced by the viewpoint change.
When the viewpoint change can be approximated by an
affine transformation, approaches which solve this problem
are called affine region detectors. The detection of regions
which change covariantly with affine transformations was
described in detail by Mikolajczyk et al. [16]. In this work,
the authors provide a review of affine covariant region
detectors and compare their performance on a set of test
images under varying imaging conditions. The requirement
for these detectors is that they must provide regions whose
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Figure 1: Several examples of generalized cylinders. (a) Straight
homogeneous generalized cylinders. (b) Planar, right constant cross
section generalized cylinders.

shapes depend on the underlying image features, so that
they correspond to the projections of the same 3D surface
patch on the different images. Although the boundaries of
these covariant regions do not have to be associated to
changes in image features such as color or texture, some
of the approaches described in Mikolajczyk et al. [16] look
for these abrupt changes. Thus, the intensity extrema-based
region detector (IBR) [17] starts from intensity extrema and
studies an intensity-based function along rays emanating
from this extrema to define a region of arbitrary shape. The
region is delineated by the image points defined over these
rays, where the intensity suddenly increases or decreases. A
maximally stable extremal region (MSER) [18] is a connected
component of an appropriately thresholded image, where
all internal pixels have either higher or lower intensity than
all the pixels on its outer boundary. Among these extremal
regions, the “maximally stable” ones are those corresponding
to thresholds, where the relative area change as a function
of relative change of threshold is at a local minimum.
The Principal Curvature-based regions (PCBRs) detector [5]
extracts stable regions within the multiscale principal cur-
vature image. Contrary to other intensity-based detectors,
PCBR overcomes local intensity variations within regions by
focusing on region boundaries rather than the appearance of
region interiors. This paper employs an approach for affine
region detection which extends the idea of looking for abrupt
changes. However, to detect these boundaries, we use a
hierarchical clustering scheme, which groups neighbor image
pixels into blobs of homogeneous color. The hierarchical
clustering algorithm represents the input image at different
levels with decreasing resolution. This hierarchy constitutes
a scale-space representation, where salient regions could be
detected at different scales. The geometry of salient regions
is analyzed to look for those regions which can be the
projection of a generalized cylinder.

Classical visual theories like Biederman’s propose that
objects can be divided in their constituent components, and
so Recognition By Components (RBCs) can be achieved [19].

Marr’s theory suggests that these components are generalized
cylinders [3]. Our work is based on the presence of these
semantical generalized cylinders in every image, and we
consider their semantic significance the main advantage
over other invariant region detectors. In [20], one of the
first studies with this kind of visual objects is presented. A
generalized cylinder can be defined as an arbitrary planar
shape, called a cross section, swept along an arbitrary 3D
curve, called an axis. Shafer in [21] uses terms as SHGCs
(Straight Homogeneous Generalized Cylinders) to describe
generalized cylinders with a straight axis and cross sections
of a fixed shape, but of varying size; CGCs (Constant cross
section Generalized Cylinders), with a fixed cross section and
PRCGCs (Planar, Right Constant cross section Generalized
Cylinders), where the axis is planar and the cross sections
are orthogonal to the axis (Figure 1). PRCGCs provide an
important modeling tool for mostly “snake-like” objects that
cannot be modeled by SHGCs [22]. Ulupinar and Nevatia
in [22] analyze the properties of these types of cylinders and
derive the types of symmetries that the limb boundaries and
cross sections of these objects produce on the image plane.
Nevatia assures that, combining the detection of this types
of cylinders, it is possible to cover a large fraction of the
surfaces found in man-made environments. Nevatia’s work is
based on the analysis of the extracted edges, the straightness
and parallelism properties of lines, and the symmetry of
curves. Our work is also based on the analysis of symmetries.
However, our detection is more tolerant because it allows
several deformations and errors in the boundaries, so we
think it is better for working with real images. Nevatia needs
a perfect or ideal extraction of the borders of the object
and also at least one cross section of the cylinder must be
drawn in the image, and this is not always possible when
working with real images. Moreover, they need to build the
3D model in the detection process, so the method is slow.
In [23], a better method is described to compute the desired
descriptions of complex objects from a single image. This
is achieved by exploiting projective properties of a class of
generalized cylinders and of possible joints between them.
However, also at least one cross section of the cylinder must
be visible in the borders image. Also a 3D model of the parts
of the objects is built, and this is not needed in our approach.
Furthermore, the method may not handle two-dimensional
compound objects [23].

Other authors as Rao and Medioni have also studied
some subclasses of PRCGCs like a torus [24], which can be
modeled as a PRCGC with circular cross section and circular
axis. They use the property that limb edges of a torus produce
parallel symmetry under orthographic projection. They also
investigate for which classes of generalized cylinders the
contour is symmetric about the projection of the 3D axis.
They conclude that the contour of a solid of revolution is
symmetric about the projection of its axis for any view.
Medioni in [25, 26] uses a contour representation with a
symmetry axis. As assured in [26], it is well known that the
projections of 3-D mirror symmetric coplanar curves form
a skew symmetry in the image plane. The method is based
also on a previous detection of edges of the image, which
are modeled with B-splines. The method works with these
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Figure 2: Definition of curvilinear region for a continuous case.
bl(l) and br(l) are the left and right borders, respectively; a(l) is
the medial axis; and wl(l) and wr(l) are the left and right widths,
respectively.

B-splines instead of the image borders, and the symmetry
axes are estimated. These axes allow to divide the object
in a hierarchical way. The method needs to analyze the
object from a local and a global point of view. This can
lead to conflicts that should be resulted in a higher level of
knowledge. Also, no much experiments with real images are
shown, and problems can appear with contours with very low
curvature.

To overcome some limitations when working with real
images, Nevatia in [27] uses projections of generalized cones
(GCs) [20] known also as ribbons. For a ribbon, the axis
is an arbitrary 2D curve, and the cross sections are simply
line segments. As Nevatia assures, 2D ribbons may be viewed
as projections of 3D GCs, and given only a single intensity
image, it is easier to compute ribbons which may serve as
a step toward inferring 3D volume descriptions [23]. Based
on the analysis of the medial axis and symmetries, Nevatia
makes a scene segmentation detecting the ribbons on the
image. Later, these ribbons are grouped into superribbons,
objects, and superobjects. Our method has got similarities
with this work but also differs from this in several aspects.
First, Nevatia works with the extracted edges from the image,
and our method is based on a colour segmentation. Also, for
estimating the medial axis, Nevatia needs to work with the
image rotated in m equally spaced directions. Our method
extracts the medial axis using a distance transform, and there
is no need to rotate the image to detect the skeletons to
get reliable results. Another difference is that the application
proposed in our paper is oriented to detect landmarks for
localization, so there is no need to form entire objects or the
superribbons described in Nevatia’s work. The curvilinear
regions that we propose have strong similarities with ribbons;
however, the computation of the curvilinear properties that
we propose is a novel approach. Our method allows some
deformations in the symmetries, in order to obtain a better
detection with real images.

Nowadays, there are other methods that detect curvi-
linear regions although in the literature these methods are
more focused on other applications of artificial vision, such
as detection of roads in aerial images and blood vessels in
biomedical applications. We can find an example in [28],
where Liu et al. propose a wide line detector based on
isotropic responses via circular masks. The method can work
quite well with some types of images. However, the size of
the width that a line must have in order to be detected
depends on the size of the chosen mask, so those lines
whose width is above an established threshold can not be
detected. So, the method requires the maximum width of
the lines to be estimated before the detection. Liu for his
experiments develops a method that detects those lines with
a length very high related to its width. We believe that to
consider only those types of curvilinear regions is insufficient
for our application because it establishes a very restrictive
condition. Liu’s application is focused on the detection of
quite elongated objects such as blood vessels and palmprint
images. We think our detection algorithm is able to find a
more diversity of regions. In Liu’s method, the size of the
mask could be increased, but this could lead to an artificial
joint of independent regions. Other drawback is the speed
of the algorithm since it involves large mask comparison
operations for every image pixel.Li et al. in [29] presents
a faster method. It consists of two components: a small
object detector and a centerline detector. The method uses
a fast kernel-based density estimation which is termed as
local weighted features (LWFs). The work is focused on the
detection of objects whose widths are less than 10 pixels.
They eliminate the wide borders created by large objects, so
we think that it would not detect many objects that could be
of interest for our application. This method has been proved
for the detection of roads and rivers in aerial images, but
not with the goal to extract natural landmarks of a scene for
localization in robotics. Indeed, the authors assert that they
still have to apply it to other image processing tasks.

Also, a method that detects elongated objects has got
by itself a strong biological inspiration. It has been clearly
shown in the visual neuroscience literature that there is a
type of neurons, called AOS (axis orientation selective) and
placed in the caudal intraparietal sulcus (CIP) area, that
responds when an elongated object is visualized [30, 31].
This response is suggested to be used for grasping objects
and some recognition tasks. In [32], a method for emulating
the AOS neurons behaviour is implemented for a robotic
system, and the authors use a short descriptor for an object
recognition purpose. However, their algorithm is simpler
than the proposed in our work, and we think our work can
be used for a wider variety of elongated objects.

3. Curvilinear Regions Detection

3.1. Definition. We have represented in Figure 2 a region
delimited by left and right boundaries, br(l) and bl(l), in a
continuous case. A curvilinear region could be represented
by a parameter vector {a(l),wl(l),wr(l)}l=0...L, where L is the
length of the region, a(l) is a vector defining the axis between
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the right and left borders, and wr(l) and wl(l) are the widths
of the curvilinear region.Rao and Medioni in [24] proved
that the axis of some right generalized cones, like solids of
revolution, projects to the axes of right ribbons, so the axis
a(l) can provide an important information about the region.
In order to decide if the set of pixels is a curvilinear region or
not, we define four properties, called curvilinear properties,
that must be satisfied by every curvilinear region.

(i) Symmetry: there must be a geometric similarity
around the region axis.

(ii) Elongation: the ratio between the average width and
the total length must be less than a predefined
threshold.

(iii) Parallelism: the left and right borders must be locally
parallel.

(iv) Homogeneity: the colour of the region should be
homogeneous.

The first three properties are geometrical properties whereas
the last one imposes a colour restriction. This constraint
eases the detection stage, and it can be achieved by a colour
segmentation of the original image.

The algorithm for detecting curvilinear regions can
be divided into several steps, depicted in Figure 3. Firstly,
the original image is segmented into homogeneous colour
regions using a pyramid algorithm based on the Bounded
Irregular Pyramid (BIP) [6]. By this way, the obtained
regions comply with the homogeneity property. Next, a
skeleton extraction based on a distance transform is achieved
inside the regions, and the geometric properties of every
region are checked looking for those regions with the sym-
metry, elongation, and parallelism properties. The approach
obtains the set of curvilinear regions from this analysis.
Image segmentation and the computing of the properties are
described in Sections 3.2 and 3.3.

3.2. Image Segmentation. The segmentation step employs a
colour distance to group the image pixels into a set of blobs,
whose spatial distribution is physically representative of the
image content. To accomplish this grouping process, the
contents of the input image can be described using multiple
representations with decreasing resolution. Pyramids are
hierarchical structures which have been widely used to
represent the perceptual organization of the image by a
tree of regions, ordered by inclusion [33]. In this hierarchy,
each level is a graph which is at least defined by a set
of nodes, which represent regions, connected by a set of
arcs, which represent region adjacency relationships. The
efficiency of a pyramid to represent the information is
strongly influenced by two features: the graph selected to
encode the information within each pyramid level and the
decimation scheme used to build one graph from the graph
below [33]. The choice of a graph encoding determines
the information that may be encoded explicitly at each
level of the pyramid. On the other hand, the reduction or
decimation scheme used to build the pyramid determines the

dynamic of the pyramid (height, preservation of details. . .).
Depending on these two features, pyramids have been
classified as regular and irregular ones. Regular approaches
have a rigid structure, where the decimation process is
fixed. This rigid structure allows to build and process them
with a low computational cost. However, this inflexibility
can also provoke three main problems: nonconnectivity of
the obtained regions, impossibility to represent elongated
objects, and shift variance [33]. Irregular pyramids solve
these problems using a structure which dynamically adapts
to the image layout. However, they require a computational
time which is usually higher than the one required by regular
pyramids. In order to combine the advantages of regular and
irregular pyramids, the Bounded Irregular Pyramid (BIP)
was proposed by [34]. The BIP arose as a mixture of regular
and irregular structures, whose goal is to obtain accurate
results at a low computational cost.

The BIP approximates or even outperforms previously
proposed hierarchical segmentation schemes, yet it can be
computed much faster [33]. However, it is highly affected
by the shift variance problem, that is, it provides an image
segmentation which varies when this image is shifted slightly.
In this paper, we use the uBIP, an extention of the original
BIP structure, which improves the mixture of the regular and
irregular decimation processes [2]. The uBIP uses a union-
find algorithm to merge the nodes resulting of the regular
and irregular decimation processes, allowing that a node of
the structure (regular or irregular) can be linked with any
type of nodes from its same level.

As it is described in [6], the pixels of the input image
can be considered as the nodes of the graph G0. Then, the
segmentation stage divides the image into regions of uniform
color using the uBIP. Contrary to the BIP, this decimation
algorithm only runs two consecutive steps to obtain the set
of nodes Nl+1. The first process generates the set of regular
nodes of Gl+1 from the regular nodes at Gl, meanwhile the
second one determines the set of irregular nodes at level l+1.
In this proposal, this second process conducts a union-find
decimation algorithm which is simultaneously conducted
over the whole set of regular and irregular nodes of Gl which
do not present a parent in the level l + 1.

Let Gl = (Nl,El) be a graph, where Nl stands for the set
of regular and irregular nodes and El for the set of intralevel
arcs. Let ε

xy
l be equal to 1 if (x, y) ∈ El and equal to 0

otherwise. Let ξx be the neighborhood of the node x defined
as {y ∈ Nl : ε

xy
l }. It can be noted that a given node x is

not a member of its neighborhood, which can be composed
by regular and irregular nodes. Each node x has associated a
vx value. Besides, each regular node has associated a boolean
value hx: the homogeneity [6]. At the base level of the
hierarchy, G0, all nodes are regular, and they have hx equal to
1. Only regular nodes which have hx equal to 1 are considered
to be part of the regular structure. Regular nodes with a
homogeneity value equal to 0 are not considered for further
processing. The proposed decimation process transforms the
graph Gl in Gl+1, such that the reduction factor is greater
than 1. In our case, we focus on dividing the image into a
set of homogeneous blobs. This aim is achieved using the
pairwise comparison of neighboring nodes. Then, a pairwise
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Figure 3: (a) An overview of the method. (b) Algorithm to detect the skeletons with curvilinear properties inside a region. Note that several
curvilinear skeletons could be detected inside an homogeneous colour region.

comparison function, g(vx1 , vx2), is defined. This function is
true if the vx1 and vx2 values associated to the x1 and x2 nodes
are similar according to some criteria and false otherwise.
The decimation process consists of the following steps

(1) Regular decimation process. The hx value of a regular
node x at level l+ 1 is set to 1 if the four regular nodes
immediately underneath {yi} are similar according to

some criteria, and their h{yi} values are equal to 1.
That is, hx is set to 1 if
⎧
⎪⎨

⎪⎩

∧

∀y j ,yk∈{yi}
g
(

vy j , vyk
)

⎫
⎪⎬

⎪⎭
∧

⎧
⎪⎨

⎪⎩

∧

y j∈{yi}
hy j

⎫
⎪⎬

⎪⎭
. (1)

Besides, at this step, interlevel arcs among regular
nodes at levels l and l + 1 are established. If x is
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a homogeneous regular node at level l + 1 (hx = 1),
then the set of four nodes immediately underneath
{yi} are linked to x.

(2) Irregular decimation process. Each irregular or regular
node x ∈ Nl without parent at level l + 1 chooses the
closest neighbor y according to the vx value. Besides,
this node y must be similar to x. That is, the node y
must satisfy

{∥
∥
∥vx − vy

∥
∥
∥ = min(‖vx − vz‖ : z ∈ ξx)

}

∧
{

g
(

vx, vy
)}

.

(2)

If this condition is not satisfied by any node, then a
new node x′ is generated at level l + 1. This node will
be the parent node of x. Besides, it will constitute a
root node, and its receptive field at base level will be
a homogeneous set of pixels according to the specific
criteria. On the other hand, if y exists and it has a
parent z at level l + 1, then x is also linked to z. If y
exists but it does not have a parent at level l+ 1, a new
irregular node z′ is generated at level l+1. In this case,
the nodes x and y are linked to z′.

This process is sequentially performed and, when it
finishes, each node of Gl is linked to its parent node
in Gl+1. That is, a partition of Nl is defined. It must be
noted that this process constitutes an implementation
of the union-find strategy. The union-find uses tree
structures to represent sets. A find operation looks for
the parent of a node at level l. If two nodes at level l
are similar, then a union operation will be performed
by setting one of the two nodes to be the parent of
both ones at level l + 1.

(3) Definition of intralevel arcs. The set of edges El+1 is
obtained by defining the neighborhood relationships
between the nodes Nl+1. Two nodes at level l + 1 are
neighbors if their reduction windows are connected
at level l.

The structure hierarchy stops growing when it is no longer
possible to link together any more nodes because they are not
similar. The set of nodes which are not linked to any node at
upper levels defines a partition of the input image (see [6] for
further details).

This decimation process avoids the shift variance prob-
lem associated to the BIP. To demonstrate this issue, we com-
pared the proposed modification with the original BIP and
with the main irregular structures present in the literature
in a colour-based segmentation framework. Obtained results
were shown in [2]. They demonstrate that the decimation
process of the uBIP avoids the shift variance problem at a
cost of a very reduced increase of the computational costs.

3.3. Medial Axis Extraction and Skeleton Classification. The
skeleton of the region is used for the analysis of the geometric
properties that define if a region is curvilinear or not. The
skeleton is defined as a subset of pixels that preserve the
topological information of the region and it must approx-

imate the medial axis. In this work, a distance transform
approach is used for each colour-segmented region, where
a distance skeleton is a subset of grid points, such that every
point represents the centre of a maximal disc contained in
the given component. For estimating the distance transform
of a region, we use the algorithm based on the d8-distance
described in [35], which can approximate the distance
transform inside the region in only two steps, so it has got
a low computational cost. Those pixels which present a local
maximum in the distance transform belong to the distance
skeleton, and by choosing them we can obtain a skeleton
for each region. These distance skeletons are generally not
connected, so we postprocess them with morphological
operations to obtain connected and smooth skeletons that
are used to estimate further geometric properties.

We define the skeleton extracted from the distance
transform of a region as the set of connected pixels ps =
(is, js), 0 ≤ s ≤ N − 1, being N the number of pixels
of the skeleton. The algorithm tries to join as many pixels
as possible to form a curvilinear skeleton. The algorithm
starts in an endpoint of the skeleton and it looks for adding
the connected pixels checking if the set of pixels satisfies
the symmetry, elongation, and parallelism properties. In case
that any property is not fulfilled, the curvilinear skeleton
is finished and a new curvilinear region will begin with
the next positive evaluation. When all the pixels have been
evaluated inside a region, the curvilinear skeletons with close
endpoints are linked. Those parts of the objects with a
skeleton evaluated as a curvilinear skeleton are considered
curvilinear regions.

Next, the algorithms in order to check symmetry, elonga-
tion, and parallelism properties are presented.

(i) Symmetry. The algorithm tries to evaluate how much
asymmetrical the region is. To achieve this, first the
normal vector is calculated for each pixel ps in the
skeleton, and the cross-points between the normal
and the left and right borders of the region are
estimated. If we define pls and prs as these cross-
points, then we obtain the triplets (ps, pls , p

r
s ), 0 ≤ s ≤

N − 1 (Figure 4(a)). Then wl
s and wr

s are calculated,
being the Euclidean distance between pixels ps and
pls and the Euclidean distance between pixels ps and
prs , respectively, (Figure 4(a)). Then, the algorithm
estimates

Δws =
∣
∣
∣wl

s − wr
s

∣
∣
∣, 0 ≤ s ≤ N − 1, (3)

so, for every point in the skeleton, the algorithm
estimates the absolute difference between the widths
on the left and right sides of the skeleton. For an
object ideally symmetrical around the axis, wl

s = wr
s .

Next, if we consider Δws as a signal along the skeleton
points, its energy can be estimated as follows:

EΔw(N) = 1
N

N−1∑

s=0

(

Δws − Δw
)2

, (4)
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Figure 4: Definitions for the estimation of curvilinear properties. (a) Normal vector is estimated for every pixel ps of the skeleton. Then,
the cross points between the normal vectors and the left and right borders define the pls and prs pixels, respectively. The widths wl

s and wr
s are

calculated as the distance between the cross points and the pixel ps, where the normal vector is estimated. (b) For the elongation property,
the method estimates ws as the distance between pls and prs . (c) For the parallelism property, the tangential vectors at pixels pls and prs are
estimated. Then αls and αrs are defined as the angles between those vectors and the normal vector at ps.

being

Δw(N) = 1
N

N−1∑

s=0

Δws. (5)

Equation (4) grows with the asymmetries of the
region, so the algorithm uses it as an estimation
of how much asymmetrical the region is. Then the
maximum value of energy allowed for a curvilinear
region is defined as

UE(N) = U
(

1− e−(N2/2σ2
U )
)

, (6)

being U and σU parameters of the method.

By last, given a skeleton with N points, the symmet-
rical property is defined as

UE(N)− EΔw(N) ≥ 0. (7)

It must be noted that UE(N) grows with the number
of points of the evaluated skeleton, with the goal to
detect as longer regions as possible (Figure 5).

(ii) Elongation. For the elongation property, the algo-
rithm tries to evaluate the relation between the
length of the skeleton and the average width. Given
a position s in the skeleton, the width ws of the region

is estimated as the Euclidean distance between pixels
pls and prs (Figure 4(b))

ws = wl
s + wr

s , 0 ≤ s ≤ N − 1 (8)

Then, we can estimate

w(N) = 1
N

N−1∑

s=0

ws. (9)

The elongation property is defined as

Lmax −Uw · w(N) ≥ 0, (10)

where Lmax is the maximum length that the region
could have with all the connected pixels of the
skeleton, and Uw is a parameter of the method, that
must be greater than 1.0 in order to detect elongated
regions.

(iii) Parallelism. In a similar way to the previous prop-
erties, the algorithm tries to evaluate the degree of
local parallelism between the left and right borders of
the region. For that purpose, the algorithm in a first
step estimates the tangential vectors on the borders
at pixels pls and prs (Figure 4(c)). Then, the angles
between those vectors and the normal vectors to the
borders are estimated. Given a position s, if we define
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Figure 5: Maximum value of energy allowed for the curvilinear
regions for different values of σU and U = 15. N represents the
number of points of the skeleton. The method can benefit the
detection of longer regions using this function instead of a fixed
threshold for the maximum value allowed for EΔw .

those angles as αls and αrs for the left and right borders,
respectively (Figure 4(c)), then the method estimates
the difference between them

Δαs =
∣
∣
∣αls − αrs

∣
∣
∣, 0 ≤ s ≤ N − 1. (11)

Next, we define

Δα(N) = 1
N

N−1∑

s=0

Δαs, (12)

being a term that increases with the differences in
orientation between left and right borders.

Then, the parallelism property is defined as follows:

Uα − Δα(N) ≥ 0, (13)

being Uα a parameter of the method.

As we have mentioned above, the curvilinear regions are
those sets of points with skeletons that comply with (7),
(10), and (13). The method tries to form as longer regions
as possible. If we define Ns as the number of points of the
skeleton in a colour-segmented region, then the length of a
curvilinear region is Nc = max{Ni}, being 0 < Ni ≤ Ns and

UE(Ni)− EΔw(Ni) ≥ 0,

Lmax −Uw ·w(Ni) ≥ 0,

Uα − Δα(Ni) ≥ 0.

(14)

In Figure 3(b), an overview of the algorithm to detect the
curvilinear skeletons is depicted. The method demands that
the regions must have a minimum length defined by the
application user. For other purposes, this minimum length
could be also defined as a percentage of the image size.

4. Experimental Results

Several tests have been performed to evaluate the stability
of the detected regions. Different toolboxes and protocols
have been also used to conduct these tests. We also provide
in this Section the environment mapping framework, where
the proposed approach is currently applied (Section 4.1) and
an estimation of the parameters that the approach employs
(Section 4.2).

Figures 6, 7, and 8 present some experiments and the
obtained results. In Figure 6, a detection test with simple
images is shown. The original images, segmentation stages,
and the results of the curvilinear properties evaluation are
represented. The pixels that belong to the curvilinear regions
have been drawn in green in the last row of the figure. The
experiment shows that the different cylinders in the original
images are detected as curvilinear regions. In Figure 7, a
detection test with a complex scene is depicted. The scene is
captured from two different viewpoints, and the experiments
show that several objects of interest are detected in both
images. In Figure 8, a test of detecting the same object under
different viewing conditions is presented. The object is seen
from different points of view and is always evaluated as a
curvilinear region in a positive way.

A standard dataset (http://www.robots.ox.ac.uk/∼vgg/
research/affine) has been also used to carry out other
experiments. Images and Matlab code to carry out the
tests have been downloaded. The dataset is composed by
eight different scenes, where images have been captured
under changing conditions (viewpoint changes, scaling,
image blur, jpeg compression, or illumination changes). The
datasets can be grouped into structured and textured scenes.
Figure 9(a) shows example images from several scenarios.
The structured group contains homogeneous regions which
present distinctive boundaries, and the textured one contains
repeated patterns or textured surfaces. Clearly, the proposed
approach could be useful to deal with structured scenarios,
where curvilinear regions can appear. Its behaviour in
textured scenes has been tested obtaining poor results, as it
was expected, with the exception of Trees scenario, where
some stable regions have been detected. The aim of this test
is to measure how many of the obtained regions are found in
images under different transformations, relative to the lowest
total number of regions detected (where only the part of the
image that is visible in both images is taken into account).
The ground truth is provided by mapping the regions
detected on the images in a set to the reference image of this
set using homographies. Then, the measure of repeatability
is the relative amount of overlap between regions detected in
the reference image and in the other image. In the described
framework, the overlap is computed by assuming that output
regions of the evaluated detector are represented by ellipses.
So the detected regions have been enclosed into ellipses to
employ the tests tool. These ellipses have the same first and
second moments that the corresponding detected regions. In
Figure 10, the results for three of the scenarios are depicted.
The proposed detector is compared to other region detectors:
the maximally stable extremal region detector (MSER) [18],
the intensity extrema-based region detector (IBR) [17],
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Figure 6: Detection test with simple images. The first row contains the original images. In the second row, the results of a segmentation
stage are depicted. The third row contains the results of the curvilinear properties evaluation algorithm. The points of the skeletons inside
the region of interest have been drawn; the green pixels represent the parts of the skeleton with a positive evaluation in the curvilinear
properties, and the red ones those parts with a negative evaluation. Also, the estimated normal vectors to the skeleton points have been
drawn in black. Finally, in the fourth raw, the skeletons of the detected curvilinear regions are depicted in yellow, and in green the normal
vectors that have been prolonged to see the crosspoints with the borders.

and the salient region detector in [2]. The results show
that the proposed detector ranks similar to the rest of the
approaches, and when the transformation is not severe, it
may have a good performance. Also, the proposed approach
generates a reduced number of regions compared with MSER
and IBR detectors (Figure 9(b)). As it was commented in
the introduction section, this is the main disadvantage of
the approach. In any case, the repeatability score of detected
regions makes it suitable for mobile robots global localization
purposes.

The computational cost depends strongly on the size and
complexity of the image. For example, in the Graffiti images,
which are complex images of 800 × 640 pixels, the overall

method needs about 1100 milliseconds in a 2.4 GHz Pentium
PC. In average, the segmentation and skeleton stages take
the 80% of this time, and the 20% corresponds with the
algorithm of detecting the curvilinear properties. But for
simpler images of 320 × 240 pixels like the captured by
the robot architecture, the overall method needs less than
100 milliseconds. If we consider that for a mobile robot
application the visual localization can take place from time
to time, the method could be suitable for extracting natural
landmarks.

4.1. Testing the Approach in an Environment Mapping Frame-
work. The visual landmark detector has been included into
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Detection test with a complex image seen from different viewpoints. Several interesting objects as the ball pen, keyboard, and
webcam cable have been detected in both images. (a)-(b) Original images; (c)-(d) segmented images with the points of the skeletons and
the normal vectors. Green points mean skeletons with curvilinear properties and red points skeletons without curvilinear properties. (e)-(f)
Final results are depicted (region colours have not been represented for a clearer representation). The curvilinear skeletons are drawn with
the normal vectors prolonged to see the crosspoints with the borders.
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Figure 8: Detection test of the same object under different viewing conditions. In the first column, the original images are depicted. In the
second column, the curvilinear regions are drawn. The object has been always detected as a curvilinear region.

the software architecture of an ActiveMedia Pioneer 2AT
robot. The robot is equipped with an STH-MDCS stereo-
scopic camera from Videre Design, which is mounted at the
front and top of the robot at a constant orientation, looking
forward. This stereo camera consists of two 1.3 megapixels,

progressive scan CMOS imagers mounted in a rigid body.
Images were restricted to 320 × 240 pixels. The viewpoint
invariance of the detector was checked by driving the robot
through different environments while capturing real-life
stereo images. Figure 11 shows several frames of a typical
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Figure 9: (a) Image examples of the standard data set. (b) Comparison with other region detectors with the number of regions detected in
the GRAFFITI image.

sequence, where the results of the detected landmarks have
been superimposed on the original images.

4.2. Estimation of Parameters. The proposed method
requires choosing values for a set of parameters. These
parameters are the color threshold employed at the
segmentation stage and the set of parameters employed by
the curvilinear regions detection stage.

In order to choose a color threshold value Tseg which can
remain unaltered for the experiments shown in this paper,
we have tested several values into a color-based segmentation
framework. To evaluate the obtained results, two empirical
methods have been employed: the shift-variance (SV) pro-
posed by [36] and the Q function [33]. Shift variance means
that the image segmentation provided by a pyramid-based

approach varies when the base of the pyramid is shifted
slightly. This is an undesirable effect, so the shift variance
(SV) can be taken as a measurement of an algorithm quality.
On the other hand, the Q function takes into account that
segmented regions must be uniform and homogeneous; that
the interior of these regions must be simple, without too
many small holes; and that adjacent regions must present
significantly different values for uniform characteristics.
From the conducted tests, the best choice for the color
threshold was Tseg = 20.0.

On the contrary, the set of parameters used at the
curvilinear regions detection stage is user specific, that is,
they depend on the current application. In the tests of
repeatability, the parameters have been adjusted to obtain
a stable set of regions. (U , σU , Uw, Uα) has been set to (5,√

500, 2.0, 20 degrees) and the minimum length to 15 pixels.
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Figure 10: Repeatability scores for BOAT, TREES, and BIKES sequences (see Figure 9 (a)).

Other values could be better to detect curvilinear features if
the approach is applied in a different framework (roadmap
detection, human silhouette delineation . . .).

5. Conclusions and FutureWork

This paper describes a novel visual landmark detection
system. The detection is based on the presence of the scene of
objects or parts of objects whose shapes can be modelled by
cylinders or generalized cylinders, inspired on Marr’s visual
theory. Thus, the algorithm looks for curvilinear regions,
that is, the planar representation of these objects. This
biological inspiration allows to detect regions with a higher
semantic significance than other approaches. The search of
the regions is addressed from a previous segmentation of the
acquired image. This process differs from the typical strategy

employed by other approaches, which initially accomplish a
borders detection stage. In our tests in real image sequences,
the segmentation stage has been able to provide stable
partitions at a reduced computational cost (see [33] or [2]
for further details). The image regions which satisfy several
previously established geometrical properties constitute the
set of curvilinear regions. The performance of the detection
scheme has been tested and compared to other region
detectors.

Our approach can detect stable regions with a high
semantical significance. The approach depends on the
presence of these specific structures in the scene and, in a
mobile robot navigation framework, it could be combined
with other visual feature detectors to increase the number
of perceived features. Future work will be focused on
this integration procedure and the mapping of structured
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(a) (b)

(c) (d)

Figure 11: Consecutively acquired images by the Pioneer robot, with size 320× 240 pixels. (a)-(b) Original images. (c)-(d) Original images
with the results of the detection superimposed. Several landmarks are detected in both of the images.

environments. Also, a region descriptor will be needed to
achieve a scene matching. Although we have done some
previous work in [37], we must develop a better descriptor
in our future work for the curvilinear regions, in order to
achieve a reliable matching for localization purposes.
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F. Sandoval, “A novel approach for salient image regions
detection and description,” Pattern Recognition Letters, vol. 30,
no. 16, pp. 1464–1476, 2009.

[3] D. Marr and H. K. Nishihara, “Representation and recogni-
tion of thespatial organization of three-dimensional shapes,”
Proceedings of the Royal Society of London B, vol. 200, pp. 269–
294, 1978.

[4] J. H. Jang and K. S. Hong, “Detection of curvilinear structures
and reconstruction of their regions in gray-scale images,”
Pattern Recognition, vol. 35, no. 4, pp. 807–824, 2002.

[5] H. Deng, W. Zhang, E. Mortensen, T. Dietterich, and
L. Shapiro, “Principal curvature-based region detector for
object recognition,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR ’07), June 2007.

[6] R. Marfil, L. Molina-Tanco, A. Bandera, and F. Sandoval, “The
construction of bounded irregular pyramids with a union-
find decimation process,” in Proceedings of the 6th IAPR-TC-
15 International Workshop on Graph-Based Representations in
Pattern Recognition (GbRPR ’07), vol. 4538 of Lecture Notes in
Computer Science, pp. 307–318, 2007.

[7] G. Steger, “An unbiased detector of curvilinear structures,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 20, no. 2, pp. 113–125, 1998.

[8] D. C. Asmar, J. S. Zelek, and S. M. Abdallah, “Tree trunks as
landmarks for outdoor vision SLAM,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2006, pp. 196–203, 2006.

[9] S. Ahn, M. Choi, J. Choi, and W. K. Chung, “Data association
using visual object recognition for EKF-SLAM in home
environment,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’06),
pp. 2588–2594, October 2006.

[10] H. Tamimi, H. Andreasson, A. Treptow, T. Duckett, and A.
Zell, “Localization of mobile robots with omnidirectional
vision using Particle Filter and iterative SIFT,” Robotics and
Autonomous Systems, vol. 54, no. 9, pp. 758–765, 2006.



16 EURASIP Journal on Advances in Signal Processing

[11] J. Folkesson, P. Jensfelt, and H. Christensen, “Graphical SLAM
using vision and the measurement subspace,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 325–330, 2005.

[12] J. B. Hayet, F. Lerasle, and M. Devy, “Visual landmarks
detection and recognition for mobile robot navigation,” in
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 313–318, June
2003.

[13] R. Vázquez-Martı́n, J. C. Del Toro, A. Bandera, and F. San-
doval, “Data- and model-driven attention mechanism for
autonomous visual landmark acquisition,” in Proceedings of
the IEEE International Conference on Robotics and Automation,
pp. 3372–3377, April 2005.

[14] I. Horswill, “Polly: a vision-based artificial agent,” in Proceed-
ings of the 11th National Conference on Artificial Intelligence,
pp. 824–829, July 1993.

[15] M. J. Tarr and H. H. Bulthof, “Image-based object recognition
in man, monkey and machine,” Cognition, vol. 67, no. 1-2,
pp. 1–20, 1998.

[16] K. Mikolajczyk, T. Tuytelaars, C. Schmid et al., “A comparison
of affine region detectors,” International Journal of Computer
Vision, vol. 65, no. 1-2, pp. 43–72, 2005.

[17] T. Tuytelaars and L. Van Gool, “Matching widely separated
views based on affine invariant regions,” International Journal
of Computer Vision, vol. 59, no. 1, pp. 61–85, 2004.

[18] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-
baseline stereo from maximally stable extremal regions,” in
Proceedings of the British Machine Vision, pp. 384–393, 2002.

[19] I. Biederman, “Recognition-by-Components: a theory of
human image understanding,” Psychological Review, vol. 94,
no. 2, pp. 115–147, 1987.

[20] T. O. Binford, “Visual perception by computer,” in Proceedings
of the IEEE Conference on Systems and Controls, 1971.

[21] S. A. Shafer, T. Kanade, and J. Kender, “Gradient space under
orthography and perspective,” Computer Vision, Graphics and
Image Processing, vol. 24, no. 2, pp. 182–199, 1983.

[22] F. Ulupinar and R. Nevatia, “Shape from contour: straight
homogeneous generalized cylinders and constant cross section
generalized cylinders,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 2, pp. 120–135, 1995.

[23] M. Zerroug and R. Nevatia, “Part-based 3D descriptions
of complex objects from a single image,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 21, no. 9,
pp. 835–848, 1999.

[24] K. Rao and G. Medioni, “Generalized cones: useful geometric
properties,” Computer Vision, Graphics and Image Processing,
vol. 10, no. 3, pp. 185–208, 1992.

[25] H. Rom and G. Medioni, “Hierarchical decomposition and
axial shape description,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 15, no. 10, pp. 973–981, 1993.

[26] P. Saint-Marc, H. Rom, and G. Medioni, “B-spline contour
representation and symmetry detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 15, no. 11,
pp. 1191–1197, 1993.

[27] K. Rao and R. Nevatia, “Describing and segmenting scenes
from imperfect and incomplete data,” CVGIP: Image Under-
standing, vol. 57, no. 1, pp. 1–23, 1993.

[28] L. Liu, D. Zhang, and J. You, “Detecting wide lines using
isotropic nonlinear filtering,” IEEE Transactions on Image
Processing, vol. 16, no. 6, pp. 1584–1595, 2007.

[29] S. X. Li, H. X. Chang, and C. F. Zhu, “Fast curvilinear
structure extraction and delineation using density estimation,”
Computer Vision and Image Understanding, vol. 113, no. 6,
pp. 763–775, 2009.

[30] H. Sakata, K. I. Tsutsui, and M. Taira, “Toward an under-
standing of the neural processing for 3D shape perception,”
Neuropsychologia, vol. 43, no. 2, pp. 151–161, 2005.

[31] E. Chinellato and A. P. Del Pobil, “The neuroscience of
vision-based grasping: a functional review for computational
modeling and bio-inspired robotics,” Journal of Integrative
Neuroscience, vol. 8, no. 2, pp. 223–254, 2009.

[32] E. Chinellato and A. P. del Pobil, “Neural coding in the
dorsal visual stream,” in Proceedings of the 10th International
Conference on Simulation of Adaptive Behavior. From Animals
to Animats (SAB ’08), vol. 2040 of Lecture Notes in Computer
Science, pp. 230–239, 2008.

[33] R. Marfil, L. Molina-Tanco, A. Bandera, J. A. Rodrı́guez, and
F. Sandoval, “Pyramid segmentation algorithms revisited,”
Pattern Recognition, vol. 39, no. 8, pp. 1430–1451, 2006.

[34] R. Marfil, J. A. Rodrı́guez, A. Bandera, and F. Sandoval,
“Bounded irregular pyramid: a new structure for colour image
segmentation,” Pattern Recognition, vol. 37, no. 3, pp. 623–626,
2004.

[35] G. Klette, “A comparative discussion of distance transforma-
tion and simple deformations in digital image processing,”
Machine Graphics and Vision, vol. 12, no. 2, pp. 235–256, 2003.

[36] D. Prewer and L. Kitchen, “Soft image segmentation by
weighted linked pyramid,” Pattern Recognition Letters, vol. 22,
no. 2, pp. 123–132, 2001.
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