
F.J. Garijo, J.C. Riquelme, and M. Toro (Eds.): IBERAMIA 2002, LNAI 2527, pp. 275-284, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Series-Parallel and Tree-Decomposition Approaches for
Fuzzy Constraint Networks

Alfonso Bosch1, Francisco Guil1, Carmen Martinez1, and Roque Marin2

1 Dpto. de Lenguajes y Computacion
Universidad de Almeria
04120 Almeria (Spain)

{abosch, fguil, cmcruz}@ual.es

2 Dpto. de Ingenieria de la Informacion y las Comunicaciones
Universidad de Murcia
Campus de Espinardo

30071 Espinardo (Murcia, Spain)
roque@dif.um.es

Abstract. In this work, we present a Disjunctive Fuzzy Constraint Networks
model for continuous domains, which generalizes the Disjunctive Fuzzy
Temporal Constraint Networks model for temporal reasoning, and we propose
the use of the series-parallel and tree-decomposition approaches for simplifying
its processing. After a separate empirical evaluation process of both techniques,
a combined evaluation process over the same problem repository has been
carried out, finding that series-parallel problems practically subsume tree-
decomposable problems.

1 Introduction

Fuzzy Constraint Networks (FCN) model, introduced in [14,16], allows expressing
simple constraints, representing them by means of a convex and normalized
possibility distribution over real numbers. Fuzzy constraints allow combining precise
and imprecise information, which can be also qualitative and quantitative. This model
is suitable for temporal reasoning and other continuous domains where the
combination of such constraint types is required. A fuzzy model allows intermediate
consistency degrees, and to quantify the possibility and necessity of a relationship or
query.

Fuzzy constraints are used in several contexts, such as medical systems,
phytosanitary control, and other domains [1,15,25].

In certain tasks, such as planning, a more general model is needed, where
constraints can be convex or not. Then, the FCN model is enhanced, allowing the
definition of a constraint with a finite set of possibility distributions, normalized and
convex, obtaining the Disjunctive Fuzzy Constraint Networks (DFCN) model. For
temporal reasoning, this model extends the TCSP (Temporal Constraint Satisfaction
Problems) framework proposed by Dechter [8], and it allows constraints such as
“Irrigation is much before or a little after than Treatment”, and subsumes the Vilain &
Kautz point algebra (PA) [22]. This framework allows representing all the possible

276 A. Bosch et al.

relationships between time points, between intervals and between time points and
intervals, and their disjunctions (without managing repetitive patterns).

The aim of this framework is to contribute to constraint-based reasoning under
uncertainty for continuous domains, using fuzzy CSPs (Constraint Satisfaction
Problems) for search and querying, mixing different filtering techniques and
backtrack search.

The main drawback of DFCN is its computational inefficiency, because generally
these networks are non-decomposable networks [7,24], needing backtracking to find a
solution [11,12,23]. Determining the consistency and computing the minimal network
are also exponential. With small problems, this is not a drawback, but in order to
generalize the use of the model in a general scope, it would be interesting to simplify
its processing, if possible. The idea is to explore different approaches to be used
before applying backtracking.

One approach is to try avoiding backtracking, using the topology of the problem
graph [8]. Another one is decomposing the network into subproblems that can be
solved separately. A third approach is to apply preprocessing, reducing the original
network and testing the problem consistency [20,21].

The remainder of this paper is organized as follows. Section 2 presents the DFCN
model; Section 3 presents two approaches for managing constraint networks: series-
parallel networks and tree decomposition; section 4 presents the empirical evaluation
and the analysis of the results; and section 5 summarizes the conclusions and presents
the future work.

2 The Disjunctive Fuzzy Constraint Networks Model

A disjunctive fuzzy constraint network (DFCN) Ld consists of a finite set of n+1
variables X0, ... ,Xn (X0 as origin for problem variables), whose domain is the set of

real numbers R, and a finite set of disjunctive binary constraints d
ijL among these

variables. X0 is a variable added to use only binary constraints, and it can be assigned
to an arbitrary value (for simplicity’s sake, this value is usually 0).

A disjunctive binary constraint d
ijL among variables Xi, Xj is defined with a finite set

of possibility distributions, },...,,{ 21 k
ijijij πππ normalized and convex [9], defined over

the set of real numbers R; for x ³ R, m (x) ³ [0,1] represents the possibility that a
quantity m can be precisely x.

A value assignation for variables Xi, Xj, Xi=a; Xj=b, a, b ³ R, satisfies the

constraint d
ijL iff it satisfies one of its individual constraints:

0)(/ >−∈∃ abL p

ij

d

ij

p

ij ππ (1)

The maximum possibility degree of satisfaction of a constraint d
ijL for an

assignment Xi = a, Xj = b is

 Series-Parallel and Tree-Composition Approaches 277

)(max),(
1

max abba p

ijkpij −=
≤≤

πσ (2)

A constraint d
ijL among variables Xi, Xj defines a symmetric constraint d

jiL among

Xj, Xi, and the lack of a constraint is equivalent to the universal constraint Uπ . A

DFCN can be represented with a directed graph, where each node corresponds to a
variable and each arc corresponds to a constraint between the connected variables,
omitting symmetric and universal constraints. The set of possible solutions of a
DFCN Ld is defined as the fuzzy subset from Rn associated to the possibility
distribution given as:

),((min),...,(max

0
0

1 jiij

nj
ni

nS vvvv σπ
≤≤
≤≤

= (3)

An n-tuple V = (v1, ...vn) ³ Rn of precise values is an -possible solution of a
DFCN Ld if S(V) = . We say that a DFCN Ld is consistent if it is 1-consistent, and it
is inconsistent if it does not have any solution.

Given a DFCN Ld, it is possible to find out several networks which are equivalent to
Ld. We can obtain this networks using the composition and intersection operations,
defined in [3] for temporal reasoning. Among all the equivalent networks, there is
always a network Md DFCN that is minimal. This network contains the minimal
constraints. If Md contains an empty constraint, Ld is inconsistent. If p if the maximum
of possibility distributions in each constraint, and the network has q disjunctive
constrains and n variables, then the minimal network Md of a DFCN Ld can be obtained
with a complexity O(pqn3), where n3 is the cost of solving each case non disjunctive
FCN [16]. Due to this exponential complexity, we need to find a more practical
approach.

3 Series-Parallel Networks and Tree Decomposition

It is well known that topological characteristics of constraint networks can help to
select more effective methods to solve them, and there are previous studies about this
topic [6,8]. These characteristics have been examined for both FCN and DFCN
models; in this work, we will focus only in topics involved with disjunctive problems,
because they are exponential. The selected approaches are series-parallel networks
and tree-decomposition.

3.1 Series-Parallel Networks

A network is series-parallel [18] in respect to a pair of nodes i,j if it can be reduced to
arc (i,j) applying iteratively this reduction operation: a) select a node with a degree of
two or less; b) remove it from the network; c) connect its neighbours. A network is
series-parallel if it is series-parallel in respect to every pair of nodes. The basic
algorithm for checking if a network is series-parallel has an O(n3) complexity, and there

278 A. Bosch et al.

is a more efficient algorithm that checks this property with an O(n) complexity [26],
applied to fault-tolerant networks (IFI networks).

If a DFCN is series-parallel, the path consistent network is the minimal network,
although the intersection and composition operations are non-distributive [26]. As a
subproduct of checking if a network is series-parallel, a variable ordering is obtained,
when deleting the nodes. Applying directional path-consistency (DPC) algorithm [8] in
the reverse order, a backtrack-free network is obtained and the minimal constraint
between the first two variables of the ordering too. This can be interesting when we
need only to compute a minimal constraint for two variables, and not the minimal
network, as in LaTeR [5]. In addition, if the network is series-parallel, we can decide
absolutely whether the network is consistent, by applying DPC algorithm in the reverse
order.

Figure 1 shows a series-parallel network. It can be reduced to any of its arcs applying
the reduction process.

Fig. 1. Example of series-parallel network

However, the network shown in Figure 2 is not series-parallel, because there is not
any admissible reduction sequence for any arc. We can see easily that the only node
with grade less or equal to two is X0.

Fig. 2. Example of non series-parallel network

The proposed algorithm for checking if a network is series-parallel (a variant of
the algorithm proposed in [26]) is:

 Series-Parallel and Tree-Composition Approaches 279

SP (Series-Parallel) Algorithm

Input: A Fuzzy Constraint Network.
Output: A node removal sequence.

begin
for each i=0..n Calculate-degree (i)
NodeQueue = {nodes with degree 1 and 2}
While (NodeQueue <> « and |V| > 3)
 begin

node = Extract(NodeQueue)
V <- V – {node}

 if Degree(node) = 1
 then Degree(Neighbour(node)) --
 if Degree(Neighbour(node)) = 2
 then Introduce(NodeQueue, Neighbour(node))
 else if Connected(Neighbours(node))
 then Degree(Neighbours(node)) --
 if Degree(Neighbours(node)) = 2
 then Introduce(NodeQueue, Neighbours(node))
 else E <- E + {NeighboursArc(node)}
 end
if (NodeQueue = « and |V| > 3)
 then exit (“The network is not series-parallel”)

end

Fig. 3. Series-parallel algorithm

The algorithm ends when the queue is empty or there are three nodes left in the
network. If the queue is empty, the reduction process has finished. In such case, if
there are more than three nodes, the network is not series-parallel, because there are at
least four nodes with a degree greater than two (there is a graph that is homomorphic
to K4 [26]).

3.2 Tree Decomposition

We stated that general DFCN are not tractable when searching the minimal network
and finding a solution, but both problems are tractable when a DFCN has a tree
structure. Then, it seems adequate to study the possibility of removing redundancies
from a DFCN to extract (if it is possible) a tree representing a relative DFCTN
equivalent to the original one.

Tree-decomposition is proposed by Meiri et al. [17] for discrete CSPs, and it can be
extended to DFCN. If a tree Td can be extracted from a path-consistent network by
means of arc removal, the tree Td represents exactly the original network. Otherwise,
if a tree representation cannot be extracted, the algorithm stops and notifies this fact.
The tree extraction using arc removal will be possible only when the path-consistent

280 A. Bosch et al.

network is also minimal. In addition, if the path-consistent network is minimal, we
can state that if the algorithm cannot find the tree decomposition, then there is no tree
representation.

The tree decomposition method consists of removing redundant constraints from
the original network, until a tree that exactly represents the network without
information loss is found [2,17,19]. The algorithm works as follows: Given a path-
consistent DFCN, it examines each triplet of variables, identifying the redundancies
of each triplet, assigning weights to the arcs depending on the found redundancies.
The generated tree, Td, is a maximum weight spanning tree (MWST) respect to these
weights. The last step is to verify that Td represents truly the original network. If Td

does not represent truly the original network, removed arcs can be added again, until
both networks become equivalent. This algorithm has a polynomial cost, and when
applied to a minimal disjunctive network, it determines whether the network is
decomposable or not.

We proposed an algorithm [2] that generates a tree Td with these characteristics. If
a tree can be extracted from a path-consistent network using arc removal, the tree Td

represents exactly the original network. Otherwise, if tree representation cannot be
extracted, the algorithm stops and notifies this fact. The tree extraction using arc
removal will be possible only when the path-consistent network is also minimal. In
addition, if the path-consistent network is minimal, we can state that if the algorithm
cannot find the tree decomposition, then there is no tree representation. The algorithm
extends the proposal of Meiri et al. [17] for discrete CSPs, and it is depicted in [19].

4 Empirical Evaluation and Results

We have conducted an empirical evaluation process, generating sets of random DFCN
with different characteristics, preprocessing them with PC-2 (Path-Consistency)
algorithm from Mackworth [13], and applying Tree Decomposition (TD) and Series-
Parallel (SP) algorithms.

The parameters used in our problem generator are n (the number of variables), R
(the range of the constraints), p (the number of possibility distributions in each
constraint), q (the connectivity of the graph), T (the tightness of the constraints) and F
(the fuzziness of the constraints). All the constraints generated in each problem have
the same number of possibility distributions. The values selected for the first test
battery were n= 4 – 40; R= 600; p= 1,2,4,8,16,32; q= 0.1,0.3,0.5; T= 0.1,0.5,0.9.

The first analysis of the results obtained in the TD evaluation process is presented in
[2]. In [4], we analyzed deeper the behaviour of TD, and presented a first analysis of SP,
over a new battery of problems generated with the same parameter set. When analyzing
the results, we observed that the overall trend of SP was similar to the corresponding of
TD: when increasing the problem size, the number of problems where these heuristics
succeed diminished. The main found difference was that, in every category, the number
of SP problems was always greater than TD problems.

These results lead us to make a combined evaluation of both approaches, testing the
SP algorithm over the same battery of path-consistent problems used as input for TD
evaluation. Figure 4 shows the overall trend of both algorithms. Note that SP curve is

 Series-Parallel and Tree-Composition Approaches 281

always over TD curve. The bars show the number of path-consistent problems for each
number of variables.

The next question is to check the relationship between the two approaches, that is, to
know whether a TD problem is also SP, and vice versa. Figure 5 shows the fraction of
the four possible cases: 0-0 represents the problems that are neither TD nor SP. 1-1
represents the problems that are both TD and SP. 0-1 represents the problems that are
SP but not TD. In addition, 1-0 represents the problems that are TD but not SP. The last
case is the most interesting one, because practically there are not problems with this
pattern. Looking in depth the result database, there are only five isolated problems TD
that are not SP into a population of 25068 problems. In addition, 3551 problems that are
SP but not TD, and 5005 problems are SP and TD. Then, the overall fraction of SP
problems represents a 34.13 %, versus a 19.98 % for TD.

From this analysis, we propose using SP as standard approach, because it runs with a
lower time and memory requirements, and practically subsumes the TD approach.

Fig. 4. Number of PC, TD, and SP problems
vs. Variable Number.

Fig. 5. Comparative analysis of TD and SP
problems v. Variable Number. (TD-SP)

The interest of determining whether a FCN is SP consists on avoiding the need of
backtracking. First, the consistency of the problem can be determined with DPC
(Directional Path-Consistency) algorithm [8], using the inverse node removal
sequence. The output network from DPC can be used to obtain a solution without
backtracking, also using the inverse removal sequence. In addition, if the minimal
network is needed, it can be computed applying PC-2.

Figure 6 shows the minimal network for the sample FCN shown in Figure 1,
obtained with PC-2. Using this information, we can obtain a solution for this network,
using the removal sequence {0,2,4,3,1}. We instantiate the variables in this order: X1,
X3, X4, X2, and X0. A 1-possible solution is:

X1 = 5
X3 = 60
X4 = 65
X2 = 15
X0 = 0

282 A. Bosch et al.

Fig. 6. Minimal network obtained with PC-2

5 Conclusions and Future Work

In this work, we have proposed the DFCN model for constraint networks in
continuous domains. Among the candidate techniques for managing these networks,
we have selected tree-decomposition and series-parallel networks, carrying out two
evaluation processes. First, we made an independent evaluation of both approaches.
The analysis of this process leads us to carry out a combined evaluation process. After
a detailed study of the results of the last one, we can say that SP has a greater success
than TD, and SP practically subsumes TD. In addition, SP presents a lower
complexity, and it offers all the features of TD: obtaining solutions without
backtracking and computing the minimal network with path-consistency algorithms.
Moreover, problem consistency and solutions can be determined and obtained using
directional path-consistency, with a complexity lower than general path-consistency.

As future work, we propose to study the application of SP for decomposing the
networks onto two types of subnetworks: SP subproblems, which could be solved
with the techniques applied for SP, and non-SP subproblems, which could be solved
with backtracking. This could be an alternative to other decomposition approaches
proposed by our group [3] and other standard techniques, as nonseparable
components [10].

Another proposal could be a deeper study of cases of problems that are TD and not
SP, trying to find a pattern of this type of problems, where TD can be useful.

All this information could be used to select the better approach for each particular
network.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments on preliminary versions of this paper.

This work is partially supported by an EC FEDER Program grant (1FD97-0255-
C03-03) and a Spanish MCYT Program grant ((TIC2000-0873-C02-02).

 Series-Parallel and Tree-Composition Approaches 283
References

1. S. Barro, R. Marín, and A.R. Patón, “A model and a language for the fuzzy representation
and handling of time”, Fuzzy Sets and Systems, 61, 1994, pp. 153-175.

2. A. Bosch, M. Torres, I. Navarrete, and R. Marín, “Tree Decomposition of Disjunctive
Fuzzy Temporal Constraint Networks”. Proc. of Computational Intelligence: Methods and
Applications CIMA’2001, ICSC-NAISO, Bangor (UK), 2001, #1714-066, 7 pages.

3. A. Bosch, M. Torres, R. Marín. Reasoning with Disjunctive Fuzzy Temporal Constraint
Networks. TIME-2002, Manchester (UK), 8 pages., 2002 (accepted).

4. A. Bosch, C. Martínez, F. Guil, R. Marín. Solving Fuzzy Temporal Problems Without
Backtracking.. Eurasian-2002, Teherán (Irán), 10 pages., 2002 (accepted).

5. V. Brusoni, L. Console, B. Pernici, and P. Terenziani, “LaTeR: a general purpose manager
of temporal information”, Methodologies for intelligent systems 8, LNCS 869, Springer,
1994, pp. 255-264.

6. R. Dechter, “Enhancement Schemes for Constraint Processing: Backjumping, Learning
and Cutset Decomposition.” Artificial Intelligence 41, Elsevier, 1990, pp. 273-312.

7. R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks”, Artificial Intelligence
49, Elsevier, 1991, pp. 61-95.

8. R. Dechter, and J. Pearl, “Network-based heuristics for constraint-satisfaction problems”,
Artificial Intelligence, 34, Elsevier, 1987, pp. 1-38

9. D. Dubois, H. Prade, Possibility Theory: An approach to computerized processing of
uncertainty, Plenum Press, New York, 1988.

10. S. Even, Graph Algorithms. Computer Science Press, Rockville, MD, 1979.
11. E. Freuder, “A sufficient condition for backtrack-free search”, Journal of the ACM 29, 1,

ACM Press, 1982, pp. 24-32.
12. G. Kondrak, and P. van Beek, “A Theoretical Evaluation of Selected Backtracking

Algorithms”, Artificial Intelligence 89, Elsevier, 1997, pp. 365-387.
13. A. Mackworth, “Consistency in networks of relations”, Artificial Intelligence 8, Elsevier,

1977, pp. 99-118.
14. R. Marín, S. Barro, A. Bosch, and J. Mira, “Modelling the representation of time from a

fuzzy perspective”, Cybernetics and Systems, 25, 2, Taylor&Francis, 1994, pp. 207-215.
15. R. Marín, S. Barro, F. Palacios, R. Ruiz, and F. Martin, “An Approach to Fuzzy Temporal

Reasoning in Medicine”, Mathware & Soft Computing, 3, 1994, pp. 265-276.
16. R. Marín, M. Cardenas, M. Balsa, and J. Sanchez, “Obtaining solutions in fuzzy constraint

networks”, Int. Journal of Approximate Reasoning, 16, Elsevier, 1997, pp. 261-288.
17. I. Meiri, R. Dechter, and J. Pearl, “Uncovering trees in constraint networks”, Artificial

Intelligence, 86, Elsevier, 1996, 245-267.
18. U. Montanari, “Networks of constraints: fundamental properties and applications to picture

processing”, Information Science, 7, 1974, pp. 95-132.
19. I. Navarrete, R. Marín, and M. Balsa, “Redes de Restricciones Temporales Disyuntivas

Borrosas”, Proceedings of ESTYLF’95, Murcia, European Society for Fuzzy Logic and
Technology, (Spain), 1995, pp. 57-63

20. E. Schwalb, and R. Dechter, “Coping With Disjunctions on Temporal Constraint
Networks”, Proc. American Association Artificial Intelligence’93, AAAI, Washington,
1993, pp. 127-132.

21. E. Schwalb, and R. Dechter, “Processing Disjunctions in Temporal Constraint Networks”,
Artificial Intelligence 93, Elsevier, 1997, pp. 29-61.

22. E. Schwalb, and L. Vila, “Temporal Constraints: A Survey”, Constraints 3 (2/3), 1998, pp.
129-149.

23. K. Stergiou and M. Koubarakis, “Backtracking Algorithms for Disjunctions of Temporal
Constraints”, Artificial Intelligence 120, Elsevier, 2000, pp. 81-117.

24. E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London, 1993.

284 A. Bosch et al.

25. Túnez, S.; Del Aguila, I.; Bienvenido, F.; Bosch, A. y Marín, R.(1996). Integrating
decision support and knowledge-based system: application to pest control in greenhouses.
Procedings 6th International Congress for Computer Technology in Agriculture
(ICCTA’96), pp. 417-422. Wageningen.

26. J.A. Wald, and C.J. Colburn, “Steiner Trees, Partial 2-Trees and Minimum IFI Networks”,
Networks, 13, 1983, pp. 159-167.

	Series-Parallel and Tree-Decomposition Approaches for Fuzzy Constraint Networks
	1 Introduction
	2 The Disjunctive Fuzzy Constraint Networks Model
	3 Series-Parallel Networks and Tree Decomposition
	3.1 Series-Parallel Networks
	3.2 Tree Decomposition

	4 Empirical Evaluation and Results
	5 Conclusions and Future Work
	Acknowledgements
	References

