
E. Sherratt (Ed.): SAM 2002, LNCS 2599, pp. 74–89, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Implementation of UMTS Protocol Layers for the
Radio Access Interface

Javier Colás, J.M. Pérez, Javier Poncela, and J.T. Entrambasaguas

Dpto. Ingeniería de Comunicaciones, ETSI Telecomunicación, Universidad de Málaga
javier@ic.uma.es

Abstract. SDL has been promoted by ITU as the design language for
communication systems. The technology and tools have improved and SDL has
been adopted by most manufacturers and integrated in their prototype and
product lines. In this paper we describe an implementation of UMTS elements
using this formal language. First, basic UMTS concepts are introduced. Next,
we present some SDL limitations that have affected design decisions and the
available solutions provided by SDL-2000. Afterwards, the high level design is
shown, together with a description of the main aspects of the implementation
and tests performed on the system. Finally, conclusions are presented.

1 Introduction

The SDL language has been promoted by ITU in the last decade as the most adequate
language for the specification and development of telecommunication system
protocols. Accepting this recommendation, the main manufacturers have followed this
trend, slowly integrating this language in their development process. At the same
time, several new characteristics have been included from the first specifications of
the language. In particular, the updates made in 1992 and 2000 mean important
milestones, first including object oriented characteristics in the language, and then
extending these features with the experience obtained in these years.
UMTS (Universal Mobile Telecommunications System) represents the effort of
mobile communication system manufacturers to offer new and more powerful
services to users. Based on GSM protocols, and augmenting its capabilities, UMTS
will provide a higher data rate, up to 2 Mbps, and a better use of spectral resources.
The air interface consists of two elements: the User Equipment (UE) and the front end
of the transport network (UTRAN). The quality of an implementation will be an
important issue regarding its success.
Modelling the new communication systems, with their increasing complexity,
requires new methods and tools. The use and advantages of object orientated formal
languages in the development of these communication systems is a question that
stands forward. On one hand, the new concepts require that team engineers learn of
their advantages and utility; on the other hand, commercial tools need to support such
features, a task that is often not easy to achieve. In this paper, an SDL implementation
of UE and UTRAN entities is presented, focusing on the capabilities of the language

Implementation of UMTS Protocol Layers for the Radio Access Interface 75

and its object-oriented characteristics for the development of mobile communication
systems.
The first section introduces the context of this work, the UMTS mobile system. Next
section analyses some limitations found during the design process, highlighting the
design decisions affected by such limitations and presenting solutions provided by
SDL-2000. Afterwards, a high level view of the system and the design decisions that
have been made are provided. Finally, some results and conclusions are presented.

2 UMTS

Nowadays we are accustomed to the concept of digital mobile networks. However,
we should recall that first generation networks were analogue in nature. They were
based on several similar but incompatible technologies. Aside from mobility, they
only offered voice services. Second generation systems introduced the digital channel
technology; as a result, a more efficient use of the spectrum was achieved using
TDMA (Time Division Multiple Access)/CDMA (Code Division Multiple Access)
technologies. Many new services were implemented including the provision for data
services and improved security. The next step of this evolution, third generation
systems, are based on the open interfaces of GSM Global System for Mobile
Communications). The driving force is the desired ability to provide global mobility
and compatibility, while at the same time making available an ever-expanding array
of services that include paging, text/voice messaging, video and broadband ISDN
capability.

User
Equipment

Core
Network

Radio
Access
Network

Internet
PSTN
X.25Node B

Node B

Fig. 1. UMTS architecture

The standardization work is done by 3GPP (Third Generation Partnership Project).
3GPP consists of multiple national standardization bodies and representatives of the
telecommunication industry from Europe, Japan and USA. From the beginning it was
clear that the 3GPP specifications would continuously be evolving; this was one of
the major cornerstones on which the system design was based. Release 99 was
functionally frozen at the beginning of 2000, and its biggest difference to GSM was
the WCDMA (Wideband Code Division Multiple Access) radio access; new features
and improvements, mainly on the core network, have been included in Release 4,

76 J. Colás et al.

which was functionally frozen in March 2001. Other releases will appear in the near
future.
UMTS (Universal Mobile Telecommunications System) is the name for the European,
ETSI driven, 3G variant. It emphasises the interoperability and backward
compatibility between 3G and GSM. The new radio access uses more efficiently the
frequency spectrum. In synthesis, a 3G mobile communication system consists of
three main components (see Figure 1):
� User Equipment (UE): is the device which is managed by the user and it is

connected to the system via radio.
� Radio Access Network (RAN): provides the radio interface for the User

Equipment, and controls and maintains its base stations (called Node B in UMTS).
� Core Network (CN): consists of multiple units, which transport data from source to

destination.

L3

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

Logical
Channels

Transport
Channels

C-plane signalling U-plane information

PHY

L2/MAC

L1

RLC

DCNtGC

L2/RLC

 MAC

RLC
RLC

RLC
RLC

RLC
RLC

RLC

Duplication avoidance

UuS boundary

BMC L2/BMC

control

PDCP
PDCP L2/PDCP

DCNtGC

Radio
Bearers

RRC

A
cc

es
s

St
ra

tu
m

 (
A

S)
N

on
-A

cc
es

s
St

ra
tu

m
 (N

A
S)

Fig. 2. General structure of UMTS

The architecture of UE and UTRAN (see Figure 2) is divided into Non-Access
Stratum (NAS) and Access Stratum (AS). NAS layer contains the user applications
and controls the Access Stratum functionality, which are the protocol layers that allow
the interaction through the air interface (L3, L2 and L1).
The Access Stratum is subdivided in the following layers:

Implementation of UMTS Protocol Layers for the Radio Access Interface 77

1. Radio Resource Control (RRC): It’s responsible of managing all radio resources,
from the establishment of connections up to the QoS. It consists of several entities
that handle connections, broadcast data, paging, etc.

2. Radio Link Control (RLC): It offers three basic types of services: TM (Transparent
Mode), UM (Unacknowledged Mode) and AM (Acknowledged Mode). Traffic
modes are handled using the concept of radio bearer, which can be defined as a
service with a given quality. In its interaction with MAC, RLC uses logical
channels, while RRC interaction is performed on a transfer mode basis.

3. Broadcast/Multicast Control (BMC): Provides broadcast and multicast services.
4. Packet Data Convergence Protocol (PDCP): Manages the header compression for

IP data streams, multiplexing user data into RLC radio bearers.
5. Medium Access Control (MAC): It is responsible for multiplexing/demultiplexing

data among the different logical channels and the transport channels offered by the
physical level. Functionally, its behaviour is divided in dedicated and common
channels.

6. Physical Layer (PHY): Adapts the data to the physical medium. To achieve this, it
performs several functions: synchronisation between UE and network, data
modulation, control of orthogonalization codes, measurements in the air interface,
etc.

3 SDL Limitations

This section describes the main constraints we have found in the use of an object-
oriented approach, which have limited in some way our system implementation. Also,
we present the solution that has been adopted and some new SDL-2000 [1] features
that would have been useful for our design, if tools had supported them.

3.1 Interfaces

Usually both transmitter and receiver sides present the same structure; in other words,
the same protocol layers exist in both sides, and they implement complementary parts
of the protocol. Aside from its functionality, which is obviously different, the main
difference between them, from a structural point of view, is the interface. In SDL-96
the interface is defined by means of gates. Signals defined in gates usually are the
same, but have opposite directions at each entity. This constitutes a problem when
using inheritance from a layer base type, because gates cannot be redefined in the
inherited types, as it had been desirable in some cases (see Section 5.3).
If we use the latest SDL version, SDL-2000, there is a new feature that provides
inheritance mechanism for the interfaces. This is a more suitable alternative for this
issue. An interface is a type that contains the definition of a number of signals, remote
variables and remote procedures and may be associated with channels, gates,
connections or signal sets. These definitions are enclosed in the scope unit of the
interface, so they will not be accessible from outside. Also, as this interface is a type,
context parameters can be used. This feature could reduce the design time by
increasing the code reuse.

78 J. Colás et al.

3.2 Gate Used by a Signal

SDL allows to know the process identifier of the sender process, which is very useful
in most cases. However, in other cases, such as when the sender process belongs to
another block, which should be considered as a black box, or when the sender process
sends the same signal through different gates, this identifier is not enough. These
cases are not unusual in communication protocols, for example, situations where each
protocol layer hides its implementation or the same signal is transmitted through
different gates. An example is shown in Section 5.1, where the solution is inserting a
new process for each gate so that the receiver process knows the gate used by means
of the intermediate process identifier.

3.3 Redefinition Mechanism

SDL presents an important limitation in the redefinition mechanism: when using
blocks inside another block, the designer is not allowed to use the redefinition
mechanism at both block levels. For implementing a communication system between
two entities, we can design the common behaviour of both entities as a base type, and
specialise them via redefinitions. When the system complexity requires dividing a
block into several, two redefinition alternatives can be used:
1. Using the redefinition mechanism at a high level. This means that a base type is

defined, which groups the common characteristics, and we create new types which
inherit from the base one. In this base type the system component blocks are
defined as virtual, in such a way that blocks will be redefined when specialising the
base type for adapting it to the particular characteristics. At the same time, all
bidirectional channels are defined in the base type and the unidirectional ones will
be defined in the subtype. This method has the advantage of clarity and results in
an elegant code, as it is easiest to appreciate the differences between entities.

2. Using the redefinition mechanism at the internal block level. This alternative
makes more flexible the implementation of the internal code. This flexibility
consists in a quicker and easier way for adapting to standard changes, as these
changes are usually modifications in the block behaviour instead of the addition of
high level structural changes. No base type would exist for the complex block and
no inheritance would be used for reusing high-level common structures.

In next Section we will refer to this problem when implementing the RRC layer.

3.4 Dynamic Block Creation

The concept of block is used to specify the static structure of a system. Blocks in SDL
are used as containers of processes and other blocks. As blocks can be managed as
objects, creating them dynamically would be a very interesting property.
Unfortunately this is not possible in SDL-96, although this is one extension to the
language that is incorporated in SDL-2000 [2]. In this new version, there are an
extended and harmonised block/process concept (called agent), which covers all
properties of SDL-96 blocks and processes, and a composite state concept with state
partitions covering the properties of the SDL-96 service concept [3].

Implementation of UMTS Protocol Layers for the Radio Access Interface 79

However, it is possible to model SDL systems where the perception of object (block)
creation is achieved. This can be accomplished with process instances that exist at
start-up time, whose sole purpose is to create other processes in that block when
requested. This mechanism has been used in several places of our implementation An
example can be seen in mobility management (see Sections 5.2 or 5.3).

3.5 Specialisation of Transitions

When specialising an SDL transition, it is possible to replace the whole transition.
However, it is not feasible to include additional constructs keeping the already present
statements. In [4] there is an attempt of overcome the mentioned constraints via a
method called pattern approach. The intention of this approach is not to extend SDL,
but to offer a description mechanism for SDL-based reuse artefacts. This solution is
described by a syntactically incomplete SDL fragment together with accompanying
rules that define how to reuse the pattern.
Replacing just some parts of one transition would be useful for reusing code and
increasing the flexibility within the transition. SDL-2000 does not include this feature.
However, despite it is not allowed to redefine only one part of a transition, it is
possible to achieve a high quality code reutilization by dividing the tasks between
transitions into several procedures. This way, the structure of the code is divided in
smaller elements that can be called if required. This guideline has been followed in
the design (see Section 5.1).

3.6 New Interesting SDL-2000 Features

The SDL-96 inheritance model for data was not consistent with other types in SDL.
The new model brings SDL data more in line with the other object/type features of
SDL (block type, process type, etc.). It makes data in SDL easier to understand for
someone who is familiar with data in a (so-called) object oriented programming
language such as C++ or Java. The SDL-2000 model introduces object types for data
that can refer to value types and have polymorphic operators and methods. In our
model, SDL data types inheritance has not been used, as most data types were defined
in the 3GPP specification using ASN.1. However, internal data, which are not used
directly in protocol primitives, is modelled as SDL data types. So, a data model like
that can be useful to handle these internal data, for instance, encapsulating data and
methods that access them.
Another interesting SDL-2000 feature is the possibility of writing textual algorithms
within graphical diagrams. This is very useful because sometimes graphical diagrams
turn out into a higher complexity and a lack of understandability of the algorithm [5].

4 Global Design

The two elements that communicate via the air interface, the UE and the UTRAN,
have been implemented. The basic idea for the design has been to reutilize as much
code as possible for both elements. Some studies have been published about the

80 J. Colás et al.

benefits offered by object oriented approaches [6] versus classical ones. Studies such
as [7] and [8] have shown that object-oriented approaches can reduce development
time and the size of the resulting source code. At the same time, style rules for the
development have been enumerated in [9].
We have roughly followed the phases indicated in [10] methodology: requirements
analysis, system analysis, system design, implementation and testing. In this case, the
requirements and system analysis phases recommended by SOMT are mostly
performed by 3GPP [11], providing the standardized specification documents. These
standards define the functional procedures over the air interface; the inner
mechanisms, interfaces and structures are expected to be designed by the
implementers.
The functionality of both UE and UTRAN is distributed along several layers, as it is
shown in the previous UMTS section. Figure 3 depicts the designed architecture at the
access network side (UTRAN). The block and channel structures are based on the
structure suggested by the standards (see Figure 2). This block division allows the
development of each block in parallel.

Fig. 3. High-level design for UTRAN

In the first stage the common functionality between UE and UTRAN has been
identified. This subset has been implemented in block and process types; the UE and
UTRAN systems have been built with blocks and processes derived from the base
ones. Around 50% of MAC and RLC behaviour has been implemented in the base
types; for RRC this percentage lowers down to a slim 10%. These figures are
consistent with the expected differentiation between lower and upper layers of UE
and UTRAN, as the management of radio resources is a more unidirectional function,
while the data communication follows a more symmetric pattern.

Implementation of UMTS Protocol Layers for the Radio Access Interface 81

In Figure 3, the interfaces between all UTRAN blocks can be seen. On the left side,
three channels traverse vertically the architecture. They represent the interface used
by RRC block to control the behaviour of the lower layers PHY, MAC and RLC.
These interfaces will be used to establish and release sets of transport formats, as well
as radio bearer services. The standard allows that this configuration happens quite
frequently depending on parameters such as the radio conditions, the user bandwidth
needs, etc. Between pairs of blocks, such as RRC-RLC or RLC-MAC, different
channels have been modelled. For example, between RLC and MAC there is one SDL
channel per type of logical channel. This decision has an impact on the design of
those interfaces, as part of the multiplexing between those two layers is modelled with
channels in the design, instead of having a software multiplexor. This solution has
been chosen in order to simplify the burden of management (multiplex/demultiplex)
of the signals inside each block, as usually each transport mode, logical or transport
channel is handled in distinct ways.
The elements of the design have been organized in packages. These components have
been arranged in a hierarchical structure, similarly to the way described in [12]. These
definitions include data types, procedures and SDL entity types. In order to achieve
this reutilization, definitions are located as globally in the hierarchy as needed and
imported when necessary. Interface packages include definitions used by only two
parts, allowing separated development of system components. The redefinition
mechanism is used in our design to modify the layer behaviour according to the
communication side. This problem has been addressed in the previous section. As it is
impossible to use both of the alternatives presented, a decision must be made about
which alternative better serves our purpose.
We have chosen to use the redefinition mechanism at the internal level, as we
considered that its advantages are richer (flexibility for adapting independently both
sides to changes). We think it is preferable to have a good capability to adapt new
standard aspects than a more elegant design. Furthermore, communication protocols
maintain many similarities along the evolution path of the systems (e.g. 2G, 2G+,
3G), which can be useful to reuse code by means of little modifications, and it is
easier to reuse small components than large ones like entire blocks. The fact that
specifications are continuously improving is not the only issue: a number of protocol
versions exist with small differences due to regional technology and backward
compatibility. So, this alternative offers a better approach to handle differences
among specifications and among versions.
Data types used in the standardized interfaces are provided by 3GPP in ASN.1
notation. Since the use of ASN.1 in SDL code was standardized the support provided
by commercial tools has improved significantly. Some deficiencies have been found
in these modules; for example, the recursive call of types defined in two different
modules. This cyclic reference is not properly handled, and a reorganisation of the
module structure has been required to solve these problems. In SDL, packages have
been used to organise these data type definitions. Other deficiency found in the
conversion from ASN.1 to SDL is related to the sequence of construction. This
structure is translated into String SDL type. If the type inside the sequence has no
name, it is not possible to use operator MkString() to build one element of the
sequence. To solve this problem, the type declaration of the element to be repeated
must be provided in ASN.1.

82 J. Colás et al.

5 Detailed Design

With the architecture shown in the previous section, the implementation of each layer
still allows flexibility enough for the programmer. Work has been carried out
independently for each of the layers. In this section, some issues of this
implementation are briefly described.

5.1 MAC Layer

Figure 4 shows the base design for MAC layer [13]. As half of the functionality is
common to UE and UTRAN, the object-oriented approach has quite simplified the
design. In contrast with RLC and RRC layers, MAC layer design has followed the
structure suggested in the specifications. This layer has been divided in several
entities:

Fig. 4. MAC base type architecture

� MACC_SH: this process emulates entity MAC-c/sh, which controls access to
logical common and shared channels. The base type contains the behaviour for
channels CCCH and SHCCH, with identical processing in both sides, while
channels CTCH and PCCH are included in the redefined types. It adds
(transmission) and removes (reception) header parameters in PDU MAC-Data.
The base type initialises most variables, empties reception variables and loads
TCTF fields (indicate the logical channel type) with the correct values. It also
allows reading the Buffer Occupancy for channel CCCH, as it is a common task
for both sides. The necessary code for processing the headers for each channel is
included when inheriting the behaviour in UE and UTRAN.

� MACD: implements entity MAC-d, which controls the dedicated logical channels
DTCH and DCCH. It communicates with MAC-s/sh and MAC-control. Its
behaviour is similar to MACC_SH process, but it handles the headers of the
dedicated channels.

Implementation of UMTS Protocol Layers for the Radio Access Interface 83

� MACT: contains the layer intelligence; it is also the process in charge of the
communication with layers RRC, via control SAP, and physical. It also
communicates with the processes that emulate the entities of the MAC layer.
Its main functions are configuring MAC layer according to RRC queries,
synchronising with physical and RLC layers (using timers and control signals),
studying data flow measurements and transmitting them to RRC layer, and
multiplexing/demultiplexing logical channels and transport channels. An example
of the internal structure is shown in Figure 5, where a transition is redefined to
modify the behaviour by means of procedure calls (see Section 3.5).

Fig. 5. MAC internal code Fig. 6. MAC block type for UTRAN

The UE side redefines processes MACC_SH, MACD and MACT, and creates process
MACB_UE which manages the broadcast channel in UE. This process will only listen
to channel BCCH. After initialising variables with the broadcast channel values, this
process will only wait for the data coming from MAC-control entity, delivering them
to RLC via BCCH channel. Interfaces for PCCH, CTCH and BCCH are added in the
inherited type.
Figure 6 shows the MAC block for UTRAN side. It redefines the same processes as in
the UE side, and also creates a process for broadcast handling, the MACB_UT
process, although in the reverse direction. In addition, two new processes named
ICTCH and IPCCH must be created to distinguish the gate used by the signal (see
Section 3.2). The sole function of these processes is forwarding received signals,
allowing MACC_SH process to identify the sender process, which is different for
each PCCH or CTCH channel. Also, the same unidirectional interfaces as in UE are
created.

84 J. Colás et al.

5.2 RLC Layer

The RLC layer [14] links RRC, PDCP and BMC with MAC. RLC uses logical
channels as its interface with MAC and offers services in terms of transfer modes to
the upper layers. The RLC layer structure has been designed following two basic
principles:

� Reuse as much code as possible.
� Make the simplest code.

As the data flow is not symmetric, differences in this layer arise between the UE and
UTRAN implementations. These discrepancies are basically the direction and transfer
mode of the entities related with each of the channels. Given that for the dedicated
logical channels any configuration is allowed, its structure is the same in both entities,
however this is not the case for the common channels. As a result, the RLC base type
includes those elements related to the dedicated logical channels, which are inherited
in the derived types, RLC_UE and RLC_UTRAN.
In the base type, there is one process type for each transfer mode; at the same time,
two dedicated logical channels, DCCH and DTCH, are also considered in this base
type. These logical channels can carry information either in transparent,
acknowledged or unacknowledged modes. Transparent and unacknowledged entities
are unidirectional because no information sharing is required between uplink and
downlink directions; thus, one entity implements the receiver and another implements
the transmitter. The acknowledged entity is bidirectional. This means that five entities
will exist per dedicated channel; as there are two logical channels, it turns out that ten
entities will be used.
In the layer functionality, it should be noted that the services are created when an
RRC connection is established; so, no active process will exist until a configuration
request is received from RRC. The core of this layer is contained in the processes that
implement the radio bearers, while the rest of the elements are in fact auxiliary,
helping mainly in the task of managing the interfaces of the layer. The processes that
are included in the RLC layer are the following:
1. Bearer: Responsible for managing the transmission and the reception. The

processes are distinguished depending on the logical channel, the transfer mode
and the channel direction. As each radio bearer has been modelled as a separate
process, when several radio bearers are active they are executed concurrently.

2. Controller. It is responsible for receiving and handling the configuration
primitives sent by RRC. Also, it must update the multiplexor routing tables. When
the establishment of a new radio bearer is requested, the PId of the new process is
obtained. This value is inserted in the active process database that this component
holds. This database is used when routing signals to processes and is accessed by
processes Controller and Transmitting_MUX.

3. Transmitting_MUX. The behaviour of this process is basically the one that can be
found in a router; it forwards the upper layers service requests, such as insertion
and removal of rows in the routing table. The synchronization with Controller
is achieved via the Update_Dedicated_Table signal.

4. Receiving_MUX. This process routes the lower layer signals to the appropriate
RLC entities. This is necessary as several radio bearers, each running as a separate
process, might be multiplexed in the same logical channel. This is only accounted
for in the dedicated logical channels.

Implementation of UMTS Protocol Layers for the Radio Access Interface 85

Including the multiplexors as separate processes in the RLC block has been a design
decision. If there were no multiplexors, signals should be broadcast to all processes
either transparent, unacknowledged or acknowledged, and they would be responsible
for discarding or accepting the signals depending on whether it was intended for them
or not. This is quite inefficient as many signals should be generated and only one of
them would be finally processed; the use of multiplexors avoids this multiplication of
signals.

Fig. 7. RLC block type for UTRAN

The UTRAN RLC entity (Figure 7) is inherited redefining the process types that were
declared virtual in the base class. The changed behaviour belongs to the areas of
common logical channel management, broadcast and paging. Five logical channels
are affected: BCCH, PCCH, SHCCH, CCCH and CTCH. As the data flow may be
asymmetric, data services are separated into transmitter and receiver.
The main difference of UE implementation with block type RLC_UTRAN is the
direction of the channels. For example, broadcast is a unidirectional downlink
channel, and thus is transmitted by UTRAN and received by UE.

5.3 RRC Layer

Due to the complexity of the RRC layer [15], dividing the code among several blocks
inside the layer is necessary. This involves certain limitations using SDL (see Section
3.3). This organisation has diverged from the guidelines suggested in the
specification. The following entities have been modelled: Dedicated Control (DCFE),
Mobility Management (MMFE), Broadcast Control (BCFE), Measurement (MFE)
and Transfer Mode (TME). Each one has been implemented separately in different
blocks inside RRC high level block.

86 J. Colás et al.

Fig. 8. Block structure for DCFE

DCFE block must manage the connection establishment and release as well as the
configuration of resources provided by lower layers. In the base type, there is one
controlling process type (MANAGER) that handles the creation of connections. Each
connection runs as a separate process (CONEXION) since the establishment till its
release. The model is shown in Figure 8. The corresponding entities for UE and
UTRAN are inherited from this base type via redefinition. The MANAGER process
type also holds a database with information about all established connections; in UE
only one connection is allowed, while UTRAN can establish several of them
simultaneously. However, the connection attributes, such as radio resources and
configurations in use, are kept in the CONEXION process type. When upper layers
request a new connection, a new instance of process type CONEXION is created and
the connections database is updated in MANAGER process. A similar flow of actions is
performed when releasing a connection: first, radio resources are released and
afterwards the related CONEXION process instance is removed.
Block BCFE handles the broadcast information. In UTRAN, this information is
received from NAS layer and sent to UEs in the appropriate frames; the scheduling is
determined inside the block. This block exports part of this information so that other
blocks in this layer can access it. This task is implemented in both sides because
broadcast information is necessary to control the behaviour of the other blocks inside
RRC layer. This information is also necessary in other layers, but is communicated
via signals instead of exported variables, which cannot be shared among blocks at
system level. As there is some common functionality, using inheritance was
considered. However, signal directions are just opposite at each entity, so no gates
could be included in the base type (see Section 3.1).
The specification states that Unaligned PER algorithm must be used for ASN.1
coding inside RRC layer. As RRC layer is very complex and consists of several

Implementation of UMTS Protocol Layers for the Radio Access Interface 87

blocks, a design decision is where this function should be placed. Due to the nature of
this functionality, which makes sense in RRC-RLC interface, it should be located as
near to this frontier as possible. Block TME already exists inside RRC layer for
routing messages from RLC to the appropriate RRC block. This could be a suitable
solution, with the additional advantage that this coding mechanism will be transparent
to all other RRC blocks that will handle the information in a completely abstract way.

6 Tests

Several types of tests have been performed along the development process. Besides
internal behaviour and external interaction tests, which have been done for each layer,
other tests carried out are:

Fig. 9. MSC for connection establishment

1. Global tests: As an example, Figure 9 shows an MSC diagram with the messages
that help to achieve the connection establishment. First, the UE requests the
connection establishment by sending the INIT signal to NAS_UE. The adequate

88 J. Colás et al.

primitives are interchanged (MAC and physical layers are not shown for
simplicity), and the NAS_CONNECTION_IND primitive is originated in the
UTRAN side. This causes UTRAN to send the NAS_CONN_SETUP primitive,
which starts the configuration of lower layers. After processing the response, the
User Equipment establishes one dedicated channel. When this channel is
established, the User Equipment sends data via this channel in acknowledged mode
(AM) to finish the establishment procedure.

2. Performance: The maximum transfer data rate has been measured between adjacent
layers to obtain the performance of our implementation. Test configuration
parameters are the packet size and the transmission time interval. The test
architecture counts received packets at RLC layer, which are transmitted by the
peer RLC. We have measured a transfer rate of almost 2 Mbps. Our measures show
that, for packets of size 9920 bits, MAC layer takes around 2 ms to carry out all
required processing. These results have been obtained on a Pentium III platform
with Windows 2000.

7 Conclusions

This paper has shown an implementation of new mobile communication systems
using SDL. The implementation has partly followed the structure division suggested
by the specifications, but this scheme has been discarded in those places where more
appropriate solutions could be found, mainly in the link control and higher layers.
The two entities at the air interface, User Equipment and Radio Access Network, have
been modelled. The design has been carried out using an object-oriented approach
that has allowed us to maximise the code reuse. It should be noted that the percentage
of code that can be reused decreases as we proceed up in the protocol stack. The high
level design has described how mechanisms such as inheritance and redefinition can
be used in SDL models. Also, a feasible structure for each layer has been presented.
Some limitations have been found in the language. Some of them have been
addressed in the latest version of SDL, although the standardized mechanisms are not
included in the design tools yet. These new features are aimed to bridge the gap
between SDL and traditional object-oriented languages; in particular, the interface
feature is expected to be very useful to the communication system modelling.
Finally, some test results of the implemented system have been shown. These results
reveal that, for systems without size or consumption constraints, the use of SDL is
adequate as timing constraints are easily met.

Acknowledgements. This work has been partially supported by spanish Comisión
Interministerial de Ciencia y Tecnología and European Commission under grant
1FD97-0650.
The authors would like to thank Leopoldo Alarcón, Isaac Blanco, Miguel Angel
Cobalea, Alejandro Contreras and Alberto Peinado for their participation in this
project.

Implementation of UMTS Protocol Layers for the Radio Access Interface 89

Abbreviations

BCCH Broadcast Control Channel
CTCH Common Traffic Channel
DCCH Dedicated Control Channel
DCFE Dedicated Channel Functional Entity
DTCH Dedicated Traffic Channel
MAC Medium Access Control
MMFE Mobility Management Functional Entity
PCCH Paging Control Channel
RAN Radio Access Network
RLC Radio Link Control
RRC Radio Resource Control
SHCCH Shared Channel Control Channel
UE User Equipment
UMTS Universal Mobile Telecommunications System
UTRAN Universal Terrestrial Radio Access Network

References

1. ITU-T Recommendation Z.100, Languages for Telecommunication Applications –
Specification and Description Language, Geneva, November 1999.

2. Sinnott, R.; Kolberg, M. Creating Telecommunication services based on Object-Oriented
Frameworks and SDL, Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pp 93–102, 1999.

3. Fischer, J.; Holz, E.; Moller-Pedersen, B. Structural and behavioral decomposition in
object oriented models, Proceedings of the 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pp 368–375, 2000.

4. Geppert, B. Rößler, F. The SDL pattern approach – A reuse-driven SDL design
methodology, Computer Networks 35, pp 627–645.

5. Reed, R. Notes on SDL-2000 for the new millennium. Computer Networks 35, pp
709–720.

6. Booch, G. Object-oriented analysis and design with applications, Addison-Wesley
Publishing Company, 1994.

7. Taylor, D. A. Object-oriented information systems: planning and implementation. New
York, New York John Wiley and Sons. 1992.

8. Pinson, L. J; Wiener, R. S. Applications of object-oriented programming, Reading,
Massachusetts: Addison-Wesley Publishing Company, 1990.

9. Derr, K. W. Applying OMT, Cambridge University Press, 1998
10. Telelogic Tau 4.0, SOMT Methodology Guidelines, February 2000.
11. 3rd Generation Partnership Project, http://www.3gpp.org.
12. Sipilä, J.; Luukkala, V. An SDL Implementation Framework for Third Generation Mobile

Communications System, 10th International SDL Forum Copenhagen, Denmark, June 27–
29, 2001, Proceedings

13. 3GPP TS 25.321, 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; MAC protocol specification; Release 99.

14. 3GPP TS 25.322, 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; RLC protocol specification; Release 99.

15. 3GPP TS 25.331, 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; RRC protocol specification; Release 99.

	1	Introduction
	2	UMTS
	3	SDL Limitations
	3.1	Interfaces
	3.2	Gate Used by a Signal
	3.3	Redefinition Mechanism
	3.4	Dynamic Block Creation
	3.5	Specialisation of Transitions
	3.6	New Interesting SDL-2000 Features

	4	Global Design
	5	Detailed Design
	5.1 MAC Layer
	5.2	RLC Layer
	5.3	RRC Layer

	6 Tests
	7	Conclusions
	
	Acknowledgements. This work has been partially supported by spanish Comisión Interministerial de Ciencia y Tecnología and European Commission under grant 1FD97-0650.
	Abbreviations

	References

