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Sound source localization using a two-microphone array is an active area of research, with consid-

erable potential for use with video conferencing, mobile devices, and robotics. Based on the

observed time-differences of arrival between sound signals, a probability distribution of the loca-

tion of the sources is considered to estimate the actual source positions. However, these algorithms

assume a given number of sound sources. This paper describes an updated research account on the

solution presented in Escolano et al. [J. Acoust. Am. Soc. 132(3), 1257–1260 (2012)], where nested

sampling is used to explore a probability distribution of the source position using a Laplacian mix-

ture model, which allows both the number and position of speech sources to be inferred. This paper

presents different experimental setups and scenarios to demonstrate the viability of the proposed

method, which is compared with some of the most popular sampling methods, demonstrating that

nested sampling is an accurate tool for speech localization. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4861356]

PACS number(s): 43.60.Jn, 43.72.Ne [ZHM] Pages: 742–753

I. INTRODUCTION

Sound source localization has many applications in acous-

tic communication, such as video conferencing, robotics,

speech enhancement, noise reduction, and sound source

separation.1–4 Direct localization approaches are based on

computing a cost function over a set of candidate locations and

take the most likely source positions, whereas the so-called

indirect approaches are based on the estimation of relative sig-

nal time delays to estimate the direction-of-arrival (DOA) and

in some cases, also the position of the source.5 Most traditional

approaches are based on the generalized cross correlation

(GCC) method,6 which calculates the correlation function

using the inverse Fourier transform of the cross-power spectral

density function multiplied by a proper weighting function.

Different microphone array configurations may be used,

and usually the performance in DOA estimation improves

with the number of microphones. In fact, most microphone

arrays today have more than two microphones. However,

there are still some applications where the use of two-

microphones is required such as humanoid robotics,7

binaural hearing,8 hearing aids,9 phone devices, or modeling

of psychophysical studies.10 Because of the ability of the

human auditory system to locate sounds, research dealing

with two-microphones using binaural models of computa-

tional auditory scene analysis is still a growing field.11–15

Among the different available variants of GCC, GCC-PHAT

(phase transformation) is the most popular.6 According to

the literature, this modification improves the GCC algorithm

in environments with relatively high reverberation time

when the noise presence is low.16 Also, it has been proven to

reduce the spreading effect that occurs when uncorrelated

noise appears at both microphones.

However, the usual scenario for using GCC-PHAT has

been mostly limited to localization of one source and the

multiple-source case has been rarely described.17 Even in

those few instances, the number of sources is always a

known parameter. For more practical applications, it seems

appropriate to define a multi-source framework to implement

the histogram-based GCC-PHAT localization algorithm for

an unknown number of sources.

This paper presents an extension of Bayesian inference

method for speech localization using nested sampling to

infer the number of active sources and their DOA parame-

ters.18 With this aim, a Laplacian mixture model is used to

a)Author to whom correspondence should be addressed. Electronic mail:

joseescolanocarrasco@gmail.com
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model the delay histogram generated by GCC-PHAT algo-

rithm,20 where the number of those Laplacian functions will

provide the number of sources, and their parameters, their

corresponding direction-of-arrivals. This contribution dem-

onstrates that the source location with an unknown number

of sources requires two levels of inference. Bayesian two-

level inference provides a systematic complement to the

histogram-based GCC-PHAT localization algorithm to be

extended for an unknown number of sources. Moreover, it

has to be validated in a wider range of real scenarios, a topic

barely studied in the technical literature.21

This paper deals with experimental measurements in

real scenarios. These scenarios are featured with different

room-acoustic environments, characterized by different

reverberation times and signal-to-noise ratios (SNR) in the

enclosure under investigation. Several speaker configura-

tions are also used to validate the algorithm. Moreover, a

comparison with other popular sampling methods within the

scope of Bayesian inferential analysis is also provided to jus-

tify the advantages of this method in terms of efficiency and

accuracy. This paper demonstrates that the use of nested

sampling together with Jeffrey’s scale for the model selec-

tion provides accurate results down to an SNR of approxi-

mately 20 dB in an autonomous way.

This paper is organized as follows: first, Sec. II briefly

surveys the source localization model based on GCC-PHAT.

Section III describes the basics of Bayesian model selection

and parameter estimation. Section IV further discusses dif-

ferent approaches for sampling implementation, including

nested sampling. Finally, Sec. V thoroughly describes results

using the proposed methodology under different scenarios,

when faced with different SNRs, reverberation times and

degrees of partially correlated noise.

II. SOUND SOURCE LOCALIZATION

A. Signal model

Given a two-microphone array in an anechoic sce-

nario,15 let us consider signals x1(t) and x2(t) defined as

xm tð Þ ¼
XN

n¼1

amnsn t� smnð Þ; m ¼ 1; 2; (1)

where N is the number of sources, sn(t) are the time-domain

source signals, amn are weighting coefficients, representing

the signal amplitude variation in propagating from source n
to microphone m, and smn are their corresponding source-to-

sensor time delays. If the sources are assumed to be located

in the far field, the DOA of the sources can be directly

related to the inter-sensor time delays by

sn ¼ s2n � s1n ¼ d=cð Þcos ĥn; (2)

where d is the inter-microphone distance, c is the speed of

sound, and ĥn is the DOA angle of the nth source (see Fig. 1

for details).

B. Generalized cross-correlation

Considering the above model, the DOA is implicitly

found in the time difference s of the two microphone signals

x1(t) and x2(t); the estimated time delay ŝn, can be obtained

with a generalized cross-correlator as

ŝn ¼ arg max
sn

E ½x1 tð Þ � w1 tð Þ�½x2 tþ snð Þ � w2 tð Þ�
� �

;

(3)

with E{�} being the statistical average over time, assuming

ergodic signals, and * is the linear time convolution. Impulse

responses w1(t) and w2(t) are the weighting functions applied

to each microphone signal, respectively. Using this correla-

tor, the estimated delay ŝ converges to the time difference of

arrival between both signals. This is then related to the angle

of arrival. Given a fixed time interval for the prediction of an

angle of arrival, these angles are used to construct a histo-

gram, representing a probability distribution H(h) of where a

source is situated. When multiple speech sources are meas-

ured, based on the superposition principle, each source is

represented by a certain area of the histogram.

In this paper, a PHAT weighting function is used,

defined as

W1 xð ÞW2 xð Þ ¼ jUx1x2
xð Þj�1; (4)

where Ux1x2
xð Þ is the cross-power spectral density function

and W1(x) and W2(x) are the Fourier transforms of w1(t)
and w2(t), respectively.

Although this method is described for anechoic environ-

ments, the same formulation can be used for reverberant

environments, with x1(t) and x2(t) being the result of convo-

lution of the source signals with their corresponding room

impulse responses. It has been proven to work very well

under low noise environments, even when the reverberation

of the room is high.16

C. Histogram model

The probability function of source localization, or histo-

gram, H(h), can be modeled by a mixture of Laplacian

FIG. 1. Angles of incidence of two plane waves at two microphones associ-

ated with sources s1(t) and s1(t). Each plane wave produces a time delay de-

pendent only on its corresponding source location.
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distributions M(h) to represent the angles resulting from a

scatter plot of a two-channel mixture,20 computed from

delay estimates (see Fig. 2 for an example of histograms for

illustrative purposes)

M hð Þ ¼
XN

n¼1

Ane�jhk�lnj=rn; (5)

where
PN

n¼1 An=2rn ¼ 1 and N represents the number of

sound sources.

Note that available information is only given for discrete

angles hk in the angular space h. Therefore, H(h) and M are

actually a probability mass function.

One of the key points of this work is to determine the

number of sound sources N. A different N represents a differ-

ent model M(h, H), where H represents the parameters of

the model; in Bayesian analysis, this corresponds to the

high-level inference, termed model selection. Given a maxi-

mum number of potential sources, model selection will

estimate the number of sources consistent with the data

and prior information. At the same time, the parameters

H¼ {l; r; A}, where l is the vector of means of angles to

be estimated, r is the vector of angular variances and A of

Laplacian amplitudes will be also estimated, which can be

used to determine where the speech sources are situated. In

Bayesian analysis, this is known as parameter estimation or

low-level inference.

In these real scenarios, H(h) should account for noise

presence. Depending on the geometrical/reflective particu-

larities of the scenario, the noise signals in each microphone

can be either correlated or uncorrelated, having different

effects on H(h).21 In the ideal case the noise should be uncor-

related. The degree of correlation in real rooms depends

mainly on the scattering effects of the surrounding walls and

microphone separation. Unfortunately, uncorrelated noise is

a highly ideal case, where a perfectly diffuse sound field is

required, and the sound field in any real room differs in fun-

damental aspects from a diffuse field.19 On the contrary, cor-

related noise signals might be evidenced as new speech

sources coming from some particular directions, thus being

hard to distinguish from real speech sources in some cases.21

This will mainly depend on the level of noise correlation. It

also depends, at the same time, on the geometrical/ reflective

characteristics of the room under investigation. Section

V B 2 will elaborate on this fact.

D. Additional remarks

In building an appropriate model, some additional con-

sideration should be taken into account to reduce the search

space and to speed up the algorithms explained in the follow-

ing sections. In particular, since just two microphones are

used, the system is unable to distinguish the ambiguity for

those sources located at h> 180�. Therefore, the histogram

will be built on the basis of M(h)¼M(hþ 180�). As a conse-

quence, ln �[0,180] 8n.
In some applications, especially for those involving

human speakers, i.e., video conference, it is straightforward

to assume there will be a minimum angular separation

between them, meaning there will not be any strong overlap

between Laplacian functions. Therefore, jjli� ljjj> c,
8i 6¼ j, with c being the minimum separation, which may be

considered for certain applications.

III. BAYESIAN INFERENCE

A. Parameter estimation

Bayesian inference is extensively based on the Bayes’

theorem. For a given model M and a given dataset D, being a

vector with K components as a function of an arrival angle

vector h, the posterior probability distribution of the model

parameters H¼ {l; r; A} is calculated as follows:

p HjD;Mð Þ ¼ p DjH;Mð Þp HjMð Þ
p DjMð Þ : (6)

The term p(DjH, M) represents the likelihood function,

indicating the resemblance of the data D for a given parame-

ter set H to the model M. Prior to analysis, the error compo-

nents are only known to be of a finite amount of energy.

With this being the only information available, applying the

principle of maximum entropy22 leads to an assignment of

p(DjH, M) as a Gaussian distribution of data D. The

maximum-entropy assignment of a Gaussian probability

density function follows the fact that no further information

about errors is available, other than a finite variance of

the error.22 After marginalizing over an unknown error

variance, the assigned likelihood function becomes a Student

t-distribution23

p DjH;Mð Þ � L Hð Þ ¼ 1

2
C

K

2

� �
f Hð Þ
2p

� ��K=2

; (7)

where f Hð Þ ¼
PK

k¼1 jjD hkð Þ � H hkð Þjj2;C �ð Þ is the gamma

function, and hk is the kth element of angle vector h.

The term p(HjM) corresponds to the prior distribution

of the parameters. This distribution is usually assigned uni-

form to avoid any subjective preference. In this particular

problem, if there exist some bounds on the parameters val-

ues, as remarked in Sec. II D, they have to be introduced to

the problem through the prior distribution, i.e.,

0� �l� 180�.
The term p(DjM) is known as a marginal likelihood, or

Bayesian evidence or just evidence. In most parameter esti-

mation problems, the evidence is a normalization constant,
FIG. 2. Histograms obtained from real measurements with three active sour-

ces and (a) SNR¼ 40 dB and (b) 10 dB.
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but it plays a fundamental role in model selection, as will be

elaborated in the following subsection. In order to act as a

normalization constant, evidence Z is calculated as

p DjMð Þ � Z ¼
ð

H
p DjH;Mð Þp HjMð ÞdH: (8)

Once the posterior probability function is calculated, the

mean parameters hHi are calculated via

hHi ¼
ð

H
Hp HjD;Mð ÞdH: (9)

B. Model selection

This section discusses some basic ideas regarding the

model selection in Bayesian inference. Two approaches to

solve the model selection problem are reviewed. The follow-

ing section will expose some of their characteristics and

advantages. Additional details about both approaches for the

model selection can be found in Ref. 24.

1. Bayesian evidence

According to Bayes’ theorem, the posterior probability

of a model Mi, given data D is given by

p MijDð Þ ¼ p DjMið Þp Mið Þ
p Dð Þ

: (10)

The idea behind the model selection is to compare the

posterior probability of a set of competing models and to

select the one with the highest posterior probability given

the data. Given two models Mi and Mj, the posterior ratio or

Bayes’ factor Bij, is defined as

Bij ¼
p MijDð Þ
p MjjD
� � ¼ p DjMið Þp Mið Þ

p DjMj

� �
p Mjð Þ

¼ p DjMið Þ
p DjMj

� � ; (11)

when assigning the competing models equal prior probabil-

ity, i.e., no model hypothesis is favored against the other,

p(Mi)¼ p(Mj); the model selection is determined in terms of

the likelihood function p(DjMi). The likelihood function in

the model selection is exactly the marginal likelihood func-

tion or Bayesian evidence term in the parameter estimation

task [see Eq. (8)]. Therefore, model selection can be carried

out just comparing evidences obtained within the effort of

parameter estimation.

However, in any estimation of the evidence value it is

necessary to define the Bayesian ratio to favor one model

over another. For this purpose, Jeffreys’ scale was intro-

duced as a way of quantifying whether or not one model is

significantly better than another.25 In practical applications,

it is often considered that a model Mi is favored over a model

Mj when the former model overcomes the latter by at least

10 decibans, i.e., 10 log10 Bij, which in terms of Jeffrey’s

scale (see Table I) indicates the evidence of model Mi is suf-

ficiently stronger than the one obtained by model Mj. In any

case, Jeffreys’ scale has to be interpreted not as a calibration

of the Bayes’ factor rather as a qualitative, descriptive state-

ment about standards of evidence in scientific investigations.

Jeffreys’ categorization has to be considered and interpreted

on the context of its applicability. As it will be demonstrated

later, the model selection based on the strongest evidence is

the appropriate distinguishing indicator.

In order to simplify model selection via the evidence,

the following procedure is proposed:

(1) Select the model MjmaxZ(decibans) with the highest evi-

dence expressed in decibans.

(2) For those simpler models (less parameters) which differ

from MjmaxZ(decibans) by less or equal to 10 decibans,

choose the simplest model.

The same procedure can be followed using different

log-scales of Bayes’ factor, i.e., in nepers and in this case, a

model is stronger compared to another one if log(Bij)> 2.3.

Bayesian model selection favors simpler models over

overly complex models which fit data better, which intrinsi-

cally represents a quantitative implementation of the princi-

ple of Ockham’s razor.26

2. Bayesian information criteria

The main difficulty of dealing with evidence lies in the

intractability of Eq. (8), since it cannot be solved analytically

even when the model has a small number of parameters. An

alternative approach can be used to rank models. The

Bayesian information criterion (BIC) or Schwarz criterion is

another criterion for model selection. Schwarz derived BIC

to serve as an asymptotic approximation to a transformation

of the Bayesian posterior probability of a candidate model.

In large-sample settings, the fitted model favored by BIC

ideally corresponds to the candidate model which is a poste-
riori the most favorable; i.e., the model which is rendered

most plausible by the available data. Given a finite set of

models, it is possible to increase the likelihood just by add-

ing parameters, but this may result in overfitting. The BIC

resolves this problem by introducing a penalty term propor-

tional to the number of parameters in the model. This crite-

rion is defined as

BICi ¼ 2 log p DjH;Mið Þmax � gi log K; (12)

where gi is the number of parameters used by the model Mi,

and p(DjH, Mi)max is the maximized likelihood. The higher

the BIC, the higher the probability the data D were generated

by this model. Note this definition differs from the usual def-

inition by a negative sign,27 in order to facilitate the

TABLE I. Jeffreys’ scale for the Bayesian ratio expressed in decibans,

which are defined as 10 log10 Bij.

Evidence (decibans) Strength of evidence

<0 Negative (supports Mj)

0–5 Barely worth mentioning

5–10 Substantial

10–15 Strong

15–20 Very strong

>20 Decisive
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comparison with the evidence (see Sec. III B 1). The BIC

may be regarded as an empirical approximation to the

log-Bayes’ factor and its computation does not require the

specification of priors. Thus, BIC has appeal in many

Bayesian modeling problems.

The BIC approach assumes, however, that the likeli-

hood distribution of interest can be approximated by a

multi-variant Gaussian in the vicinity of the global extreme.

For many applications this is not the case, particularly mul-

timodal distributions. If the shape of the likelihood distribu-

tion deviates drastically from a multi-variant Gaussian

distribution, the BIC will hardly be able to correctly rank

the models; therefore, in order to use the BIC, one needs

to be sure there are not multiple modes near the global

extreme.

Another limitation of this method is that it is neces-

sary to calculate p(DjH, Mi)max. Since this value is

obtained via sampling the likelihood function, it may be

difficult to obtain precisely when the number of samples is

not large enough; the asymptotic approximation assumed

by the BIC is critically sensitive to the maximum posterior

estimation.

As it will be presented in the following section, some of

the most popular sampling algorithm implementations for

Bayesian analysis (Metropolis-Hastings and importance

sampling) perform the model selection based on ranking

BIC values. In general, the model selection is based on

selecting the model with the highest BIC value; in addition,

a similar selection criterion as described in the previous sec-

tion based on Jeffreys’ scale can be applied since Kass and

Wasserman28 have shown that a Bayes’ factor can be

approximated in terms of BIC as follows:

Bij decibansð Þ 	 10 log10 eBICið Þ � 10 log10 eBICjð Þ: (13)

IV. SAMPLING METHODS

Bayesian calculation may be computationally challeng-

ing due to the fact that the evidence integral in Eq. (8) is

defined over a high-dimensional parameter space. A number

of Monte Carlo sampling methods can be used to cope with

the computational challenges.

A. Metropolis-Hastings algorithm

The Metropolis-Hastings29 algorithm is a Markov-chain

Monte Carlo method for obtaining a sequence of random

samples from a complex, non-standard probability distribu-

tion for which direct sampling is difficult, usually due to the

fact that those probability distributions are in most cases,

multi-dimensional.

This algorithm generates dependent samples H from the

posterior probability distribution p(HjD, H) using only

knowledge of the likelihood and the prior distribution. The

main motivation of using this approach lies on the fact that

posterior distributions are not usually simple to sample;

Metropolis-Hastings algorithm provides a simple method to

implement and converges to a stationary distribution propor-

tional to the posterior.

Starting from a set of random samples Hl, with

l¼ 1,…,L, the Metropolis-Hastings algorithm generates a

sequence of new samples, e.g., using an uniform distribution.

It uses each existing sample to generate one new sample,

and this is repeated many times producing a Markov chain.

A fundamental property of Markov chains is that a new sam-

ple depends only on the previous sample. At each step of the

algorithm, a new sample H*
l in the search space is chosen

with probability distribution given by q(H*
l, Hl) which is a

candidate-generating density that is irreducible and aperi-

odic, in addition to a user-defined proposal distribution. In

other words, q(H*
l, Hl) represents the probability of propos-

ing a sample H*
l given a previous sample Hl. The new sam-

ple H*
l is accepted, i.e., Hlþ1¼H*

l with a probability

a ¼ min 1;
p H�l jD;M
� �

q Hl;H
�
l

� �
p HljD;Mð Þq H�l ;Hl

� �
( )

; (14)

but if it is not accepted, the sample remains the same, i.e.,

Hlþ1¼Hl. Finally, the parameter estimation is carried out

by averaging the accepted samples. To perform the model

selection in terms of the Metropolis-Hastings algorithm, it

makes use of the BIC (see Sec. III B 2).

B. Importance sampling

The point of importance sampling is that sampling from

a uniform distribution can be very inefficient and it can be

much better to concentrate non-uniform sampling on high

probability (important) regions of the parameter space. To

this end, the parameter estimates using the importance sam-

pling are defined by

hHi 	 1

L

XL�1

l¼0

Hlw Hlð Þ; (15)

with w Hlð Þ ¼ p HljD;Mð Þ=g Hlð Þ:
The key point of Eq. (15) is to sample a simpler function

Hl 
 g(H) instead of p(HjD, M). The only condition is that

g(H) should have the same support as p(HjD, M). However,

the main difficulty lies in finding the appropriate function

g(H), especially in high dimensions.30

This difficulty lies, in practice, in the lack of prior

knowledge on the actual posterior probability density

function shape.23 Therefore, selecting g(H) without any

prior information will often lead to a failure in solving

Eq. (15). Since the region of high probability becomes

exponentially small in higher dimensions, it takes a very

large number of samples to get several that actually con-

tribute to the sum.

C. Nested sampling

An alternative approach is to calculate the Bayesian evi-

dence using a sampling algorithm, termed nested sampling.31

The nested sampling approximates these marginalization

integrals, while at the same time sampling the posterior
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distribution p(HjD, H). Comprehensive tutorials and practi-

cal details on the nested sampling may be found in.31–33

The basic idea behind the nested sampling is to rear-

range Eq. (8) as a one-dimensional integral, by considering a

constrained prior mass, n(k) � [0,1], that represents the

amount of prior in the region where the likelihood is greater

than a certain value k.

One of the main contributions of the nested sampling lies

in taking into account that prior mass n can be accumulated

from its differential elements dn, so let us define

n kð Þ ¼
ð
L Hð Þ>k

p HjHð ÞdH (16)

as the cumulant prior mass covering all likelihood values

greater than k. As k increases, the enclosed mass n decreases

from 1 to 0. The evidence may be rewritten,32

Z ¼
ð1

0

L nð Þdn: (17)

This one-dimensional integral can be solved

numerically,

Z ’
X1
i¼1

LiDni with Dni ¼ ni�1 � ni; (18)

where n0¼ 1, n1¼ 0, and L1¼Lmax<1. This procedure

of solving an integral is analogous to Lebesgue integration

in the mathematical literature.33

Starting with a set of L initial random samples, Hl sampled

from the prior distribution, and their associated likelihoods Ll,

where l � [1, L], the parameters with the lowest likelihood

value, labeled [H1, L1], is stored and replaced by a new ran-

dom parameter Hnew under the only constraint Lnew>L1,

leaving L samples.32 The process is repeated iteratively select-

ing a new sample with the lowest likelihood and generating a

new one with higher likelihood. Repeating this process, the evi-

dence is accumulated according to Eq. (18). At the same time

the evidence is accumulated, in each iteration a new sample Hl

is generated, i.e., the parameter samples can be easily sampled

from standard distributions, e.g., from a uniform distribution,

with the only restriction of L(Hl)>L(Hl�1). This should be

considered as an important advantage over other methods since

the nested sampling efficiently performs the model compari-

son. Usually the BIC-based evidence evaluation is at least an

order of magnitude more costly than the parameter estima-

tion,34 especially for those very sharp likelihood function,

where the accuracy on estimating p(DjH, M)max is critical. The

main advantage of this method lies in enabling the two levels

of inference at the same time.

For practical implementations, elementary prior mass

Dni can be statistically approximated by Dni 	 e�1/L.

Equation (18) will keep accumulating up to

log(Zi)� log(Zi�1)< d, with Zi¼LiDni, with d being a pre-

defined threshold value.

The bottleneck of this algorithm lies, however, in generat-

ing new samples under the hard constraint L(Hl)>L(Hl�1).

An efficient way to generate new samples under that constraint

is using a ellipsoidal nested sampling,34 consisting of a

clustering nested sampler which is capable of detecting and iso-

lating multiple separated regions of high likelihood, fitting sep-

arate ellipsoidal bounds around each region; or multimodal
nested sampling,35,36 based also on ellipsoidal clustering, but

using a X-means clustering algorithm to estimate the number of

modes in the likelihood distribution, instead of using K-means

where the number of modes needs to be previously known.

Finally, the repeatability of the nested sampling’s

efficacy will be demonstrated through several runs.

Furthermore, the uncertainty of the log-evidence can be also

estimated in a single run.31 The log-evidence uncertainty is

inversely proportional to
ffiffiffi
L
p

.

V. EXPERIMENTAL RESULTS

In this section, several experiments are performed to

evaluate the nested sampling algorithm under different sce-

narios, by varying speaker configurations, SNRs and rever-

beration times. Moreover, aspects related to the use of

correlated noise are investigated, together with a qualitative

comparison to other sampling methods. It should be clarified

that practical applications, e.g., teleconferencing, only deal

with a limited number of potential sources at the same time.

For this reason and for computational cost reduction, this pa-

per deals with a maximum of five simultaneous sources.

A. Experimental setup

In order to validate the methodology described above

two rooms were used during the investigation: the first room

[see Fig. 3(a)] with a volume of 248.64 m3 and its measured

reverberation time is 1 s; whereas the second room has a

FIG. 3. Rooms used to perform the experiments: (a) Multimedia and

Multimodal Processing research laboratory and (b) office room in the

University of Ja�en (Spain).
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volume of 115.92 m3 and 0.52 s of reverberation time [see

Fig. 3(b)]. A two-microphone array with a separation of

13.5 cm between microphones was placed in the middle of

each room. The array consists of two omni-directional

AKG-C417PP microphones, and their output signals are

sampled at 44.1 kHz. In both scenarios, the same source–

receiver configuration is used. Four speakers were distrib-

uted over an angular range between 0 and 180 deg, following

the scheme presented at Table II. In order to provide differ-

ent configurations, different numbers of speakers were used.

In each scenario, different texts were read by several

speakers at the same time and then recorded simultaneously.

In each room, the same three scenarios were used: two
speakers located at angles ĥ1 and ĥ2; three speakers located

at angles ĥ1, ĥ2, and ĥ3; and four speakers located at the

angles described in Table II. After each recording, the

speech signals were low-pass filtered to 5 kHz and in all

cases, the SNR was modified by adding an uncorrelated

white noise signal in each microphone and modifying its

power to obtain different SNRs. For each room and each sce-

nario SNRs were 40, 30, 25, 20, and 10 dB. Each experiment

is denoted by Rn
rs

, where r is the room, s denotes the number

of active sources, and n is the SNR in dB. The maximum

value of the normalized cross-correlation function is meas-

ured with a value of 0.08, meaning both signals are practi-

cally uncorrelated.

The two microphone signals are processed using the

GCC-PHAT algorithm to obtain the histogram15 using a

Hann window of 25 ms and 50% overlap for each observa-

tion. The D vector length, has been set as the square root of

the number of observations, in order to obtain smooth histo-

grams without losing relevant information, in this case it has

been set to K¼ 30. Alternatively, smooth histograms can be

constructed using different approaches28 without varying the

methodology introduced in this paper. It should also be high-

lighted that this does not mean the results have a resolution

of 6�; the localization is made on the basis of the means l,

but not on the maxima of the histogram.

B. Evaluation of nested sampling

1. Model selection

Regarding the nested sampling algorithm, the initial

number of random samples has been set to M¼ 5000 sam-

ples. The purpose of using such number of initial samples is

to minimize the effects of uncertainty.31 The stopping condi-

tion has been set for the threshold to be d< 10�4. Moreover,

the sources are assumed to be not closer than c¼ 10�. The

models under consideration, i.e., number of sources, are set

up to N¼ 5. For each scenario, the algorithm is run 30 times,

and the mean and the deviation of log-evidence values are

computed. In highlighting the numerical differences between

models, Table III lists the log-evidence results. For each

experiment, the selected model according to Sec. III B 1 is

indicated in bold type when correctly ranked, whereas if the

selected model is not properly ranked, it is indicated in italic

type.

The results show that the models are correctly ranked

for each one of the different number of sources when

SNR � [25,40] dB for the first room, whereas for the second

room, the range of correct inferred models is SNR � [20,40]

dB. From lower SNRs, except for very few cases, the model

is not correctly ranked.

The reason the model is well ranked in R2 for

SNR¼ 20 dB whereas it is not for R1 lies in the differences

in room conditions. As it was mentioned previously, the

GCC-PHAT method works well with low SNRs and a mod-

erate reverberation; the reverberation affects the histogram

displaying a number of peaks increasing with the reverbera-

tion time. Although GCC-PHAT is considered a robust

method in rooms with relatively high reverberation, a rever-

beration time of 1 s in the first room is considered long in the

GCC-PHAT literature.

Jeffreys’ scale provides a decision rule that correctly

ranks the models. If the model selection was made on the ba-

sis of the highest log-evidence value in Table III, the results

would be wrong in most cases. Through the results, it is evi-

denced how the model selection on the basis of the stronger

evidence (10 decibans), it accomplishes this task adequately.

This procedure has allowed the quantitative implementation

of the principle of Ockham’s razor.

2. Effects of partially correlated background noise

The direction-of-arrival literature focuses mainly on

evaluating algorithms in the ideal case of uncorrelated noise

presence. In this section, it is analyzed through several

examples how partially correlated noise signals affect the

estimation on the number of sources. In order to perform the

experiment, a dodecahedral loudspeaker is used as a noise

source and its power is varied to obtain the desired SNR.

The loudspeaker is situated at angle 38� and 2.5 m distance.

The maximum value of the normalized cross-correlation

function between both microphone signals is 0.2527 and

0.2774 for R1 and R2, respectively. Both values are consider-

ably low, meaning noise signals are fairly uncorrelated. (See

Fig. 4.)

Figure 5 shows the log-evidence for different models

with varying the SNR from 30 to 10 dB when different num-

bers of sources are active. For both rooms, the nested sam-

pling correctly ranks in all cases up to SNR¼ 25 dB in all

cases for both rooms. In some cases it also correctly ranks

models when SNR¼ 20 dB, but it seems not to be general-

ized. Since both rooms have strong scattering surfaces, mak-

ing the noise signals nearly uncorrelated, a similar behavior

to the uncorrelated noise case is observed. Therefore, all the

results exposed in previous sections may be extrapolated to

those cases where the noise signals are nearly uncorrelated.

However, these results cannot be generalized to cases where

correlated noise signals may affect the detection perform-

ance (see Ref. 21 for some examples in the uni-modal case).

TABLE II. Speakers angular distribution (ĥ i) around the two-microphone

array, the distance to the array is indicated between parenthesis.

ĥ1 ĥ2 ĥ3 ĥ4

53� (1.65 m) 76� (2 m) 104� (2 m) 127� (1.65 m)
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3. Parameter estimation

In this section, the accuracy of the parameter estimation

is analyzed. When estimating the angle of arrival, it is only

necessary to estimate the Laplacian means l. In some other

applications such as sound source separation, A and r must

also be known. In this paper, this estimation will be mainly

focused on the mean estimation, since it is the only data

experimentally available (see Table II). Table IV lists the

DOA results in all configurations and scenarios. The results

show a low error up to SNR¼ 25 dB with a relatively small

variance, that increases when SNR decreases. Figure 5

shows an averaged error for all the angles in each room with

a particular SNR. It shows that with SNR¼ 20 dB, despite

the averaged error being lower than 5�, the variance becomes

significantly high at both rooms. Finally, with only 10 dB

SNR, the noise level is too high to consider localization ac-

curacy. Therefore, it seems reasonable to affirm the DOA

estimation should be limited to work correctly up to no more

than 20 dB. This limit should be slightly higher when

increasing the reverberation, for example to 	25 dB. These

facts, together with those exposed in Sec. V B 1 confirms the

valid application of Bayesian inference based on the GCC-

PHAT model along with nested sampling in DOA estimation

in a range of SNR no lower than 20 dB.18

C. Comparison to other methods

In this section, some qualitative, but not exhaustive,

comparisons are made between the nested sampling,

Metropolis-Hastings, and importance sampling, for this par-

ticular application.

TABLE III. Average log-evidence values and their corresponding standard deviation for the five competitive models in each experiment. Model correctly

ranked are indicated in bold type, whereas wrongly ranked models are indicated in italic type letter. Each experiment is denoted by Rn
rs

, where r is the room, s
denotes the number of active sources, and n is the SNR in dB.

Room 1

RSNR
rs

Model 1 2 3 4 5

R40
12

59.26 (0.26) 152.04 (1.96) 152.89 (2.12) 153.32 (2.7) 150.43 (1.81)

R40
13

�7.40 (0.22) 37.24 (1.25) 137.35 (5.15) 140.22 (2.9) 142.62 (4.02)

R40
14

�16.65 (0.23) 25.57 (0.88) 53.62 (1.27) 123.73 (5.69) 128.28 (2.91)

R30
12

92.90 (0.23) 159.45 (1.30) 162.14 (3.27) 162.63 (2.48) 158.62 (1.60)

R30
13

9.67 (0.29) 96.30 (1.23) 135.161 (3.91) 141.42 (5.40) 142.72 (4.13)

R30
14

�20.95 (0.27) 18.13 (0.76) 49.15 (2.89) 127.82 (5.38) 130.06 (6.01)

R25
12

155.73 (0.26) 256.15 (1.92) 256.69 (4.40) 259.15 (3.99) 261.18 (5.11)

R25
13

11.95 (0.08) 91.14 (1.53) 132.44 (5.11) 140.52 (4.18) 139.15 (0.94)

R25
14

�21.32 (0.26) 25.34 (0.87) 61.08 (0.88) 116.79 (4.97) 124.83 (2.39)

R20
12

150.03 (0.33) 201.95 (2.00) 294.58 (6.07) 292.88 (6.30) 301.33 (9.18)

R20
13

11.95 (0.31) 85.33 (1.38) 114.05 (2.62) 166.84 (4.73) 174.12 (4.21)

R20
14

�46.70 (0.20) 4.48 (0.70) 45.39 (3.21) 84.13 (2.15) 109.80 (6.83)

R10
12

47.75 (0.33) 69.69 (1.91) 76.37 (1.50) 79.18 (2.56) 80.97 (3.49)

R10
13

�22.05 (0.23) 78.08 (1.20) 99.15 (1.93) 130.08 (3.73) 141.73 (4.69)

R10
14

�30.19 (0.32) 30.31 (1.33) 71.89 (3.03) 104.62 (6.88) 113.74 (5.09)

Room 2

EN (SNR)/Model 1 2 3 4 5

R40
22

74.14 (0.22) 245.37 (2.90) 242.48 (2.56) 238.75 (4.42) 235.85 (3.58)

R40
23

36.95 (0.25) 66.18 (0.80) 174.52 (3.01) 177.39 (1.51) 175.16 (4.30)

R40
24

5.06 (0.32) 34.94 (1.02) 86.84 (6.06) 187.03 (9.82) 195.78 (5.85)

R30
22

120.78 (0.61) 236.64 (1.35) 238.27 (4.65) 238.02 (2.83) 235.83 (3.97)

R30
23

64.17 (0.40) 105.61 (1.49) 189.79 (6.35) 191.20 (4.39) 194.50 (3.86)

R30
24

40.92 (0.25) 72.04 (1.17) 120.82 (3.26) 228.46 (10.33) 232.78 (7.25)

R25
22

108.01 (0.10) 142.06 (0.81) 140.64 (0.60) 137.56 (0.93) 134.09 (0.72)

R25
23

125.99 (0.29) 145.70 (0.84) 163.68 (2.30) 160.20 (2.04) 164.70 (4.24)

R25
24

56.36 (0.13) 79.88 (1.21) 101.28 (3.89) 128.73 (3.16) 134.98 (5.49)

R20
22

116.66 (0.41) 142.49 (1.31) 144.03 (2.40) 141.58 (1.65) 139.73 (3.01)

R20
23

88.65 (0.29) 132.51 (1.85) 144.95 (2.49) 146.63 (3.51) 148.10 (3.74)

R20
24

49.37 (0.28) 75.32 (1.12) 107.93 (2.89) 142.10 (4.51) 144.99 (6.11)

R10
22

63.67 (0.31) 79.59 (1.05) 88.44 (3.71) 92.97 (5.19) 93.96 (3.29)

R20
23

92.20 (0.42) 119.29 (1.65) 131.94 (4.02) 142.48 (5.15) 148.07 (3.61)

R20
24

15.25 (0.34) 52.79 (0.64) 62.55 (2.15) 73.00 (1.36) 84.35 (4.60)
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When using the Metropolis-Hasting algorithm (see Sec.

IV A) the candidate-generating density q(H*
m, Hm) is one

decisive parameters to be selected. As previously mentioned,

if the distribution is chosen to be symmetric, the methodol-

ogy is simplified. This results in a random walk, which in

most cases is considered as a good default option. In this pa-

per, the use of the Metropolis-Hastings algorithm is limited

to this configuration.

The main challenge with this algorithm is that, despite

the fact that the algorithm eventually converges, it is difficult

to estimate when and how fast it does, and the scientific litera-

ture has shown that formal convergence criteria seem not to

work as expected.37 In this paper, a selected scenario, R40
22

, is

used to compare the nested sampling with Metropolis-

Hastings. Figure 6 shows different BIC rating according to the

number of samples used. In this case, p(DjH, Hi)max is

calculated by finding the already generated sample with the

highest likelihood value. In all cases the acceptance ratio has

been 
30% which is considered as acceptable. The BIC ranks

the model correctly when the number of samples increases,

and at some point the variance becomes considerably

reduced. When compared to the results listed in Table III,

similar variances are obtained when 107 samples are used in

Metropolis-Hastings algorithm; however, the number of total

samples used in average on the same example with the nested

sampling, is approximately 5 � 104.

Regarding the importance sampling (see Sec. IV B), the

key point is to select the sampling distribution g(H) in such

a way that it provides samples around the global maximum,

i.e., the same support, of the posterior probability distribu-

tion function. The auxiliary distribution g(H) needs to be a

standard distribution that is easy to sample from, and a bad

choice of g(H) may result in highly inefficient sampling.

Unless some background information is available, any

choice may result in an inefficient solution. Figure 7 shows

several examples of choosing different g(H) over a marginal

posterior probability density function. Using the same sce-

nario, R40
22

, in which two speakers are assumed to be active,

Fig. 7 illustrates the marginalized posterior probability den-

sity function over the amplitude and variance. The ellipsoids

marked in the figure conceptually indicate proposal distribu-

tions g(l1, l2) for the importance sampling algorithm. The

proposal distribution marked by A, with a support similar to

the actual posterior probability density function, situated

around the global maximum. This is a good choice for accu-

rate and unbiased estimations using the importance sampling

integration. The one marked by B provides a solution with a

support different from the actual one, therefore the solution

FIG. 4. Evidence at different SNRs when noise signals are partially correlated at different scenarios: ðaÞ R12
; ðbÞ R13

; ðcÞ R14
; ðdÞ R22

; ðeÞ R23
; and ðfÞ R24

where db indicates the unit decibans for the log-evidence.

FIG. 5. Averaged errors in position for each different SNRs in each room.
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obtained from this sampling distribution is far from being

accurate. The last ellipsoid marked by C has partial support,

located around a local maximum; the integration will lead to

an erroneous solution. Therefore, using the importance sam-

pling for this particular application seems to be highly

inefficient.

Clearly, the nested sampling has advantages over the

importance sampling since few parameters need to be tuned.

However, a combination of both methods may be interesting:

once the nested sampling has located an approximate maxi-

mum, this could facilitate finding a g(H) function with the

right support and then to sample around the global maxi-

mum, leading to more accurate results in both the parameter

estimation and the model selection.

VI. CONCLUSIONS

In this paper, a thorough analysis of a multi-speaker

localization method using a two-microphone array based on

a combination of the generalized cross-correlation method

with phase-transformation (GCC-PHAT) and the nested

sampling is presented. This is made through an extensive cam-

paign of measurements in real spaces under different configu-

rations. The main goal of this investigation is to establish a

methodology to estimate the DOA when the number of speech

sources is an unknown parameter, together with their position.

The results obtained have substantiated that the nested sam-

pling method works correctly under a SNR� 20 dB in a rela-

tively high reverberant environment. However, when the

reverberation time increases, the histogram progressively

degenerates and the range of validity in terms of SNR

decreases. The main limitation of this method lies in the limita-

tions of the GCC-PHAT-model itself, rather than the sampling

method used in the Bayesian framework. In other words, for

low SNR and moderately high reverberation time, the histo-

grams obtained by the GCC-PHAT algorithm cannot be longer

modeled as a Laplacian mixture model.

Additionally, it has been empirically demonstrated that

in order to avoid detecting strong reflections as additional

sources, complex models that differ by less or equal to

10 decibans in evidence should not be considered; in other

words, unless the evidence of a new source was “strong”

TABLE IV. Estimated parameters by using nested sampling algorithm in each of the scenarios. Each experiment is denoted by Rn
rs
; where r is the room, s

denotes the number of active sources, and n is the SNR in dB.

~h1
~h2

~h3
~h4

R40
12

52.24� (0.08) 76.38� (0.05) -

R40
13

52.51� (0.07) 76.55� (0.04) 102.51� (0.01)

R40
14

53.00� (0.15) 76.90� (0.05) 103.29� (0.06) 127.23� (0.17)

R30
12

51.72� (0.16) 76.57� (0.04) -

R30
13

52.49� (0.24) 76.76� (0.08) 102.51� (0.02)

R30
14

53.04� (0.15) 77.04� (0.06) 102.94� (0.06) 127.60� (0.17)

R25
12

53.00� (0.16) 77.60� (0.01) -

R25
13

53.03� (0.31) 77.05� (0.18) 102.51� (0.01)

R25
14

55.17� (0.13) 76.37� (0.20) 102.57� (0.02) 127.60� (0.18)

R20
12

53.57� (0.20) 77.54� (0.02) -

R20
13

59.96� (5.98) 84.46� (6.13) 110.90� (8.77)

R20
14

52.65� (0.20) 77.15� (0.52) 101.80� (0.22) 128.24� (0.27)

R10
12

55.29� (1.09) 80.60� (0.12) -

R10
13

66.42� (7.72) 90.62� (6.30) 120.40� (9.73)

R10
14

60.02� (0.49) 82.15� (0.15) 105.96� (0.97) 131.22� (1.43)

R40
22

53.75� (0.02) 77.40� (0.00) -

R40
23

54.24� (0.05) 77.24� (0.03) 103.44� (0.36)

R40
24

54.10� (0.24) 76.80� (0.20) 105.35� (0.03) 127.47� (0.00)

R30
22

53.42� (0.11) 77.34� (0.01) -

R30
23

53.73� (0.15) 77.21� (0.03) 104.22� (0.21)

R30
24

53.92� (0.31) 77.47� (0.00) 104.95� (0.01) 127.64� (0.34)

R25
22

52.55� (0.38) 79.21� (0.03) -

R25
23

54.38� (0.21) 79.84� (0.03) 104.74� (0.05)

R25
24

54.46� (0.60) 77.71� (0.18) 103.72� (0.60) 128.04� (0.52)

R20
22

55.06� (0.28) 80.75� (0.03) -

R20
22

56.48� (0.79) 82.39� (0.42) 105.40� (0.94)

R20
24

52.50� (1.08) 77.64� (0.08) 104.01� (0.60) 128.00� (0.40)

R10
22

67.59� (2.28) 90.50� (1.07) -

R10
23

45.25� (17.30) 78.04� (8.56) 104.48� (7.67)

R10
24

16.40� (13.80) 60.52� (9.01) 90.40� (7.89) 119.63� (7.60)
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enough to be considered, the simplest model should be

selected.

In addition to the evaluation of the nested sampling

applied to the sound source detection, it has also been com-

pared to other popular sampling methods such a Metropolis-

Hastings and importance sampling. The nested sampling out-

performs these methods, not only in terms of computational

cost, but also simplicity of setting tuning parameters and

prior information. The nested sampling produces a normal-

ized posterior, suitable for both levels of inference.

Although real-time applications are beyond the scope of

this paper, nested sampling has some advantages and may

make this method suitable. Moreover, fewer parameters

need to be tuned and they can be selected to reduce the com-

putational time. Furthermore, modern parallel processors

will be suitable to perform several model evaluations at the

same time. This issue should be addressed in future research

efforts.
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