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Abstract. This paper employs a binary discrete version of the classical
Particle Swarm Optimization to compare the maximum net present value
achieved by a gas turbines biomass plant and a gas engine biomass plant.
The proposed algorithm determines the optimal location for biomass tur-
bines plant and biomass gas engine plant in order to choose the most
profitable between them. Forest residues are converted into biogas . The
fitness function for the binary optimization algorithm is the net present
value. The problem constraints are: the generation system must be lo-
cated inside the supply area, and its maximum electric power is 5 MW.
Computer simulations have been performed using 20 particles in the
swarm and 50 iterations for each kind of power plant. Simulation results
indicate that Particle Swarm Optimization is a useful tool to choose suc-
cessful among different types of biomass plant technologies. In addition,
the comparison is made with reduced computation time (more than 800
times lower than that required for exhaustive search).

1 Introduction

Gumz (1950) is the earliest reference found describing the concept of combining a
pressurized gasifier with a gas turbine engine, although Gumz himself references
an earlier work proposing this concept. He also states that the combination
could certainly benefit from future development of pressurized hot gas cleaning
to avoid excessive turbine blade wear. Gumz was speaking of coal-fueled plants
but the concept is similar when using biomass as fuel. [1].

Stationary engines are rated by the amount of power that can be continuously
delivered at the coupling. Speed ratings are based upon mechanical stresses and
the ability of the piston and the piston rings to receive adequate lubrication
and to seal combustion gases. Like-model engines operating at different installa-
tions may experience varying consumption rates due to variations in operations
conditions, purification standards, product quality, and in-service-hours [2].

The gasifier heats with limited oxygen supply the forest residues, the final
result is a very clean-burning gas fuel suitable for direct use in gas turbines or
gas engine.
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Choosing between biomass gas turbines or biomass gas engine is a compu-
tationally heavy task, if the electric power generated by the plant is about 5
MW [3]. When a realistic problem formulation is to be solved, most analytical,
numerical programming or heuristic methods are unable to work well. In recent
years, Artificial Intelligence (AI)-based methods, such as Genetic Algorithms
(GAs), have been applied to similar problems with promising results [4]. Mean-
while, some new AI-based methods are introduced and developed. Although
these AI-based methods do not always guarantee the globally optimal solution,
they provide suboptimal (near globally optimal) solutions in a short CPU time.
This paper employs a modern AI-based method, Particle Swarm Optimization
(PSO) [5][6][7], to solve the problem of determining the most profitable technol-
ogy (gas turbine o gas engine), after determining optimal location for biomass
plant supplied with forest residues. In this work, the fitness function for the PSO
algorithm is the net present value (eq. (10)) .

PSO is a nature-inspired evolutionary stochastic algorithm developed by
James Kennedy and Russel Eberhart in 1995 [5]. This technique, motivated
by social behavior of organisms such as bird flocking and fish schooling, has
been shown to be effective in optimizing multidimensional problems. PSO, as
an optimization tool, provides a population-based search procedure in which in-
dividuals, called particles, change their positions (states) with time. In a PSO
system, particles fly around in a multidimensional search space. During flight,
each particle adjusts its position according to its own experience, and the ex-
perience of neighboring particles, making use of the best position encountered
by itself and its neighbors. The main advantages of PSO are: it is very easy to
implement and there are few parameters to adjust.

2 Particle Swarm Optimization

2.1 The Classical Approach

The classical PSO algorithm is initialized with a swarm of particles randomly
placed on the search space. In the (t+1)-th iteration, the position of i-th particle
is update adding to its previous position the new velocity vector, according to
the following equation:

xt+1
i = xt

i + vt+1
i , i = 1, ..., P (1)

where xt
i denotes the position vector of the i-th particle at the t-th iteration,

vt
i represents the velocity vector at the t-th iteration, both xt

i and vt
i are N -

dimensional vectors, N being the number of variables of the function to be
optimized. P is the number of particles in the swarm.

The velocity vector is updated according to the following equation:

vt+1
i = ω · vt

i + c1 · rand1 · (pt
i,best − xt

i) + c2 · rand2 · (gt
best − xt

i) (2)

where pt
i,best is the best solution achieved for the i-th particle at the t-th iter-

ation and gt
best is the best position found for all particles in the swarm at the
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t-th iteration. c1 and c2 are positive real numbers, called learning factors or ac-
celeration constants, that are used to weight the particle individual knowledge
and the swarm social knowledge, respectively. rand1 and rand2 are real random
numbers uniformly distributed between 0 and 1, that make stochastic changes
in the particle trajectory. Finally, ω is the inertia weight factor and represents
the weighting of a particles previous velocity.

From equation (2), we can find that the current flying velocity of a particle
comprises three terms. The first term is the particles previous velocity revealing
that a PSO system has memory. The second term and the third term represent
a cognition-only model and a social-only model, respectively.

2.2 The Proposed Binary Approach

In spite of usual formulation for PSO uses real-number coding, we have applied
in this work a discrete PSO algorithm which uses binary-number coding. In
the proposed binary PSO algorithm, xt

i and vt
i are N -length binary vectors.

Equation (1) is applied using the exclusive-or (’XOR’) operator instead of real
adding:

xt+1
i = xt

i ⊕ vt+1
i , i = 1, ..., P (3)

Here, the velocity vector can be interpreted as a change vector. Thus, if vt
i [j]=’1’,

then xt+1
i [j] = x̄t

i[j], x̄t
i[j] being the logical negation of xt

i[j]. However, if vt
i [j]=’0’,

then xt+1
i [j] = xt

i[j] (no change happens).
The velocity vector (change vector) is updated by applying the following equa-

tion:
vt+1

i = ω̄t
i + ωt

i ·
(
ci,1 · (pt

i,best ⊕ xt
i) + ci,2 · (gt

best ⊕ xt
i)

)
(4)

where the inertia vector ωt
i is a random N -length binary vector and ω̄t

i its logical
negation. ci,1 and ci,2 are also random N -length binary vectors. In equation 4,
symbol + represents the logical OR operator and symbol · represents the logical
AND operator.

In our approach, parameter pi has been defined. It represents a probability
which decreases with the number of iterations. Here, parameter pi is applied to
generate inertia vector ωt

i as follows: ωt
i [j]=’0’ with pi probability, in such a way

that at the initial iterations (high pi values) the algorithm explores the search
space and at the last iterations (low pi values) the algorithm exploit the search
space. The idea is to allow particle swarm to perform a random exploration over
the space search at the initial iterations. Later, when the particle swarm has
acquired enough knowledge about the problem, its movement is conducted by
the best solution pt

i,best and the best position gt
best at the t-th iteration, in order

to reach a suboptimal solution with reduced computational cost.

3 Problem Description

The problem to be solved consists on comparing the use of a gas turbines or a gas
engine in biomass-based power generation systems. The size of the generation



Profitability Comparison Between Gas Turbines and Gas Engine 331

system depends on: 1) biomass quantity that can be collected, 2) selection of
parcels where to collect the biomass. Location of power plant (parcel p) mainly
depends on the characteristics of the considered parcels. In this work, K parcels
of constant area have been regarded, all of them characterized by a predominant
biomass type (forest residues in this work). These parcels also present other
relevant characteristics, such as accessibility [8].

The values of the variables involved in the problem are obtained from databases
or Geographic Information Systems (GIS). These are the following:

– Si: Area of parcel i (km2).
– Ui: Usability coefficient of parcel i. It is applied to take into account only

the usable surface.
– Di: Net density of dry biomass yield from parcel i (ton/(km2 · yr)).
– LHVi: Lower heat value of biomass in parcel i (MWh/ton).
– Lp: Length of the electric line that connects the power plant to the grid

(Km).
– dist(p, i): Distance between parcel i and the power plant, which is located

in parcel p(km).
– Ccui : Biomass collection unit cost in parcel i (Euro/ton).

Therefore, given the total mean efficiency of the electric generation system,
eff , the electricity produced, Eg (MWh/yr), is equal to:

Eg = eff ·
K∑

i=1

(Si · Ui · Di · LHVi) (5)

Assuming a plant running time of T (h/yr), the electric power, Pe(MW) is:

Pe =
Eg

T
(6)

4 Objective Function: Net Present Value

The objective function takes into consideration costs and benefits. Specifically,
initial investment and collection, transportation, maintenance and operation
costs are considered, together with benefits from the sale of electrical energy.
Therefore, the net present value is chosen as the objective function.

In this section some interesting parameters to evaluate the net present value of
the project are reviewed. The initial investment, the present value of cash inflows
(benefits) and cash outflows (costs) are studied and adapted to the particularities
of this work.

4.1 Initial Investment

The initial investment (INV ) for the design, construction of the generation plant
and required equipment is expressed as:

INV = INVf + Is · Pe + CL · Lp (7)
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where INVf is the fixed investment (Euro), Is is the specific investment (Euro/
MW) and CL the electric line cost (Euro/km).

4.2 Cash Inflows

The present value of cash inflows (PVIN ) is obtained from the sold electric energy
during the useful lifetime, Vu. It can be written as:

PVIN = pg · Eg ·
Kg · (1 − KVu

g )
1 − Kg

(8)

where pg is the selling price of the electric energy injected to the network
(Euro/MWh), Eg the sold and produced electric energy (MWh/yr) and Kg =
1+rg

1+d , rg being the annual increase rate of the sold energy price and d the nominal
discount rate.

4.3 Cash Outflows

The present value of cash outflows (PVOUT ) is the sum of the following costs dur-
ing the useful lifetime of the plant: annual collection cost, Cc, annual transport
cost, Ct and annual maintenance and operation costs, Cmo.

The annual cost of biomass collection is Cc =
∑K

i=1(Ccui · Ui · Si · Di).
The annual cost of biomass transport is Ct =

∑K
i=1(Ctui · Si · Di · dis(p, i)),

where Ctui is the biomass transport unit cost in parcel i (Euro/(ton · km)).
The annual maintenance and operation costs are Cmo = m · Eg, m being

average maintenance costs (Euro/MWh) and Eg the produced electric energy
(MWh/yr).

Finally, the present value of cash outflows is:

PVOUT = Cc · Kc · (1 − KVu
c )

1 − Kc
+Ct ·

Kt · (1 − KVu
t )

1 − Kt
+Cmo · Kmo · (1 − KVu

mo)
1 − Kmo

(9)

where Kc = 1+rc

1+d , Kt = 1+rt

1+d and Kmo = 1+rmo

1+d , rc being the annual increase
rate of Cc, rt the annual increase rate of Ct and rmo the annual increase rate of
Cmo.

4.4 Net Present Value

The net present value (NPV ) is defined as follows:

NPV = PVIN − PVOUT − INV (10)

An investment is profitable when NPV > 0.
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5 Experimental Results

The region considered to apply the proposed method consists of 128 × 128 =
16384 parcels of constant surface, Si = 2 km2. The region is covered by natural
forest vegetation. Therefore, forest residues constitute the biomass type. The
available information for each parcel comprises Si, Ui, Di, LHVi, Lp, dist(p, i)
and Ccui . Other parameter values are shown in table 1:

Table 1. Standard values for parameters

Parameter Value Parameter Value

Ctui(Euro/(Ton · km)) 0.3 CL(Euro/km) 3 · 104

T (h/yr) 7500 INVf (Euro) 1.5 · 106

pg(Euro/MWh) 100 d 0.08

rg 0.04 rc 0.06

ri 0.08 rmo 0.04

Parameters which are characteristics of the type of unit generation are listed
in table 2. The gas turbine unit generation requires a higher specific investment
than gas engine, but gas engine maintenance costs are twice higher than gas
turbine maintenance costs and less useful lifetime:

Table 2. Specific values for unit generation

Gas turbine Value Gas engine Value

m(Euro/MWh) 0.05 m(Euro/MWh) 0.6

eff 0.3 eff 0.2

Is(Euro/MW ) 1.2 · 106 Is(Euro/MW ) 0.2 · 106

Vu(yr) 15 Vu(yr) 10

Figure 1 presents the theoretical biomass potential, which is defined from the
net density of dry biomass that can be obtained at any parcel, Di (ton/(Km2 ·
yr)), and provides a measure of the primary biomass resource. Location of the
electric line inside the considered region is also shown in figure 1.

Figure 2 shows the available biomass potential. It has been created taking
the following parameters into account: Di(ton/(Km2 · yr)), Ui, Si(Km2) and
LHVi(MWh/ton). By multiplying the four variables for all the parcels that com-
prise the entire region, it results the available biomass potential, expressed in
(MWh/yr), as depicted in figure 2.
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Fig. 1. Theoretical biomass potential (ton/(Km2 · yr))
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Fig. 2. Available biomass potential (MWh/yr))

Table 3. Output values

Gas turbine Value Gas Engine Value

NPV (KEuro) 16586.23 NPV (KEuro) 9117.04

Pe(MW ) 4.75 Pe(MW ) 4.98

Supply area 880.0 Supply area 1584.0

Simulation data are: P = 20, N = 20 and 65 iterations. The constraints for
simulation are: 1) The electric power generated by the plant is limited to 5 MW;
2) The generation system must be located inside the supply area.
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The proposed PSO algorithm provides the output values in table 3. Gas tur-
bine has been shown more profitable (higher net present value) than gas engine.

Figure 3 shows the optimal location and supply area for the gas turbine plant
and for the gas motor plant in a typical realization. Note that the optimal
location is different in each case.

Fig. 3. Optimal location and supply area for the biomass plant

6 Conclusions

This paper has presented an AI-based method to determine the optimal sup-
ply area and location for an electric generation system based on biomass. The
proposed AI-based method is a discrete binary version of the PSO algorithm,
which makes use of the profitability index as objective function. The proposed
approach have been assessed using a region composed of 16384 parcels, all of
them with the same area (Si=2 km2). In the region under study, gas turbine has
been shown more profitable than gas motor, and the net present value of the gas
turbine-based project has achieved 16.58 MEuro. Computer simulations have
shown the good performance of the proposed method. Convergence is reached
in few iterations (about 25) and computational cost more than 800 times lower
than that required for exhaustive comparison.
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