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Classic aggregation operators in group decision making such as the ordered weighted averaging
(OWA), induced ordered weighted averaging (IOWA), C-IOWA, P-IOWA, and I-IOWA have
shown to be successful tools to provide flexibility in the aggregation of preferences. However,
these operators do not take advantage of information related to the interaction between experts.
Experts involved in a group decision-making problem may have developed opinions about the
reliability of other experts’ judgments, either because they have previous history of interaction
with each other or because they have knowledge that informs them on the reliability of other
colleagues in the group in solving decision-making problems in the past. In this paper, and within
the framework of social network decision making, we present three new social network analysis
based IOWA operators that take advantage of the linguistic trustworthiness information gathered
from the experts’ social network to aggregate the social group preferences. Their use is analysed
with simple but illustrative examples. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

In this paper, we deal with group decision-making (GDM) problems, which
are usually solved using the following two steps procedure:1,2

(i) an aggregation step to collectively fuse the experts’ opinions and
(ii) an exploitation step to obtain a final ranking of the available alternatives from which a

group solution is derived.

Most GDM mathematical models ignore in their architecture the implementa-
tion of information related to their past/present interaction/relationship. In other
words, GDM models tend to assume that experts are completely independent,
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unknown to each other, and therefore neglect the existence of any links whatso-
ever between them. However, this is far from reality as people engaged in solving
GDM problems are probably known to each other or have some kind of prior knowl-
edge that informs them on the reliability of other experts in the group in solving
decision-making problems in the past.3 Consequently, it would be more realistic and
practical to apply in these cases decision models capable of implementing informa-
tion reflecting such type of relationship. A promising and presently quite relevant
mathematical methodology able to capture decision makers’ relationships is based
on the use of graph models and social network analysis (SNA). This is the focus of
the present paper.

A GDM problem can generally classed as homogeneous or heterogeneous. In
the first case, all decision makers have associated equal importance weights/degrees
whereas unequal importance weights/degrees apply in the second case. In any case,
the degree of importance/relevance of experts within a group is usually assumed
to be provided beforehand or easily derived from some kind of reliable source,
which are subsequently used to collectively fuse the expert’s preferences on the
problem to solve. In classical preference modeling, the set of numerical values
{1, 0.5, 0}, or its equivalent {1, 0, −1},4 is used to represent when an alternative (first)
is preferred to another alternative (second), when both alternatives are considered
equally preferred (indifference), and when the second alternative is preferred to the
first one, respectively. This classical preference modeling constitutes the simplest
numeric discrimination model of preferences, and it proves insufficient in many
decision-making situations as Fishburn pointed out in Ref. 4. Thus, in many cases it
might be necessary in the implementation of some kind of “intensity of preference”
between alternatives.

The concept of fuzzy set, which extends the classical concept of set, when
applied to a classical relation leads to the concept of a fuzzy relation, which in
turn allows the implementation of intensity of preferences.5 The numeric scale
used to evaluate intensity of preferences within the fuzzy framework is the whole
unit interval [0, 1] instead of {1, 0.5, 0}. Notice that this is argued, though, to
assume unlimited computational abilities and resources from the individuals.6 An
alternative approach to preference modeling was proposed by Zadeh in Ref. 7. He
argued that subjectivity, imprecision, and vagueness in the articulation of opinions
pervade real-world decision applications, and individuals usually find difficult to
evaluate their preference using exact numbers. Indeed, he continued by claiming that
individuals might feel more comfortable using words by means of linguistic labels
or terms to articulate their preferences.7 Furthermore, humans exhibit a remarkable
capability to manipulate perceptions and other characteristics of physical and mental
objects, without any exact numerical measurements and complex computations.8–10

Therefore, in this paper, the individuals’ preferences between pair of alternatives
will be assumed to be given in the form of linguistic labels.11 In particular, both
experts’ preference opinions and experts’ assessments about their partners will be
modeled using the 2-tuple linguistic framework12,13 and, therefore, a first objective
here is for SNA concepts that are defined for the case of crisp numerical information
to be reinterpreted and defined appropriately within this linguistic computational
model.

International Journal of Intelligent Systems DOI 10.1002/int

 1098111x, 2014, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.21686 by U

niversidad D
e Jaen C

am
pus L

as L
agunillas, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1119

As aforementioned, the degree of importance/relevance of experts within a
group is usually assumed to be provided beforehand and are subsequently used to col-
lectively fuse the experts’ preferences on the problem to solve. Relevant fusion op-
erators applicable to the linguistic framework that has been presented in the relevant
literature include the minimum operator,14 the exponential function,15 the t-norm
operator,16 the ordered weighted averaging (OWA) operator,17 the induced OWA
(IOWA),18 the I-IOWA, P-IOWA, and C-IOWA,19 and the type-1 OWA operator.20–22

The importance of the expert is assumed here as not been provided beforehand.
Consequently, a second objective of this paper is to derive experts’ importance
degrees from the experts’ social structure. When a group of experts are gathered,
they discuss the alternatives and listen to other experts’ opinions. This exchange
of information usually entails that experts have enough knowledge to appraise the
trustworthiness and expertise of their partners. These judgments can be represented
by means of a social network structure from which the importance of each expert can
be derived by using SNA.23–25 As it will be presented later in the paper, three new
IOWA operators are possible to define the node in-degree centrality IOWA operator
(C ′l

iD − IOWA), the node proximity degree IOWA operator (PP − IOWA), and
the node rank prestige IOWA operator (PR − IOWA). These operators will make
possible to aggregate the information by implementing the experts’ social interac-
tions and judgments and, therefore, can be considered as more flexible and realistic
since the more reliable the experts judgments are, the more support by partners they
will receive.

This paper is set out as follows: In Section 2, we summarize the background
needed to understand the new operators. In Section 3, we present the framework of
group decision-making process that takes advantage of SNA, which it is illustrated
with their application to an example of social network decision making. Finally, our
conclusions and future works will be pointed out in Section 4.

2. BACKGROUND

In this section, we will review the necessary preliminaries to understand the
operators presented in Section 3. First of all, we will provide a summary of the
linguistic computational methods. Second we will look over the SNA, and finally
we will review the use of the IOWA operators in group decision making as our
proposal is based on these operators.

2.1. 2-Tuple Linguistic Computational Model

Although the most usual representation of information in computer science
is by means of numbers, many aspects of different activities in the real world are
assessed in a qualitative form, with vague or imprecise knowledge, rather than in a
quantitative one. In that case, a better approach may be to use linguistic variables
instead of numerical ones.

Let S = {s0, . . . , sg} be a set of linguistic labels (g ≥ 2), with semantic
underlying a ranking relation that can be precisely captured with a linear order, i.e.,
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1120 PÉREZ, MATA, AND CHICLANA

Table I. Seven linguistic labels and their semantic meanings.

Linguistic label Semantic meaning

s0 xj is absolutely preferred to xi

s1 xj is highly preferred to xi

s2 xj is slightly preferred to xi

s3 xi and xj are equally preferred
s4 xi is slightly preferred to xj

s5 xi is highly preferred to xj

s6 xi is absolutely preferred to xj

s0 < s1 < · · · < sg. Table I provides an example with seven linguistic labels and
their corresponding semantic meanings for the comparison of the ordered pair of
alternatives (xi, xj ).

The number of labels is usually assumed odd with the central label sg/2 standing
for the state of indifference when comparing two alternatives, and the remaining
labels located symmetrically around that central assessment to guarantee that asym-
metric property is verified and preferences are represented by weak ordering to
avoid “inconsistent” situations where an expert could prefer two alternatives at the
same time.26 Thus, if the linguistic assessment associated with the pair of alterna-
tives (xi, xj ) is sij = sh ∈ S, then the linguistic assessment corresponding to the
pair of alternatives (xj , xi) would be sji = sg−h. Therefore, the operator defined as
N(sh) = sk with (k + h) = g is a negator operator because N (N(sh)) = N(sk) = sh.

The main two representation formats of linguistic information are11 the
cardinal, which is based on the use of fuzzy set characterized with member-
ship functions and that are mathematically processed using Zadeh’s extension
principle,7 and the ordinal, which is based on the use of 2-tuples symbolic
methodology.12 The second one will be described with more detail as it will be used
herein.

The 2-tuple linguistic model takes as a basis the symbolic representation model
based on indexes and in addition defines the concept of symbolic translation to
represent the linguistic information by means of a pair of values called linguistic 2-
tuple, (sb, λb), where sb ∈ S is one of the original linguistic terms and λb is a numeric
value representing the symbolic translation. This representation structure allows, on
the one hand, to obtain the same information as with the symbolic representation
model based on indexes without losing information in the aggregation phase. On the
other hand, the result of the aggregation is expressed on the same domain as the one
of the initial linguistic labels and, therefore, the well-known retranslation problem
of the above methods is avoided.

DEFINITION 1 (Linguistic 2-Tuple Representation). Let a ∈ [0, g] be the result of
a symbolic aggregation of the indexes of a set of labels assessed in a linguistic
term set S = {s0, . . . , sg}. Let b = round(a) ∈ {0, . . . , g}. The value λb = a −
b ∈ [−0.5, 0.5) is called a symbolic translation, and the pair of values (sb, λb) is
called the 2-tuple linguistic representation of the symbolic aggregation a.
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1121

a = 2.8 (sb , λb) = (s3 ,−0.2)

Δ

Δ−1

0 1 2 3 4 5 6

Figure 1. Ordinal linguistic representation: symbolic translation and 2-tuples.

The 2-tuple linguistic representation of symbolic aggregation can be mathe-
matically formalized with the following mapping:

� : [0, g] −→ S × [−0.5, 0.5)
�(a) = (sb, λb). (1)

Based on the linear order of the linguistic term set and the complete ordering of the
set [−0.5, 0.5), it is easy to prove that � is strictly increasing and continuous and,
therefore, its inverse function exists:

�−1 : S × [−0.5, 0.5) −→ [0, g]
�−1(sb, λb) = b + λb = a.

(2)

The following negation operator is defined:

N (�(a)) = �(g − a). (3)

Figure 1 illustrates the application of the 2-tuple function � and its inverse �−1

for a linguistic term set of cardinality seven. The value of the symbolic translation
is assumed to be 2.8, which means that round(2.8) = 3 and therefore it can be
represented with the 2-tuple (s3, −0.2).

2.2. Social Network Analysis

SNA23–25 studies the relationships between social entities such as members of
a group, corporations, or nations and give us a background that allows us, among
other things, to examine the structural and locational properties including centrality,
prestige, and structural balance. SNA has been successfully applied to a wide range
of areas including social sciences,27 epidemiology,28 economics,29 and marketing.30

In SNA, the words “social networks” refers to the set of actors and the ties
among them. In these networks, each individual has ties to other individuals, each
of whom in turn is tied to others. The aim of SNA is to model these relationships to
depict the structure of a group to, for instance, study the impact of this structure on
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1122 PÉREZ, MATA, AND CHICLANA

Table II. Different notations in SNA.

Sociometric Graph theoretic Algebraic

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 1 1
0 0 1 0 0 1
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

e1Re2 e4Re3

e1Re3 e4Re5

e1Re4 e4Re6

e1Re5 e5Re3

e2Re5 e5Re6

e3Re2 e6Re3

e
1

e
2

e
3

e
4

e
5

e
6

the behavior of the set of actors and/or the influence of this structure on individuals
within this set.23–25 There are three notational schemes to represent the set of actors
and the relationships themselves (see Table II):

� Sociometric: In which relational data are often presented in two-ways matrices called
sociomatrix or adjacency matrix.

� Graph theoretic: In which the network is viewed as a graph, consisting of nodes joined
by lines.

� Algebraic: This notation presents the advantage that allow us to distinguish several distinct
relationships and represent combinations of relationships.

By far, the primary notational scheme used in SNA is the sociometric. In
this scheme, data are represented by the adjacency matrix o sociomatrix. The en-
tries in this matrix indicate whether two nodes are related or not. For instance, a
nondirectional relationship on a single set of actors or nodes E = {e1, . . . , en} is
a relationship A ⊆ E × E with a characteristic function, μA : E × E −→ {0, 1},
which is defined as follows:

μA

(
ei, ej

) =
{

1 if ei is related to ej .
0 otherwise. (4)

Another useful view is the graph scheme, consisting of nodes joined by lines.
Dichotomous graphs only take into account whether the node ei is related to ej or
does not but not the strength of the relationship or how frequently ei interacts with
ej . For directional graphs, the line that goes from actor ei to actor ej is considered
different from the line that goes from ej to ei . In this case, instead of lines, arcs or
directed lines are usually used.

Among other things, SNA analysis let us to study the importance of the
nodes of a social network via the well-known centrality index.25,31–34 The most
important centrality indexes are the node centrality for an undirected dichoto-
mous graph and the in-degree and out-degree centrality for a directed dichotomous
graph.

DEFINITION 2 (Centrality Index). Let G = (E, L) be an undirected dichotomous
graph, E = {e1, . . . , en} be the set of nodes, and L = {

l1, . . . , lq
}

be the set of lines
between pairs of nodes. The number of lines that are incident with a node, d (ei), is
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1123

known as the node centrality index, CD (ei), i.e.,

CD (ei) = d (ei) .

This measure depends on the cardinality of the set E. Thus, the following
standardized node centrality index is normally used:

C ′
D (ei) = d (ei)

n − 1
. (5)

DEFINITION 3 (In-Degree and Out-Degree Centrality Indexes). Let G = (E, L) be
a directed dichotomous graph, E = {e1, . . . , en} be the set of nodes, and L ={
l1, . . . , lq

}
be the set of directed lines, or arcs, between pairs of nodes.

� The number of arcs originating at a node, d+ (ei), is known as the node out-degree
centrality index, CoD (ei), i.e.,

CoD (ei) = d+ (ei) .

� The number of arcs terminating at a node, d+ (ei), is known as the node in-degree
centrality index, CiD (ei), i.e.,

CiD (ei) = d− (ei) .

As with the centrality index, both out-degree centrality and in-degree centrality
indexes depend on the cardinality of the set E, and therefore the corresponding
standardized measures are

C ′
oD (ei) = d+ (ei)

n − 1
, (6)

C ′
iD (ei) = d− (ei)

n − 1
. (7)

Notice that the adjacency matrix as defined above is a binary or crisp relation-
ship. However, in many situations, it may not be suitable to represent the relationship
in a crisp way because this relationship is not clear-cut defined or because it has
associated a weighting value representing the strength of the relationship modeled.
To cope with these situations, the previous definition of an adjacency matrix has
been extended with the concepts of weighted adjacency matrix23–25 and the concept
of fuzzy adjacency relationships,35–37 respectively.

DEFINITION 4. A fuzzy adjacency relationship R on E is a relationship in E × E
with a membership function μR : E × E −→ [0, 1], μR(ei, ej ) = rij , interpreted
as follows:

� rij = 1 indicates that ei is definitely related to ej .
� rij ∈ ]0, 1[ indicates that ei is to a certain extent related to ej .
� rij = 0 indicates that ei is not related to ej .

International Journal of Intelligent Systems DOI 10.1002/int
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1124 PÉREZ, MATA, AND CHICLANA

2.3. IOWA Operators

It was mentioned in the Introduction that the first step of a GDM resolution
process is that of aggregating the information from which to derive a group solution
to the problem. In the case of fuzzy preferences, Yager’s OWA operator17 has been
proved to be extremely useful because it allows to implement the concept of fuzzy
majority.38

DEFINITION 5 (OWA Operator). An OWA operator of dimension n is a func-
tion φ : R

n −→ R that has associated a set of weights or weighting vector
W = (w1, . . . , wn) to it, so that wi ∈ [0, 1] and

∑n
i=1 wi = 1, and is defined to

aggregate a list of values {p1, . . . , pn} according to the following expression:

φ(p1, . . . , pn) =
n∑

i=1

wi · pσ (i),

where σ : {1, . . . , n} −→ {1, . . . , n} is a permutation such that pσ (i) ≥
pσ (i+1), ∀i = 1, . . . , n − 1, i.e., pσ (i) is the ith highest value in the set {p1, . . . , pn}.

An issue in the definition of the OWA operator is how to obtain the associated
weighting vector. In Ref. 17, Yager proposed two ways to obtain it. The first approach
is to use some kind of learning mechanism using some sample data, and the second
approach is to try to give some semantics or meaning to the weights. The latter
allowed applications in the area of quantifier-guided aggregations.38

Given a function Q : [0, 1] → [0, 1] such that Q(0) = 0, Q(1) = 1 and if x > y
then Q(x) ≥ Q(y), an OWA aggregation guided by this function can be obtained
as

φQ(p1, . . . , pn) =
n∑

i=1

wi · pσ (i),

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that pσ (i) ≥ pσ (i+1), ∀i =
1, . . . , n − 1, i.e., pσ (i) is the ith largest value in the set {p1, . . . , pn} and

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
, i = 1, . . . , n. (8)

Yager38 considered the parameterized family of regular increasing monotone
quantifiers Q(r) = ra (a ≥ 0) for such representation. This family of functions
guarantees that

(i) all the experts contribute to the final aggregated value (strict monotonicity property) and
(ii) associates, when a ∈ [0, 1], higher weight values to the aggregated values with

associated higher importance values (concavity property).19

In particular, the value a = 1/2 is used to represent the fuzzy linguistic quan-
tifier “most of.”
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1125

Mitchell and Estrakh39 described a modified OWA operator in which the input
arguments are not rearranged according to their values but rather using a function of
the arguments. Inspired by this work, Yager and Filev18 introduced a more general
type of OWA operator, which they named the IOWA operator:

DEFINITION 6 (IOWA Operator). An IOWA operator of dimension n is a function �W :
(R × R)n −→ R, to which a set of weights or weighting vector is associated, W =
(w1, . . . , wn), such that wi ∈ [0, 1] and �iwi = 1, and it is defined to aggregate the
set of second arguments of a list of n 2-tuples {〈u1, p1〉, . . . , 〈un, pn〉} according to
the following expression:

�W (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ (i),

where σ : {1, . . . , n} −→ {1, . . . , n} is a permutation such that uσ (i) ≥
uσ (i+1), ∀i = 1, . . . , n − 1, i.e., 〈uσ (i), pσ (i)〉 is the 2-tuple with uσ (i) the ith highest
value in the set {u1, . . . , un}.

In the above definition, the reordering of the set of values to aggregate,
{p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . , un} as-
sociated with them, which is based on their magnitude. Owing to this use of the set
of values {u1, . . . , un}, Yager and Filev called them the values of an order-inducing
variable and {p1, . . . , pn} as the values of the argument variable.18 Obviously, an
immediate consequence of Definition 6 is that if the order-inducing variable is the
argument variable then the IOWA operator is reduced to the OWA operator.

Three types of IOWA operators were further presented in Ref. 19. The impor-
tance IOWA operator (I-IOWA), which applies the ordering of the argument values
based on the importance of the information sources, the consistency IOWA operator
(C-IOWA), which applies the ordering of the argument values based on the con-
sistency of the information sources, and the preference IOWA operator (P-IOWA),
which applies the ordering of the argument based on the relative preference values
associated with each one of them.

2.4. Quantifier Nondominance Degree

Once the information has been aggregated, the exploitation step must be ac-
complished to obtain a global ranking of them. To do so, for instance, the following
two choice degrees based on the concept of fuzzy majority are used:1 the quantifier-
guided dominance degree (QGDD) and the quantifier-guided nondominance degree
(QGDNDD). These degrees are based on the use of the OWA operator, and the
weights used are calculated by means of the quantifier that represents the fuzzy
majority.
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1126 PÉREZ, MATA, AND CHICLANA

DEFINITION 7 (Quantifier Guided Dominance Degree). QGDD quantifies the domi-
nance that the alternative xi has over all the other alternatives in a fuzzy majority
sense as

QGDD (xi) = �Q

(
pij , j = 1, . . . , m, j �= i

)
, (9)

where �Q is an OWA operator whose weights are defined using a relative quantifier
Q, and whose components are the elements of the corresponding row of the matrix
P .

The elements of the set

XQGDD = {x|x ∈ X, QGDD (x) = supx∈XQGDD (z)} , (10)

are called the maximum dominance elements of the fuzzy majority of X quantified
by Q.

Nevertheless, we could also use the QGNDD. The QDNDD is a generaliza-
tion of Orlovski’s nondominated alternative concept40 and is defined as follows:

DEFINITION 8 (Quantifier-Guided Nondominance Degree). QGNDD quantifies the
degree to which the alternative xi is not dominated by a fuzzy majority of the
remaining alternative as

QGNDD (xi) = �Q

(
1 − ps

ji, j = 1, . . . , m, j �= i
)
, (11)

where pi
ji = max

{
pji − pij , 0

}
represents the degree to which xi is strictly domi-

nated by xj .

The elements of the set

XQGNDD = {x|x ∈ X, QGNDD (x) = supz∈XQGNDD (z)} , (12)

are called maximal nondominated elements by the fuzzy majority of X quantified
by Q.

3. SOCIAL NETWORK GROUP DECISION MAKING

In this section, we present the SNA GDM process, which resembles a classic
one in that there still exist the aggregation and the exploitation steps still apply
as illustrated in Figure 2. The main differences are though in how these steps are
carried out and the information processed. In the SNA GDM process, it is necessary
to gather information about the reliability of the judgments of the experts, for which
each expert is required to provide their opinion about the trustworthiness of other
experts’ judgments. This information will be combined to form the experts’ social
network structure to which SNA will be carried out to compute experts’ importance
weights, which in turn will drive the fusion of the individual preferences to obtain
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1127

Figure 2. Graph representation of the SNA group decision process.

the collective preferences from which the final global ranking of alternatives. All
these steps are elaborated in the following sections.

3.1. Social Network Representation

The social network reliability between experts will be represented using the
following graph G = (E, L, W ), where E is the group of expert, L the arcs be-
tween any two experts, and W the weights associated with each arcs representing
the strength of reliability between experts. As said above, the linguistic 2-tuple
computation model12 is applied to both represent and compute the values of the
relationships of trustworthiness between experts.

DEFINITION 9. A linguistic 2-tuple adjacency relationship RL on E is a relationship
in E × E with a membership function μRL

: E × E −→ S × [−0.5, 0.5).

3.2. SNA Linguistic Trustworthiness–Based Induced OWA Operators

Next, we will adapt the previous different measures of centrality to the case of
having 2-tuple linguistic inputs and their use to propose three new SNA linguistic
based IOWA operators: C ′l

iD − IOWA, PP − IOWA, and PR − IOWA. To illus-
trate their use and to carry out a comparative study between them, the following
example of the GDM problem with a social network linguistic 2-tuple trustworthi-
ness adjacency relationship will be solved.

Example 1. Let E = {e1, e2, e3, e4, e5, e6} be a set of experts that express their
opinions about the reliability of other experts’ judgments using the linguistic term

International Journal of Intelligent Systems DOI 10.1002/int
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1128 PÉREZ, MATA, AND CHICLANA

S = {s0, s1, s2, s3, s4} to assess experts’ trustworthiness as follows:

RL =

⎛
⎜⎜⎜⎜⎜⎝

− (sr
2, 0) (sr

1, 0) − − −
− − (sr

4, 0) − − (sr
3, 0)

(sr
1, 0) (sr

2, 0) − − − −
− − − − (sr

3, 0) (sr
1, 0)

(sr
2, 0) − (sr

2, 0) − − −
− (sr

3, 0) (sr
1, 0) − − −

⎞
⎟⎟⎟⎟⎟⎠

Notice that we have added the supscript r to the linguistic assessment of RL

to differentiate them from the linguistic preferences the experts provide on the set
of alternatives as described below. The graph representation of this sociomatrix is
given in Figure 3.

Figure 3. Graph representation of the sociomatrix.

Let us assume that the set off experts are to choose the best alternative from
X = {x1, x2, x3, x4, x5} and that they provide the following preference relations
using the same linguistic term set S as above:

P 1 =

⎛
⎜⎜⎜⎝

− (s3, 0) (s6, 0) (s5, 0) (s0, 0)
(s3, 0) − (s1, 0) (s2, 0) (s0, 0)
(s0, 0) (s5, 0) − (s0, 0) (s4, 0)
(s1, 0) (s4, 0) (s6, 0) − (s5, 0)
(s6, 0) (s6, 0) (s2, 0) (s1, 0) −

⎞
⎟⎟⎟⎠

P 2 =

⎛
⎜⎜⎜⎝

− (s2, 0) (s2, 0) (s2, 0) (s1, 0)
(s4, 0) − (s0, 0) (s0, 0) (s2, 0)
(s4, 0) (s6, 0) − (s1, 0) (s6, 0)
(s4, 0) (s6, 0) (s5, 0) − (s3, 0)
(s5, 0) (s4, 0) (s0, 0) (s3, 0) −

⎞
⎟⎟⎟⎠
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1129

P 3 =

⎛
⎜⎜⎜⎝

− (s3, 0) (s0, 0) (s1, 0) (s5, 0)
(s3, 0) − (s2, 0) (s3, 0) (s5, 0)
(s6, 0) (s4, 0) − (s5, 0) (s5, 0)
(s5, 0) (s3, 0) (s1, 0) − (s6, 0)
(s1, 0) (s1, 0) (s1, 0) (s0, 0) −

⎞
⎟⎟⎟⎠

P 4 =

⎛
⎜⎜⎜⎝

− (s6, 0) (s5, 0) (s4, 0) (s3, 0)
(s0, 0) − (s2, 0) (s6, 0) (s2, 0)
(s1, 0) (s4, 0) − (s2, 0) (s1, 0)
(s2, 0) (s0, 0) (s4, 0) − (s1, 0)
(s3, 0) (s4, 0) (s5, 0) (s5, 0) −

⎞
⎟⎟⎟⎠

P 5 =

⎛
⎜⎜⎜⎝

− (s1, 0) (s5, 0) (s5, 0) (s1, 0)
(s5, 0) − (s6, 0) (s5, 0) (s1, 0)
(s1, 0) (s0, 0) − (s0, 0) (s2, 0)
(s1, 0) (s1, 0) (s6, 0) − (s3, 0)
(s5, 0) (s5, 0) (s4, 0) (s3, 0) −

⎞
⎟⎟⎟⎠

P 6 =

⎛
⎜⎜⎜⎝

− (s2, 0) (s5, 0) (s1, 0) (s5, 0)
(s4, 0) − (s6, 0) (s2, 0) (s0, 0)
(s1, 0) (s0, 0) − (s4, 0) (s5, 0)
(s5, 0) (s4, 0) (s2, 0) − (s6, 0)
(s1, 0) (s6, 0) (s1, 0) (s0, 0) −

⎞
⎟⎟⎟⎠

We will assume the implementation of the fuzzy linguistic quantifier “most of”
represented by Q (r) = r

1
2 ,38 with the following weighting vector:

W = {0.41, 0.17, 0.13, 0.11, 0.096, 0.087} .

3.2.1. 2-Tuple Linguistic Trustworthiness In-Degree Centrality IOWA Operator

The in-degree centrality is also known as prestige.25 Prestige of a node is based
on counting only those nodes that are adjacent to it. The 2-tuple linguistic in-degree
centrality index definition is given below.

DEFINITION 10 (2-Tuple Linguistic In-Degree Centrality Index). Let G =(
E, L, WL

)
be a directed linguistic graph, E = {e1, . . . , en} be the set of nodes,

L = {
l1, . . . , lq

}
be the set of directed lines, or arcs, between pairs of nodes, and

WL = {
wL

1 , . . . , wL
q

}
be the set of linguistic assessments attached to the lines (or

arcs) with wL
i ∈ S. Let RL = (

rji

)
n×n

be the sociomatrix associated with G, then
the 2-tuple linguistic relative node in-degree centrality index is given as

C ′l
iD (ei) = 1

n − 1

∑
j

�−1 (
rji

)
.

International Journal of Intelligent Systems DOI 10.1002/int
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1130 PÉREZ, MATA, AND CHICLANA

As in the crisp case, experts who are directly supported by others will be more
important than those ones who are scarcely supported. From this definition, it is
possible to construct a new IOWA operator based on the 2-tuple linguistic in-degree
centrality index.

DEFINITION 11 (2-Tuple Linguistic Trustworthiness In-Degree Centrality IOWA Op-
erator). Let E = {e1, . . . , en} be a set of experts that provides preferences about
a set of alternatives, X = {x1, . . . , xm}, by means of the linguistic preference re-
lations,

{
P 1, . . . , P n

}
and RL be the sociomatrix representing the degree of trust

between experts, then a C ′l
iD − IOWA operator of dimension n is an IOWA operator

whose set of order inducing values is the set of the relative node in-degree centrality
indexes.

Example 2. Resolution of Example 1 with C ′l
iD − IOWA Operator.

1. Aggregation step. The experts’ 2-tuple linguistic in-degree centrality indexes are

C ′l
D = {0.60, 1.4, 1.6, 0, 0.6, 0.80}

Therefore, the ordering of experts is the following:

e3  e2  e6  e1 ∼ e5  e4

The collective 2-tuple linguistic preference relationships obtained using the C ′l
iD −

IOWA is

P =

⎛
⎜⎜⎜⎝

− (s3,−0.26) (s3,−0.45) (s2, 0.25) (s3, 0.23)
(s3, 0.26) − (s3,−0.48) (s3, −0.25) (s3, −0.34)
(s3, 0.45) (s3, 0.48) − (s3,−0.096) (s4, 0.40)

(s4,−0.25) (s3, 0.25) (s3, 0.096) − (s5, −0.37)
(s3,−0.23) (s3, 0.34) (s2,−0.40) (s1, 0.37) −

⎞
⎟⎟⎟⎠

2. Exploitation step. The 2-tuple linguistic quantifier-guided dominance choice degree
associated with each one of the alternatives is

QGDD = {(s3, −0.18) , (s3, −0.02) , (s3, 0.43) , (s4,−0.43) , (s3, −0.43)} .

Therefore, the collective ordering of alternatives obtained using the C ′l
iD − IOWA is

x4  x3  x2  x1  x5.

3.2.2. 2-Tuple Linguistic Trustworthiness Proximity Degree IOWA Operator

Prestige of a node can be extended by adding to the nodes that are adjacent
to it those other nodes that are in the influence domain of the node of interest, i.e.,
those nodes that are both directly and indirectly linked to it. This is known as the
node proximity degree.25,41

DEFINITION 12 (Node Proximity Degree). Let G = (E, L) be a directed dichotomous
graph, E = {e1, . . . , en} be the set of nodes, and L = {

l1, . . . , lq
}

be the set of

International Journal of Intelligent Systems DOI 10.1002/int
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1131

directed lines, or arcs, between pairs of nodes. The node proximity degree is given
as

PP (ei) = Ii/(n − 1)∑
j d(ej , ei)/Ii

where Ii is the number of nodes in the influence domain of the node ei , d
(
ej , ei

)
is

the distance the node ej is to ei , and the summation is just over those nodes in the
influence domain of the node ei

In the case of interest in this paper where arcs have a linguistic label associated
requires the implementation of such linguistic labels in the expression of d

(
ej , ei

)
.

This is proposed to be done by transforming the 2-tuple linguistic sociomatrix into
a crisp sociomatrix using the following α − cut approach.

DEFINITION 13. Let G = (
E, L, WL

)
be a directed linguistic graph, E =

{e1, . . . , en} be the set of nodes, L = {
l1, . . . , lq

}
the set of directed lines, or arcs,

between pairs of nodes, and WL = {
wL

1 , . . . , wL
q

}
be the set of linguistic assess-

ments attached to the lines (or arcs) with wL
i ∈ S. Given αl ∈ S, the following

function, fαl−cut : E × E −→ {0, 1}

fαl−cut

(
ei, ej

) =
⎧⎨
⎩

1 if μRL

(
ei, ej

) � αl

0 if μRL

(
ei, ej

) ≺ αl

− if μRL

(
ei, ej

)
is not defined

transform the directed linguistic graph G in a crisp graph.

The following introduces the IOWA operator based on the 2-tuple linguistic
proximity degree.

DEFINITION 14 (2-Tuple Linguistic Trustworthiness Proximity Degree IOWA Oper-
ator). Let E = {e1, . . . , en} be a set of experts that provides preferences about a set
of alternatives, X = {x1, . . . , xm}, by means of the linguistic preference relations,{
P 1, . . . , P n

}
and RL be the sociomatrix representing the degree of trust between

experts, then a PP − IOWA operator of dimension n is an IOWA operator whose
set of order inducing values is the set of the of proximity degrees obtained from the
crisp sociomatrix calculated from the application of the αl − cut function over RL.

Example 3. Resolution of Example 1 with the PP − IOWA operator.

1. Aggregation step. First, using αl = (s0, 0) the following crisp sociomatrix is derived
from the original matrix RL via the above αl − cut function:

R′
L =

⎛
⎜⎜⎜⎜⎜⎝

− 1 1 − − −
− − 1 − − 1
1 1 − − − −
− − − − 1 1
1 − 1 − − −
− 1 1 − − −

⎞
⎟⎟⎟⎟⎟⎠

International Journal of Intelligent Systems DOI 10.1002/int
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1132 PÉREZ, MATA, AND CHICLANA

The experts’ proximity degree is

PP = {0.625, 0.71, 0.83, 0, 0.2, 0.55}

Therefore, the ordering of experts is the following:

e3  e2  e1  e6  e5  e4.

The collective 2-tuple linguistic preference relationships obtained using the PP −
IOWA is

P =

⎛
⎜⎜⎜⎝

− (s3, −0.21) (s3, −0.42) (s2, 0.34) (s3, 0.12)
(s3, 0.21) − (s2, 0.36) (s3, −0.29) (s3, −0.35)
(s3, 0.42) (s4, −0.36) − (s3, −0.18) (s4, 0.40)

(s4,−0.34) (s3, 0.29) (s3, 0.18) − (s5, −0.36)
(s3,−0.12) (s3, 0.35) (s2, −0.40) (s1, 0.36) −

⎞
⎟⎟⎟⎠

2. Exploitation step. The 2-tuple linguistic quantifier–guided dominance choice degree
associated with each one of the alternatives is

QGDD = {(s3, −0.17) , (s3, −0.07) , (s3, 0.43) , (s4,−0.45) , (s3, −0.38)}

Therefore, the collective ordering of alternatives obtained using the PP − IOWA is

x4  x3  x2  x1  x5.

3.2.3. 2-Tuple Linguistic Trustworthiness Rank Prestige IOWA Operator

The aforementioned measures look at the in-degrees and the distance of the
nodes, respectively. The status or rank prestige on the other hand combines the
number of direct choices to a node with the status or rank of the nodes involved in
that choice.25,33,42

DEFINITION 15 (Node Rank Prestige). Let G = (
E, L, WL

)
be a directed weighted

graph, E = {e1, . . . , en} be the set of nodes, L = {
l1, . . . , lq

}
the set of directed

lines, or arcs, between pairs of nodes, and WL = {
wL

1 , . . . , wL
q

}
be the set of weights

attached to the lines (or arcs). Let RL = (
rji

)
n×n

be the sociomatrix associated with
G, then the node rank prestige index is given as

PR (ei) = r1iPR (e1) + r2iPR (e2) + · · · + rliPR (el) + · · · + rniPR (en)

In the case of having linguistic weights, the linguistic sociomatrix is trans-
formed into a numeric one by means of function �−1.

Therefore, the last operator we are going to present takes into account the status
or the rank of the actors involved. Therefore, we have the following expression for
the 2-tuple linguistic node rank prestige index:

PR (ei) = �−1 (r1i) PR (e1) + · · · + �−1 (rli) PR (el) + · · · + �−1 (rni) PR (en)

The following introduces the corresponding 2-tuple linguistic IOWA operator.

International Journal of Intelligent Systems DOI 10.1002/int
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LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1133

DEFINITION 16 (2-Tuple Linguistic Trustworthiness Rank Prestige IOWA Operator).
Let E = {e1, . . . , en} be a set of experts that provides preferences about a set of
alternatives, X = {x1, . . . , xm}, by means of the linguistic preference relations,{
P 1, . . . , P n

}
and RL be the sociomatrix representing the degree of trust between

experts, then a PR − IOWA operator of dimension n is an IOWA operator whose
set of order inducing values is the set of the of rank prestige degrees.

If we compute all the rank prestige degrees, we will obtain n equations, all of
which depend on all the indexes themselves:

PR (e1) = �−1 (r11) PR (e1) + · · · + �−1 (rn1) PR (en)
PR (e2) = �−1 (r12) PR (e1) + · · · + �−1 (rn2) PR (en)
...
PR (en) = �−1 (r1n) PR (e1) + · · · + �−1 (rnn) PR (en)

We have a system of n linear equations with n unknowns. To resolve the system,
we place the set of rank indexes in a vector p = (PR (v1) , PR (v2) , . . . , PR (vn))T .
Then, we can rewrite the system of equations as

p = X′T p

This equation is identical to a characteristic equation in which p is an eigenvector
of X′ corresponding to the eigenvalue value 1. Katz42 noted that this system has no
finite solution. Therefore, to find a solution, one must put some constraints on either
X′T or on the indexes themselves. Following Katz’s recommendations to solve this
system of equations, the sociomatrix X′ is standardized to have column sums of
unity. That way, the highest eigenvalue of the standardized sociomatrix X′ will be
the unity and the eigenvector associated with this eigenvalue will be the vector of
rank prestige degrees, p.

Example 4. Resolution of Example 1 with thePR − IOWA Operator.

1. Aggregation step. The application of Katz’ m approach leads to the following experts’
rank prestige degrees:

PR = {0.59, 2.34, 1.78, 0, 0, 1}

Therefore, the ordering of experts is the following:

e2  e3  e6  e1  e4 ∼ e5

International Journal of Intelligent Systems DOI 10.1002/int
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1134 PÉREZ, MATA, AND CHICLANA

Table III. Results of the different IOWAs.

Experts’ ordering Solution

C′l
iD − IOWA e3  e2  e6  e1 ∼ e5  e4 x4  x3  x2  x1  x5

PP − IOWA e3  e2  e1  e6  e5  e4 x4  x3  x2  x1  x5

PR − IOWA e2  e3  e1  e6  e5  e4 x4  x3  x2  x1  x5

The collective 2-tuple linguistic preference relationships obtained using the PR − IOWA
is

P =

⎛
⎜⎜⎜⎝

− (s3,−0.47) (s3, 0.039) (s2, 0.49) (s2, 0.26)
(s3, 0.47) − (s2, −0.021) (s2, −0.0098) (s2,−0.067)

(s3, −0.039) (s4, 0.021) − (s2, −0.053) (s5,−0.34)
(s4, −0.49) (s4, 0.0098) (s4, 0.053) − (s4,−0.059)
(s4, −0.26) (s4, 0.067) (s1, 0.34) (s2, 0.059) −

⎞
⎟⎟⎟⎠

2. Exploitation step. The 2-tuple linguistic quantifier–guided dominance choice degree
associated with each one of the alternatives is

QGDD = {(s3, −0.22) , (s3, −0.17) , (s3, 0.221) , (s4, −0.34) , (s3, 0.18)}

Therefore, the collective ordering of alternatives obtained using the PP − IOWA is

x4  x3  x5  x2  x1.

3.3. Comparison

In Table III, we can see the different solutions obtained by the three IOWAs
presented in this paper.

In all there cases, e4 is listed as last in terms of importance whereas e3 and e2

are listed in the first two positions, although the order is reversed for PR − IOWA
when compared to C ′l

iD − IOWA and PP − IOWA. The cause of this discrepancy
is due to the assignation by PR − IOWA of a status to each node, which is inferred
from the status of the nodes that support it and the strength of such support. In
this example, the difference that appears between the final ranking of e2 and e3 is
mainly caused by nodes e6 and e1 as they show a greater support for e2 than for
e3. The first two IOWAs, C ′l

iD − IOWA and PP − IOWA, also differ in relation
to the ordering of experts e6 and e1. On the one hand, the support node e6 receives
from nodes e4 and e2 is greater than the supported received by e1 from e5 and e3,
and this explains why C ′l

iD − IOWA lists of e6 as more important than e1. On the
other hand, as PP − IOWA also takes into account influence domain of a node
it is worth to notice here that the influence domain of node e1 is higher than the
influence domain of e6, which explains why the ordering of importance is reversed
in this case with respect to these two nodes. In all cases, though, the final rankings
of the alternatives coincide although this cannot be generalized to all cases as the
final ranking very much depend on the actual values of the linguistic preferences.
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4. CONCLUSIONS

In this paper, we have studied the use of SNA in group decision-making prob-
lems. We have defined three new IOWA operators, C ′l

iD − IOWA, PP − IOWA,
and the PR − IOWA, that are applicable to the case of dealing with experts linguis-
tic information on the degree of reliability of other experts’ judgments within the
2-tuple computational framework. The first IOWA operator, C ′l

iD − IOWA, is based
on the node in-degree centrality index and presents the collective reliability gath-
ered by the adjacent nodes to that node. The second IOWA operator, PP − IOWA,
takes into account not only the adjacent nodes but also the nodes that are linked
to it indirectly. The third one, PR − IOWA, computes the ranks or status of the
nodes based on the nodes that have chosen them as a reliable source. The use of one
operator or another will obviously depend on the nature of the problem and/or group
of experts, as well as the type of importance degree to implement in the resolution of
the GDM problem. In any case, the main advantage of these threes IOWAs is that the
importance of the experts’ judgments is obtained from the experts’ themselves and,
therefore, the assumption of these has been provided beforehand and is superflu-
ous. These operators make possible to aggregate the information by implementing
the experts’ social interactions and judgments, and therefore can be considered as
more flexible and realistic since the more reliable the experts judgments are, the
more support by partners they will receive. However, one of the limitations of this
proposal is that we only deal with positive trust relationships, so there is a need to
extend this study to manage both positive and negative feedbacks about experts’
trustworthiness.
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32. Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O. Cen-
trality indices. In: Network analysis. Berlin: Springer; 2005. pp 16–61.

33. Seeley JR. The net of reciprocal influence; a problem in treating sociometric data. Can J
Psychol 1949;III(4):234–240.

34. Wang X, Wu X, Abdel-Aty M, Tremont PJ. Investigation of road network features and safety
performance. Accident Anal Prev 2013;56:22–31.

35. Brunelli M, Fedrizzi M. A fuzzy approach to social network analysis. In: 2009 Int Conf Adv
Soc Netw Anal Min, Athens, Greece, July 20–22. (ASONAM 2009). pp 225–230.

36. Fan T-G, Liau C-J, Lin T-Y. Positional analysis in fuzzy social networks. In: IEEE Int Conf
Granular Comput, Silicon Valley, CA, November 2–4, 2007. pp 423–428.

International Journal of Intelligent Systems DOI 10.1002/int

 1098111x, 2014, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.21686 by U

niversidad D
e Jaen C

am
pus L

as L
agunillas, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LINGUISTIC TRUSTWORTHINESS–BASED IOWA OPERATORS 1137

37. Perez LG, Chiclana F, Ahmadi S. A social network representation for collaborative filtering
recommender systems. In: 11th Int Conf Intell Syst Des Appl, Cárdoba, Spain, November
22–24, 2011. pp 438–443.

38. Yager RR. Quantifier guided aggregation using OWA operators. Int J Intell Syst
1996;11(1):49–73.

39. Mitchell HB, Estrakh DD. A modified OWA operator and its use in lossless DPCM image
compression. Int J Uncertain Fuzziness Knowl-Based Syst 1977;5:429–436.

40. Orlovsky SA. Decision-making with a fuzzy preference relation. Fuzzy Sets Syst
1978;1(3):155–167.

41. Lin N. Foundations in social research. New York: McGraw-Hill; 1976.
42. Katz L. A new status index derived from sociometric analysis. Psychometrika

1953;18(1):39–43.

International Journal of Intelligent Systems DOI 10.1002/int

 1098111x, 2014, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.21686 by U

niversidad D
e Jaen C

am
pus L

as L
agunillas, W

iley O
nline L

ibrary on [13/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


