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The miniaturization and price reduction of sensors have encouraged the proliferation of smart environments, in which mul-
titudinous sensors detect and describe the activities carried out by inhabitants. In this context, the recognition of activities of daily
living has represented one of the most developed research areas in recent years. Its objective is to determine what daily activity is
developed by the inhabitants of a smart environment. In this field, many proposals have been presented in the literature, many of
them being based on ad hoc ontologies to formalize logical rules, which hinders their reuse in other contexts. In this work, we
propose the use of class expression learning (CEL), an ontology-based data mining technique, for the recognition of ADL. This
technique is based on combining the entities in the ontology, trying to find the expressions that best describe those activities. As far
as we know, it is the first time that this technique is applied to this problem. To evaluate the performance of CEL for the automatic
recognition of activities, we have first developed a framework that is able to convert many of the available datasets to all the
ontology models we have found in the literature for dealing with ADL. Two different CEL algorithms have been employed for the
recognition of eighteen activities in two different datasets. Although all the available ontologies in the literature are focused on the
description of the context of the activities, the results show that the sequence of the events produced by the sensors is more relevant
for their automatic recognition, in general terms.

1. Introduction

The advancement of technology allows developing smaller
and cheaper sensors. This facilitates the creation of smart
environments, where many sensors capture the actions
carried out by their inhabitants. The objective of these smart
environments is to increase the safety of the inhabitants, to
enhance the efficiency in the development of the activities, or
simply, to improve the users experience [1]. Based on these
trends, as well as the recent emergence and popularity of
smart environments and pervasive computing, multiple
approaches for the automatic recognition of activities of
daily living (ADL) have been developed.

In this case, the problem consists of determining the
activities that the inhabitants of the smart home are per-
forming based on the information provided by the set of
sensors. It is not a trivial task because (i) many of the ac-
tivities involve the activation of multiple shared sensors, (ii)
there are also activities in which there is no single sensor
activation sequence, or (ili) there may be overlapped ac-
tivities taking place at the same time [2].

The automatic recognition of such ADL is usually based
on artificial intelligence tools and techniques. In this field,
many proposals have been presented in the literature, many
of them being based on logical rule systems. Among them,
ontology-based approaches have provided very successtul
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results in both data-driven approaches (DDAs) [3, 4] and
knowledge-driven approaches (KDAs) [5-7]. DDA usually
relies on machine learning techniques in which a preexistent
annotated dataset of user behaviors is required. A training
process is carried out to build an activity model which is
followed by a testing process that evaluates the general-
ization of the model in classifying unseen activities [4]. With
KDA, an activity model is built through the incorporation of
arich prior domain knowledge gleaned from the application
domain, using knowledge engineering and knowledge
management techniques [1].

There is a wide variety in types of rules engines and
general logic processors or “reasoners.” The high formal-
ization of ontologies coupled with description logic (DL)
reasoners allows us to extract high-quality knowledge,
which has not been given explicitly, through a process of
automatic reasoning. However, there is no standard model
for the description of ADL using ontologies. The lack of
a standard model requires the creation of ad hoc ontologies
for each particular case, whose resulting ontologies are
difficult to reuse due to the incorporation of specific
context-aware information and how the ADL are described
in each work. In fact, all the ontologies available in the
literature are mainly focused on describing the context in
which activities happen. They usually include information
about the location and the type of the sensors, as well as
information about the inhabitant who were doing the
activity. In some cases, there is even a distinction between
complex activities and simpler actions. However, none of
the available ontologies in the literature considers the order
in which events occur. Aware of this situation, we proposed
an ontology in a previous work specifically designed to
represent the sequences of sensor events [3, 8]. It was,
actually, the only information about activities considered in
the ontology. No more information about the activities or
the sensors was included.

In this paper, the ontology that we previously proposed
is extended to include more information about the contexts
in which the activities happen. The ontology has been de-
veloped around a core ontology in which the basic entities
for describing ADL are defined. These entities constitute the
minimum necessary concepts and relations to properly
represent the ADL as sequences of events detected by the
sensors in the smart environment. When necessary, the core
ontology may be extended by importing other ontologies,
which can be used to describe the type of the sensors, their
locations, or the actions the ADL are composed of, for
example. This modular approach reduces the amount of
entities the reasoners have to deal with and improves the
efficiency of the whole process.

Secondly, in this work, we propose and evaluate the use
of class expression learning (CEL) for the recognition of
ADL. This technique basically combines all the concepts and
properties in the ontology, trying to find the expressions that
best describe each of those activities. In the case of the OWL
ontology, the CEL algorithms combine the concepts and
properties using the DL operators. Regarding the experi-
ment in this work, two different CEL algorithms have been
employed for the recognition of eighteen activities in two
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well-known datasets. CEL is a DDA technique that, as far as
we know, has been applied to this problem the first time.

The remainder of the paper is structured as follows: in
Section 2, we introduce some notions about ontologies that
are needed to understand our proposal. Some related works
in the literature are also reviewed in this section. Section 3
introduces the CEL technique. In Section 4, we describe the
general architecture of the framework and the extended
version of the ontology we have developed. Section 5 de-
scribes the experiment that we have conducted to evaluate
the performance of different ontologies and CEL algorithms
for the recognition of the activities. In Section 6, we analyze
and discuss the results obtained in the experiment. Finally,
conclusions are presented in Section 7.

2. Background

In this section, some concepts related to ontologies are
reviewed and some ontology-based approaches for data
mining are introduced. Also, some related works are
presented.

2.1. Ontologies. Ontologies are used to provide structured
vocabularies that explain the relations among terms,
allowing an unambiguous interpretation of their meaning.
Ontologies are formed by concepts (or classes) which are,
usually, organized in hierarchies [9, 10]. The ontologies are
more complex than taxonomies because they not only
consider the type of relations, but they also consider other
relations, including part of or domain-specific relations [11].

In an ontology, the symbol T stands for the top concept
of the hierarchy. All other concepts are subsets of T. The
subsumption relation is usually expressed using the symbol
AC B, meaning that concept A is a subset of concept B.
Concepts can also be specified as logical combinations of
other concepts.

The semantics of operators to combine concepts is
shown in Table 1, where C,C,,C, C T, R is a relation among
concepts, A’ is the domain of interpretation, and I is an
interpretation function [12].

An ontology expresses what individuals, also called
objects, belong to which concepts. Moreover, it is possible to
declare properties to relate individuals, organizing them into
a hierarchy of subproperties and providing domains and
ranges for them. Usually, the domains of properties are
concepts and ranges are either concepts or data types. A
declared property can be defined as transitive, symmetric,
functional, or the inverse of another property (R7).

The main advantage of ontologies is that they codify
knowledge and make it reusable by people, databases, and
applications that need to share information [11, 13]. Due to
this, the construction, the integration, and the evolution of
ontologies have been critical for the Semantic Web [14-16]
or Internet of the Things [17, 18]. However, obtaining
a high-quality ontology largely depends on the availability of
well-defined semantics and powerful reasoning tools.

Regarding Semantic Web, a formal language is OWL
[19, 20], which is developed by the World Wide Web
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TaBLE 1: Semantics of OWL logical operators.

DL .
Semantics

syntax
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Consortium (W3C). Originally, OWL was designed to
represent information about categories of objects and how
they are related. OWL inherits characteristics from several
representation languages families, including DL and Frames
basically. OWL is built on top of the Resource Description
Framework (RDF) and RDF Schema (RDES). RDF is a data
model for describing resources and relations between them.
RDES describes how to use RDF to describe application and
domain-specific vocabularies. It extends the definition for
some of the elements of RDF to allow the typing of prop-
erties (domain and range) and the creation of subconcepts
and subproperties. The major extension over RDEFS is that
OWL has the ability to impose restrictions on properties for
certain classes.

The design of OWL is greatly influenced by DL, par-
ticularly in the formalism of semantics, the choice of lan-
guage constructs, and the integration of data types and data
values.

2.2. Related Works. In the literature, there are many pro-
posals that employ ontologies for the recognition of ADL. In
previous works, we also proposed an ontology for the rep-
resentation of ADL [3, 8]. However, this ontology was focused
solely on the identification of the events produced by the
sensors, ignoring the rest of the information about the ac-
tivities, such as the types of the sensors involved or the rooms
where they were located. Actually, there were only three
concepts defined in that ontology: Activity, Event, and Sensor.

Among all available proposals, two different main ap-
proaches are distinguished: KDA-based approaches and
hybrid approaches. In KDA-based approaches, the ontol-
ogies usually contain rules to correctly identify different
kinds of activities. Those rules are usually handcrafted and
expressed in the form of DL axioms which can be natively
processed by OWL reasoners. Some other proposals make
use of external, custom rule systems to identify the corre-
sponding ADL. As the logic behind ontologies is very rigid,
other hybrid approaches employ ontological reasoning
coupled with statistical reasoning in order to address the
problem. Symbolic reasoning in these approaches is usually
employed to refine the statistical inference. Table 2 sum-
marizes the most important features of the ontologies re-
vised in this section.

2.2.1. KDA-Based Approaches. SPHERE ADL [21] is an
ontology that was specifically developed in the University of

Bristol for representing their collected datasets in the context
of the SPHERE (Sensor Platform for HEalthcare in Resi-
dential Environment) project. The SPHERE architecture
attempts to combine different sensing technologies to
provide a generic platform for ADL recognition. The on-
tology is written in OBO format and contains one hundred
sixty-five predefined activities. ADL are organized hierar-
chically, grouping them into categories such as Health
condition, Social interaction, or Atomic home activities.
Atomic home activities capture the low-level activities or
simple actions which form the basic building blocks for
other activities. These include actions such as open door or
cupboard close. Since each of the Atomic home activities is
associated with a unique physical sensor, we may treat them
as an abstraction of the sensor data stream. It also in-
corporates other types of entities that are specific for the
datasets, such as the person who is performing the activity
and his or her posture. All defined properties are flat, i.e.,
without any special feature (inverse, functional, etc.), be-
cause the identification of ADL is done in an external, ad hoc
rules system [28] implemented in Jess, a Java rule-based
system.

The ontology proposed in [7] is oriented towards the
development of an ADL monitoring system which can in-
teract with the users through mobile networks. It includes
concepts and properties to implement a message service
between the user and the monitoring system. It is one of the
few ontologies in which properties are enriched with their
ranges and domains, and some of them have been declared
as functional or inverse properties. This facilitates the au-
tomatic discovering of information by reasoners. Un-
fortunately, the ontology is not publicly available, so it is not
possible to study it in depth.

Noor et al. [23] proposed one of the few ontologies that is
able to deal with sensor events. They investigated the fusion
of wearable devices and ambient sensors for recognizing
ADL. They propose a set of rules that must be fulfilled by the
activities in order to be considered of one type or another.
The developed ontology also differentiates among simple
actions and composite activities. An activity such as “pre-
paring meal” could be defined as a sequence of actions such
as “taking pot,” “opening microwave oven door,” and
“closing microwave oven door.” Furthermore, other features
of the context are considered when describing activities,
such as the location of the resident or his or her posture.
They introduced a concept called Interval to model a context
by specifying the associated sensor states. The intervals may
be related to their preceding intervals by using a transitive
property. However, it is not possible to specify the order in
which sensor events occur in the intervals.

SOCOM [27] is a generic multisensor-oriented ontology
for context-aware computing. It has not been specifically
developed for ADL recognition, but it incorporates some
concepts that may be used for this task. It is focused on
sensors description, providing a comprehensive, generic
sensor category classification and sensor properties fre-
quently used in different context-aware systems. SensorML
[29] is used as the base for describing metainformation
about sensors and their capabilities. Sensors are first
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TaBLE 2: Features of existing ADL ontologies.
Salguero et al. ~ SPHERE ~ COSAR  Noor  Chen and Nugent  Bae Hois ODI  SOCOM
(3] [21] [22] [23] [24] [7] [25] [26] [27]
Approach DDA KDA Hybrid KDA KDA/hybrid KDA KDA  KDA KDA
Format OWL OBO OWL OWL OWL OWL OWL OWL OWL
Sensor events v v v v v 4
Ordered events v
Overlapped v v
activities
Multiagent v v
Locations 4 v v v v v 4 4
Sensors hierarchy v v v v v
Composite v v v
activities
Posture v v 4
Enriched properties v v v
Available v v v v

*Although sensor events are not explicitly defined, we can consider atomic activities as such in this model since each atomic activity is directly related to the

activation or deactivation of a single sensor.

categorized into physical sensors and logical sensors. A
physical sensor is a physical device that captures or detects
the environmental elements in real world, such as GPS or
flow sensors. A logical sensor is a data source that indirectly
interacts with the physical layer, and it often has no com-
putational ability, such as calendars or battery status. Logical
sensors may combine different physical sensors and other
logical sensors to form a higher-level context, which may be
seen as the sensed phenomenon. In this model, the Activity
concept is a specialization of the Entity concept, as well as the
concepts Person or Event. Sensors are deployed at entities,
and entities characterize contexts, providing their location
and temporal and quality information.

2.2.2. Hybrid Approaches. Hybrid approaches perform
probabilistic reasoning or employ external rules systems,
different than DL reasoning. The work proposed in [5] is
a clear example. They defined an OWL ontology to formally
model the smart home environments and the semantics of
activities in two well-known datasets. Artifacts in the smart
homes are organized in a hierarchy, Stove being a subclass of
Cooking instruments, for example. The ontology also models
sensors and the operation that they detect; e.g., a power
sensor attached to the electric stove detects the operation
turning on the stove. In turn, this operation is a subclass of
Cooking instrument. They translate their ontological model
into a Markov logic network (MLN) and perform proba-
bilistic reasoning to refine candidate activity instances.
Correlations among sensor events and activities are com-
puted to infer, for each event, the most probable activity
generating it. A set of ad hoc rules are defined in order to
derive necessary conditions about the sensor events that
must occur during the execution of a specific activity, such as
the following: “since the stove is the only cooking instrument
in the home, and a sensor is available that detects the usage
of the stove, then each instance of preparing hot meal ex-
ecuted in the home must necessarily generate an event
from that sensor.” Rules may also consider other necessary

conditions regarding time and location. This includes
constraints on the duration of the activity instance and
dependencies between activity and location. As can be as-
sumed, these rules are very specific and they only have sense
in the context of particular datasets. They are plenty of
references to artifacts and conditions that are only available
in those datasets. The same ontology is also used by Gayathri
et al. to propose another MLN-based hybrid approach for
ADL recognition [30]. The sensors data stream is first de-
scribed in form of ontology. The information in the ontology
is then automatically transformed to first-order logic ax-
ioms. An open source tool for MLN is then used to perform
weight learning and carry out probabilistic reasoning over
first-order logic axioms. The ontology is actually an ex-
tension of the COSAR ontology [22], which was originally
intended to model context data and human activities. The
extension mainly regarded the definition of a few classes for
activities and artifacts that were not considered in the
COSAR ontology. A limitation of this ontology is that the
temporal information and duration of the activities are not
effectively modeled.

Chen etal. [6] developed an ontology for the modeling of
ADL that has been employed for both KDA and hybrid
approaches [31]. They introduced the concept of context
modeling to relate temporal and spatial information to
activities performed by inhabitants. Spatial contexts include
the location and the surrounding entities, such as rooms,
furniture, and appliances. The event contexts are used to
record the state changes of sensors, while the environmental
contexts contain information about temperature humidity
and other weather conditions. Temporal context indicates
the time and/or duration of activities. The ontology does not
explicitly record all the sensors events. Instead, the se-
quences of sensor activations are aggregated to generate
primitive activities performed by the user at a specific time
point. Composites ADL are then defined combining those
primitive activities, in the same way as simple actions and
complex activities are proposed by Noor et al. [23]. Multiple
activity classes are defined to represent the activities in some
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datasets, and they are structured in a hierarchical tree.
Classes near the root of the tree describe generic activities,
while classes near the leaves include many more properties
and represent more specific activities.

Hois [25] proposed a set of ontologies for the description
of ambient-assisted living environments. Those ontologies
allow the description of intelligent environments from
different points of view, including information related to
architectural building elements, such as walls or windows;
functional information of room types and sensors; user
actions, such as cooking or taking a shower; types of fur-
niture or devices inside the smart environment; and re-
quirements and constraints of the assisted living system,
such as temperature regulations. The ontologies have been
developed following a modular approach, which allows the
selection of application-specific ontologies as necessary.
However, the ontologies are not specially focused on the
recognition of ADL but towards the development of ap-
plications for the automation of smart environments, such as
control of lighting, air conditioning, or access restriction.
The proposed application, for example, monitors the tem-
perature sensors and evaluates the class descriptions from
time to time. When abnormal situations are detected (class
restrictions are not satisfied), actions to improve the comfort
of the inhabitants are suggested. Unfortunately, the ontol-
ogies are not currently available, so it is not possible to
analyze them with more detail.

Previous works on the Open Data Initiative (ODI)
framework have involved the development of homeML,
a standard vocabulary for describing experiments in smart
environments. However, they have recently proposed the
use of an ontological model for replacing the homeML
vocabulary [26]. The ontology proposed is actually a model
for describing experiment metadata. The sensor data stream
is stored in an external file using the eXtensible Event Stream
(XES) standard for event data storage. The ontology is used
to describe the entities involved in the experiment, such as
the rooms, the inhabitants, or the activities being performed.
The ontology distinguishes between single participant ac-
tivities and multiparticipant activities, as well as between
fixed location and mobile devices. Typical queries the on-
tology might answer include: Which ADLs have been
considered within the experiments? Which experiments
involve recording events in a kitchen?

As we have discussed in this section, there are many
ontologies related to the recognition of ADL. However, the
main lack is that just few of them are really available. In
addition, in many of the available ontologies in the literature,
the stream of sensor events is aggregated into higher-level
actions, which hinger the automatic recognition of patterns.
In some other cases, the ontologies proposed by other au-
thors are ontologies created ad hoc and contain specific
information about the particular dataset that is being used,
so they are difficult to be reused. Usually, most of these
ontologies emphasize the description of the specific context
in which the ADL are developed rather than the description
of the activities themselves. For example, they contain classes
and properties to describe and classify locations and sensors
as well as information about the people who are performing

them. Another important problem is that none of the on-
tologies proposed by other authors consider the order re-
lation among the events produced in the sensors. The events
are only related to the time interval in which they occur, but
there is no order relationship among the events in the in-
terval. The ontology we have proposed in previous works [3]
employed the opposite approach, where the description of
activities as sequences of events produced by the sensors
were considered, ignoring the contextual information. For
this reason, we propose in this work a generic ontology that
allows the description of ADL as sequences of sensors events
as well as including other kinds of contextual information of
activities, such as their location or the posture of the
inhabitants.

3. Class Expression Learning

A reasoner is an application that is able to infer logical
consequences from a set of asserted facts or axioms. DL
reasoning algorithms are often used in practice to compute
a classification of a knowledge base %, that is, to determine
whether # £ AC B for each pair of atomic concepts A and B
occurring in & [32]. Reasoners may also be used to determine
whether or not an ontology is consistent, to perform the
classification of the individuals, and much more. However,
the reasoners are not designed to suggest the existence of new
atomic concepts nor more complex class descriptions. For this
reason, researchers have investigated the use of Inductive
Logic Programming (ILP) for learning logical theories since
the mid 80s [33]. Among them, Maedche and Staab [34]
coined the concept of “ontology learning” almost twenty years
ago in the context of the automatic generation of ontologies.
The existing approaches for ontology learning can be roughly
classified into the following [35]:

(i) Ontology Learning from Text approaches mostly
focus on the automatic generation of taxonomies
from texts, employing lexicosyntactic patterns for
hyponymy detection [36] or named-entity classifi-
cation [37], for example.

(ii) Linked Data Mining approaches try to find mean-
ingful patterns in RDF graphs [38].

(iii) Concept Learning in Description Logics and OWL
approaches are usually based on Inductive Logic
Programming methods, and their goal is to find new
relevant class descriptions by means of supervised
machine learning algorithms [35, 39].

(iv) Crowdsourcing approaches combine the power of
machine-based approaches and humans to con-
struct more complete and accurate taxonomies [40].

CEL technique falls into the category of concept learning
in description logics and OWL. Its objective is to determine
new class descriptions for concepts that may be used to
classify individuals in an ontology according to some cri-
teria. More formally, let a concept name Target, a knowl-
edge base % with sufficient number of named individuals
N; (not containing Target), and sets E* and E~ be given,
where
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(i) E¥ < Nj is the set of individuals in % such that
x € E" = x € E! in every interpretation I of the
knowledge base

(ii) E- S Nj is the set of individuals in % such that
x € E-=> x ¢ E! for at least one interpretation I of
the knowledge base

The learning problem is to find a concept C such that
Tar get does not occur in %, and for %' = # U {Target = C},
we have &' EE* and % j# E-, where % E S means that every
element in S follows from % and % }# S means that no element
in S follows from % [41].

As it can be seen, the CEL problem is actually a kind of
supervised learning problem. However, the features of the
instances that are used in classic supervised learning algo-
rithms are initially unknown for this problem. They are
dynamically generated as the CEL algorithm moves along
the search space S, composed of all the possible concepts in
. A key point of many ILP approaches are the refinement
operators, which are used to traverse the search space [41].

Definition 1 (refinement operator). A quasi-ordering is
a reflexive and transitive relation. In a quasi-ordered space
(S, <), a downward (upward) refinement operator p is
a mapping from S to 25 such that for any C € S, we have that
C' € p(C) implies C' < C(C<C"). C' is called a specializa-
tion (generalisation) of C.

Definition 2 (refinement chain). A refinement chain of re-
finement operator p of length n from a concept C to a concept
D is a finite sequence C,,C;,...,C, of concepts, such that
C=CyC ep(Cy, Cyep(Cy),....C,ep(C,_), D=C,.
This refinement chain goes through E iff thereis an i (1 <i <n)
such that E = C;. We say that D can be reached from C by p if
there exists a refinement chain from C to D.

Definition 3 (downward and upward cover). A concept C is
a downward cover of a concept D iff CC D and there does
not exist a concept E with CCEC D. A concept C is an
upward cover of a concept D iff DC C and there does not
exist a concept E with DC ECC.

Theoretical investigations on refinement operators have
identified desirable properties for them to have, which
impact their performance. These properties thus provide
general guidelines for the definition of suitable operators
[41].

Definition 4 (properties of DL refinement operators). A re-
finement operator is called as follows:

(i) finite iff p(C) is finite for all concepts C.

(ii) redundant iff there exists a refinement chain from
a concept C to a concept D, which does not go
through some concept E, and a refinement chain
from C to a concept weakly equal to D, which does
go through E.

(iil) proper ift for all concepts C and D, D € p(C) implies
C=D.
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(iv) ideal iff it is finite, complete (Definition 5), and
proper.

Definition 5 (downward refinement operator). A downward
refinement operator is called

(i) complete ift for all concepts C and D, with Cc D, we
can reach a concept E with E = C from D by p.

(ii) weakly complete iff for all concepts CC T, we can
reach a concept E with E = C from T by p.

(iii) minimal iff for all C, p (C) contains only downward
covers and all its elements are incomparable with
respect to C.

The corresponding upward refinement operator is de-
fined dually.

In addition to this operator, it is also necessary to es-
tablish a search strategy in S that maximizes the searched
area and avoid the analysis of already visited areas. In lit-
erature, we can find several proposed search strategies
[42, 43], which are usually based on graph exploration al-
gorithms. There are also some of them that are based on
computational intelligence, like genetic algorithms [41],
where the refinement operator consists of the combination
of existing classes in the knowledge base. Badea et al.
invented a refinement operator for &/ &% and proposed to
solve the CEL problem by using a top-down approach [44].
The YINYANG tool combines both techniques for con-
structing ontologies in a semiautomatic fashion [45].
However, those algorithms tend to produce very long and
hard-to-understand class expressions. The algorithms
implemented in the DL-Learner tool try to overcome this
problem by biasing them towards the generation of shorter
class expressions [39]. DL-FOIL, which is based on a mixture
of upward and downward refinement of class expressions,
employs a similar approach [46]. Some extension of the
latter have been proposed for dealing with fuzzy extensions
of DL [47] or to avoid suboptimal solutions due to the kind
of refinement operators being used [48]. Another approach
to concept learning is based on bisimulation [49, 50]. Instead
of trying to specialize or generalize solutions, the bisimu-
lation method exploits a set of predefined selectors, i.e., tests
that are used to partition the set of individuals.

Algorithm 1 represents a very basic implementation of
a CEL algorithm. First, the algorithm gets the current class
description that best fit C* and C™. Actually, the heuristic for
selecting the best class descriptions depends on the specific
algorithm. They may consider many factors, such as the
accuracy for classifying positive and negative instances or
the length of the class expression. The best class description
found is then combined with all of the other class de-
scriptions in the knowledge base using a selected refinement
operator. The process is restarted until the stopping con-
dition is met. In this case, the algorithm stops when a given
number of class descriptions are generated.

Implementations for the OCEL (OWL class expression
learner), ELTL (EL tree learner), and CELOE (class ex-
pression learning for ontology engineering) can be found in
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[51]. OCEL is the standard learning algorithm employed in
the DL-Learner tool. ELTL is an algorithm optimized for
learning &% concepts, and CELOE is an optimized version
of OCEL.

Example 1. As an example, let us suppose the existence of
a family ontology O, having a sufficient number of in-
dividuals, where the concepts Male, Female, Parent, and
Child and the property hasChild are defined conveniently.
Let us suppose we want to automatically find a description
for a new concept called Father.

(1) First, the user defines the Father™ set by selecting
those individuals in O that should be classified as
Father. The Father™ set contains individuals that
should be classified as —Father. Obviously, the
Father concept should not be part of the ontology at
this point of the process.

(2) Using a refinement operator p, the search space S is
traveled. During this travel, a set of class de-
scriptions Z C S is generated, where the classes and
properties in O are combined using the DL oper-
ators. Following the example of the family ontology,
the class descriptions Z = {71 Male, Male N Female,
3 hasChild - T,V hasChild - (1 ( Parent U Child))}
may eventually be generated.

(3) For each class description z; € Z, the sets z! and
(71z,)" are calculated. The process is repeated again
until some z; is found such that z! = Father® and
(712,)" = Father™, after a given period of time has
passed or a given number of class expressions have
been generated. CEL algorithms usually give the class
descriptions that best approximate the Father con-
cept as result in the latter cases.

If the process runs for enough time, the CEL
algorithm will eventually find a class description
z; = Malen3 hasChild - T in the second step. Assuming the
individuals in O are correctly annotated, z! = Father* and
(712,)" = Father™, so the process will stop and z; will be
proposed as a solution.

4. A Framework for the Mining of ADL

In this section, we describe our generic ontology-based
framework for the mining of activities of daily living (ADL)
(OMA), which is composed of a set of extensible applications
and an ontology for the description of the activities (all the
applications and ontologies have been published under the
GPL open source license at https://sourceforge.net/projects/
adl-mining-framework/). First, in this section, we describe
the architecture of the framework and how the applications
collaborate to produce the description of the activities in the
form of an ontology. Next, we detail the core of the ontology,
which contains the minimum entities necessary for the
description of any activity in any dataset. Finally, we in-
troduce some of the extensions we have implemented to add
information about the context to the activities.

4.1. Framework Architecture. The architecture of the
framework that we present in this work consists of three
independent applications. The first two applications are
located in the preprocessing stage, whose objective is to
describe in a common data model the information contained
in any dataset. The third application is responsible for
transforming the information into an ontology, once
expressed in the common data model.

We have chosen the eXtensible Event Stream (XES)
standard as the common data model, which has been ex-
plicitly designed for the event data representation. In fact,
XES has already been proposed by other authors as
a common data model prior to the transformation of data
into an ontology [26]. Since it is a standard data model for
the representation of streams of sensors events, there are
many applications available for working with this data
model and to import data in other formats. Unfortunately,
most of the datasets for the automatic recognition of ADL
are expressed in formats that have been created ad hoc by
their developers and there are no importers available.
Therefore, the first step in the architecture is the translation
of the information in the datasets to the XES format. This is
the first task of the developed applications, which we call
“XES Converter.” This application converts to the XES
format twelve of the sixteen annotated datasets from the
CASAS repository (http://casas.wsu.edu/datasets/), as well
as other well-known datasets, such as in [52, 53].

The XES standard is basically an XML grammar that
provides common terms for describing streams of events.
XES defines a stream of sensors events as a set of traces,
which are themselves sequences of events (see Figure 1). The
log, traces, and events may all contain one or more key-value
attributes.

The XES model allows to easily describe the stream of
events generated by a set of sensors. However, we have to
note that datasets are usually designed to employ supervised
learning techniques, so they also include annotations about
the activities that were being carried out at each instant. To
handle this situation, we have considered the following
alternatives:

(1) The format XES has been designed to be easily ex-
tensible. Extensions are generally used to include
new attributes in standard entities. One solution to
describe both the stream of events and the stream of
activities at the same time in the standard XES model
consists in creating an extension that incorporate an
attribute in the traces element to distinguish between
the traces that represent streams of events and traces
that represents the stream of activities. This solution
has the advantage that all the information in the
dataset is stored in a single file in the XES format.

(2) Another possibility, which does not require the
elaboration of an extension, is to generate two files in
the XES format. The first represents the stream of
events as a single trace. The second represents the
stream of activities, also represented as a single trace
in XES. As detailed in Figure 2, this has been the
chosen option. This solution allows us to visualize
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(1) function CEL (N,C*,C",n)

(2) while |[Ng|<n do

3) b« BEST-DESCRIPTION (N, C*,C")
(4) Né — g

(5) for all ¢; € N do

(6) d——p(b,c;)
(7) if valid (d) then
(8) N — NLud

9) N «— NcUN(
(10)  return b
(11) function BEST-DESCRIPTION (N,C*,C")
(12) ve— -0
(13)  ce——gc
(14) for all ¢; € N do

(15) Voos < lcj NCHI/ICH|

(16) Vo —I(c) nCHI/NCT|
(17) if Vo, — o0 Vg > v then
(18) V& Vpos — & * Vneg

19) ce—g;

(20)  return ¢

Require: N is the set of named concepts in the knowledge base. 7 is the maximum number of class description the algorithm generates in
the search process. « is a constant float value that indicates the importance of negative samples classification accuracy.

ArcoriTHM 1: CEL algorithm.

0,....,n 0,...,n

Event >———

Attribute

Ficure 1: Entities in the XES basic model.

and analyze the information in all the available tools
for the XES format.

ADL recognition approaches are usually based on the
division of the stream of events into segments, also called
windows or timeslots. Three main segmentation approaches
can be found in the literature [54]:

(i) Based on Activity. This popular segmentation ap-
proach, also called explicit, is usually adopted by
offline proposals. The stream of events is divided
into segments coinciding with the starting and
ending point of time for each activity.

(ii) Based on Time. The stream of events is divided into
segments of a given duration. The main problem of
this approach is to identify the optimal length of the
segments.

(iii) Based on Events. Another approach consists in di-

viding the stream of events based on the number of
sensor events. The main problem with this approach

is to mix in the same timeslot sensor events that
correspond to different activities.

(iv) Others. Other works include ad hoc segmentation
approaches.

The “Segmenter” application is responsible for gener-
ating the final file in XES format, according to the temporal
segmentation specified by the user. In this case, the
resulting file contains one trace for each of the temporal
windows that results from the segmentation process. Each
trace contains the list of events produced within a unique
temporal window. Since there are many methods to seg-
ment the stream of events, we decided to use the Plugin
Framework for Java (PF4]) (http://www.pf4j.org) to de-
velop this application. The PF4] library allows us to in-
corporate new segmentation approaches through plugins,
without having to modify or recompile the application.
Currently, four plugins have been developed, which cor-
respond to (i) the three basic segmentation approaches
described above and (ii) a custom and more elaborate type
of segmentation which uses statistical criteria to develop
time-based segmentation [54].

Once the dataset has been expressed in the XES format
and the activities have been segmented, the dataset has to be
translated into an ontology. The application “Ontology
generator” is responsible for performing this operation.
However, since the framework has been developed in a ge-
neric way, this application is not modeled under a previous
specific ontology. Instead, we have used the PF4] framework
again to delegate the actual construction of the ontologies to
the plugins that can be added to the application. Currently,
five different plugins have been developed to transform the
dataset into four different ontologies available in the liter-
ature, apart from the one proposed in this work.
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FiGURE 2: General architecture of the framework.

4.2. Core Ontology. As we discussed in Section 2, most of the
available ontologies have been designed to be as expressive as
possible, defining a huge number of classes and properties.
The ontology proposed in [28], for example, contains one
hundred sixty-five predefined activities and thirty-three
different types of predefined actions or “atomic activities.”
This makes the search space to grow exponentially, hin-
dering the data mining techniques. The core of the proposed
ontology is only composed of the entities that are strictly
necessary to describe the activities as sequences of events
produced by the sensors. In fact, only three basic disjoint
concepts are defined in this ontology, as shown in Figure 3:
Activity, Sensor, and Event.

When performing an activity, it is necessary in many
cases to carry out a temporal segmentation of the dataset,
which usually consist of splitting the annotated activities
into multiple smaller intervals. The concept Activity rep-
resents a single time interval of an activity in the dataset,
during which this specific activity is being performed. Each
interval must be created as an individual of this concept. It
is important to note that there is no distinction among

different types of activities at the core ontology. Concepts
such as answer the phone or dinner are not defined here. If
necessary, these concepts may be imported later from other
ontologies. This allows us to reuse the core ontology with any
dataset.

During the activities, the state of the sensors changes
according to the actions of the inhabitants. The concept
Event represents any situation or alteration reported by
a sensor (such as its deactivation) which, in turn, is rep-
resented by the concept Semsor. As with the Activity, no
particular types of events or sensors are defined at the core
ontology.

Our proposal for representing activities is based on a list
structure. The property hasNextEvent establish the order of
the events in the activities. Since it has been defined as
a functional property, just one event follows another event.
The inverse property is also functional, forcing an event to be
directly preceded by a unique event. hasNextEvent is
a subproperty of the transitive property isFollowedBy. has-
NextEvent is used to express that an event immediately
follows another event. There is no other event between them.
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FiGure 3: Entities in the kernel of the OMA ontology.

For example, A hasNextEvent B means A has B as the next
event in the list or, in other words, event A is followed by
event B (A isFollowedByEvent B). If another event C appears
after event B, then event A is also followed by event C (A
isFollowedByEvent C), but event C is not the next event of A
in the list (not A hasNext C).

The property hasEvent relates an instance of an activity
to all the events that occur during it. Due to open world
assumption in OWL, reasoners cannot automatically infer
the first and the last events of the activity. Therefore, it is
necessary to annotate these individuals by using the prop-
erties startsWithEvent and endsWithEvent, which have been
defined as subproperties of hasEvent. However, the simple
annotation of these individuals in the ontology does not
prevent having other elements before the first item of the list
or after the last one. To avoid these situations, the Activity
concept has been defined as a subclass of the class de-
scriptions (1) and (2). Class description (1) describes the
Activity concept as a list in which the first item is not
preceded by any other item. Note that it is not necessary to
explicitly declare in the ontology a property to represent the
precedence relation since it can be expressed using the in-
verse of the property isFollowedByEvent. Analogously, class
expression (2) prevents an activity from having an item after
the last one in the list:

71 (3 startsWithEvent - (3 isFollowedByEvent™ - T)),
(1)

=1 (3 endsWithEvent - (3 isFollowedByEvent - T)).
(2)

In OWL, the same individual could be referred in many
different ways (i.e., with different URI references). Due to
this, it is necessary to state that all the elements in the
datasets are different individuals. For this reason, a func-
tional property hasID has been defined to assign a unique
code to all of the individuals in the ontology. This is much
more efficient than asserting that all individuals are different.

The core of the OMA ontology has the exact same DL
expressivity as the Salguero ontology (SZIF (D)), being
decidable in exponential time, as well as the COSAR
(AZLCRIQ(D)) and Noor (SX(D)) ontologies. Sat-
isfiability of the Sphere ontology (/Z£€.7) is PSpace-
complete. It is worth noting that we have included all the
events and the activities of the datasets in the experiment
because we needed all the positives and the negative ex-
amples. In a real-world application, just the last events are
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necessary to decide which activity has been performed by
the inhabitant. Furthermore, the final application does not
necessarily have to use ontologies nor reasoning mecha-
nisms once the best descriptions of the activities have been
found. It can be implemented using a simpler rule system,
for example.

All these entities and relationships are automatically
created by the plugin developed for the “Ontology gener-
ator” application. The concepts and relationships described
in this subsection are defined in the file kernel.owl (Figure 4).
However, the information in the dataset is not added to this
file. Instead, the “Ontology generator” application generates
an ontology in a separate file (stream.owl) which in-
corporates the entities defined in the file kernel.owl through
the OWL import mechanism, without modifying or rede-
fining the imported concepts. So, basically, the file
stream.owl only contains individuals, which represent the
events produced by the sensors and the instances of the
activities collected in the dataset.

Apart from the information described in this subsection,
the datasets usually contain other contextual information
which can be extracted and processed automatically, such as
the type of the sensor that generated each event or the exact
value of flow sensors at a given instant. This kind of in-
formation can also be automatically generated by the plugin,
which automatically includes the corresponding import
directives. However, there is unstructured information
about the dataset that have to be entered manually. This
information includes, for example, the different rooms in
which the smart environment is divided or the location of
the sensors. Instead of modifying the file stream.owl, which
is generated automatically by the “Ontology generator”, it is
highly recommended (i) to manually create a new file (called
ontology.owl in Figure 4) to include this specific information
about the dataset and (ii) to import the file stream.owl and all
the necessary extensions from that file. This allows us to
easily reuse the file containing specific information about the
dataset in multiple experiments because stream.owl, the only
file that changes among them, is generated automatically.

4.3. Extensions of the Core Ontology. Most of the ontologies
available in the literature incorporate concepts and prop-
erties to describe ADL from different points of view [6, 28].
However, for efficiency reasons, the core ontology that we
propose only contains the minimum entities necessary to
represent the activities as sequences of events produced by
the sensors, as previously described. In this way, the rest of
the information about the activities must be added by
importing other ontologies.

Following, we describe the ontologies that we have
proposed as extensions of the core ontology. These ontol-
ogies act as modules that extend the entities in the core
ontology. In addition, they can serve as a basis for the
definition of other ontologies with much more specific
information.

4.3.1. Sensor Ontology. This ontology describes the main
types of sensors that can be found in the literature [55, 56],
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FIGURE 4: OMA plugin architecture.

such as motion detectors, contact sensor, and door sensors.
All these concepts have been defined to be disjoint. The
OMA plugin creates an individual of the corresponding
category of sensors for each of the sensors in the smart
environment. These individuals are related to the events they
produce through the functional property producedBySensor.

4.3.2. Location Ontology. This ontology allows us to specify
the location of the sensors. As the sensors’ ontology, the
location ontology defines the types of rooms that are usually
found in ADL datasets, such as the kitchen, the bathroom, or
the bedroom. All these concepts have been defined as dis-
joint to facilitate reasoners to distinguish between events
produced at different locations. Unless stated, a reasoner
may assume that the kitchen is the same room as the
bedroom due to the open world assumption. Each of the
rooms of the smart environment needs to be represented as
an individual of the corresponding concept. Consequently, if
the smart home has two bedrooms, two different individuals
of the concept Bedroom will be necessary. The property
locatedAt defines this fact in the ontology, allowing to relate
a sensor to its location.

4.3.3. Values Ontology. 'This ontology is used to deal with the
specific states of the sensors when the events occur. It
contains a data property called hasValue that associates
a literal value (integer, Boolean, string, etc.) with an event.
Since most of the sensors that we can find in datasets are
binary, two helper disjoint concepts have been defined in the
ontology to represent this type of values: Activated and
Deactivated. 'The concept Activated = hasValue (true)
represents an activation of the sensor. For efficiency reasons,
it is important to restrict the cardinality of the property
hasValue for this concept (Activated T =1 hasValue.xsd:
Boolean) (for the sake of simplicity, we have abused the DL
notation here: the operator = has been used to express the
combination of both < and > cardinality restriction
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operators). Only two seconds are needed by the reasoner to
evaluate all the individuals in the datasets of the experiment
when the cardinality restriction is applied. Four minutes are
required when it is not. The concept Deactivated is defined
analogously. Note that the cardinality restriction in this
module changes the DL expressivity of the OMA ontology
(SRIQ(D)), still being decidable in exponential time.

4.3.4. Time Ontology. This ontology allows to record the
date and time at which an event occurred by defining the
data type property ocurretAt. It also incorporates two
analogous data type properties to record the starting and the
ending instants of the activities.

4.3.5. Actor Ontology. In some of the ontologies in the
literature, the inhabitant who carries out the activities is also
considered. For this purpose, the performedBy property has
been defined in this ontology, which relates the activity to
the actor or actors that perform it, represented by the
concept Actor.

4.3.6. Action Ontology. Complex ADL are often specified
through sequences of simpler actions [23, 24, 30], such as
heat water or take medicine. For this, the hierarchy of
properties of the core ontology has been duplicated in this
ontology, modifying their domains and ranges to relate
activities and actions. These properties allow us to establish
the order among actions in the activities. The duplicity of
properties is for efficiency reasons. It could have been
avoided if the domains and ranges of the properties of the
core ontology had not been established. However, this would
have had several negative effects: on the one hand, the in-
ference capacity of the reasoners would have been reduced
since they could not determine the type of individuals re-
lated by these properties; on the other hand, it would have
been possible to define sequences composed of both simple
actions and events, which makes more difficult the patterns
recognition when applying data mining techniques. In ad-
dition, it is easier to detect errors and inconsistencies when
the types of individuals the properties may relate are known.

5. Experiment

In order to evaluate the quality of the framework proposed
in this work and the adequacy of CEL for activity recog-
nition, an experiment has been carried out. The objective is
to determine whether a particular ADL has been performed
based on the sensors that have been fired during a specific
period of time. The activity classification is binary. For each
activity, the positive instances represent the individuals of
the activity being recognized, while the negative instances
represent the rest of the activities. CEL algorithms have to
find a class description that describes all positive instances,
but it does not include the negative ones. The positive and
negative activities are annotated in the datasets. The ap-
plication that is responsible for converting the datasets to the
different ontologies also generates two lists with the names
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of the individuals in the ontology that represent the positive
and the negative instances.

For evaluation purposes, we have used an implicit
segmentation, where the exact instants the activities start are
not considered. Instead a time-based segmentation with
a temporal window based on statistical criteria has been
employed [54]. It provides a more challenging setting than
the explicit segmentation, and it is closer to real-time
approaches.

Two different ADL datasets have been used to evaluate
our proposal. Orddniez dataset [53] was developed in the UC
Irvine Machine Learning Repository. It represents two
participants performing ten ADL activities in their own
homes. The activities were performed individually, and this
dataset is composed by two instances of data: Room A and
Room B, each one corresponding to a different user and
summing up to 35days. Ten activities were classified:
breakfast, dinner, leaving, lunch, showering, sleeping, snack,
spare time TV, and grooming. The number of sensors was 12,
although two of them were never fired in the case of the
second participant. In fact, the dataset can be actually
considered as two different datasets. The Room B dataset was
chosen because an exploratory analysis shows that the ac-
tivities in this set are more difficult to be recognized, so there
are more chances to find statistically significant differences.
However, this dataset is particularly imbalanced, with some
of the activities having less than fifteen annotated examples,
which hinders the adoption of a complex data partitioning
scheme for validating the experiment. Only one set of ex-
amples has been used to train and validate the proposal, so
some overfitting is expected.

The other dataset, Singla et al. [57], represents a sensor
data stream registered in the Washington State University
smart apartment. The data represents twenty participants
performing eight ADL activities. These activities were
conducted individually and sequentially. Each participant
performed the same set of activities in any order. This dataset
contains 178 activities that are annotated in the stream of
state-change sensors generated by 45 sensors. In this dataset,
eight activities are classified: answer the phone, choose outfit,
clean, fill medication dispenser, prepare birthday card, pre-
pare soup, watch DVD, and water plants.

The framework proposed in Section 4 has been used to
convert both datasets to all the available ontology models for
the description of ADL, namely, Salguero [3], SPHERE [21],
COSAR [22] and Noor [23]. In addition, a version with the
OMA ontology has been generated in which information
about the context has been included, following the scheme
proposed in Section 4.3. All the instances of the activities in
the datasets have been created as individuals of the generic
activity concept of each ontology. Therefore, there is no
atomic concept A in the ontologies that can be returned by
the CEL algorithms as a solution.

Before discussing the results obtained in the evaluation,
it is important to note that all the ontologies proposed by
other authors have been slightly modified in order to be able
to apply the CEL technique. Some of the ontologies have
required very subtle changes. Others have had to be modified
in greater depth. These changes are necessary because the
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ontologies have not been designed to make the reasoning
mechanisms efficient but to be as much expressive as pos-
sible. This means that the data mining techniques, such as
the one employed in this experiment, cannot be directly
applied to them because they are usually based on the in-
tensive use of reasoning mechanisms. None of the original
ontologies can obtain results after one hour of searching.

The ontology proposed by Noor is the most similar
ontology to the one proposed in this paper. In this model, the
activities are composed of smaller time intervals. These time
intervals are those which are really associated with the events
generated by the sensors, in such a way that we can char-
acterize an interval according to the sensors that are acti-
vated during it. The activities are then defined as sequences
of intervals in which certain sensors are fired. More than
eighty thousand intervals of thirty-second lengths are re-
quired to represent all the activities in the datasets, which is
impossible for a reasoner to handle. Instead, we divided each
instance of each activity window into three different in-
tervals, which produces a reasonable number of individuals
in the ontology. Despite this change, the reasoners waste
several hours to process the optimized ontologies generated
from the datasets in the experiment. The solution to this
problem has been to define as disjoint all the concepts that
represent the different sensors and types of activities in the
datasets. This action is done automatically in the plugin
specifically developed for the “Ontology converter” appli-
cation that generates the ontology in the Noor format.

The SPHERE ontology does not present performance
problems. The problem with this model is that it does not
produce relevant results. The reason is that there is no
property that allows reasoners to establish a relationship
between the activities and the events that occur within them.
This problem has been resolved by setting the concept
Activity as the domain of the property has. In addition, to
increase the probability of this relationship being used, the
inverse property of the has property has been made explicit
by creating a new named property.

The most important problem of the COSAR ontology is
that it contains multiple properties to relate activities to
other entities of the ontology. Many of them only have sense
after the rules for determining the activity that is being
performed have been found (such as the property neces-
sarySensorEventFor). Furthermore, most of them do not
keep a strong relation with ADL, such as the property
hasStudent. However, all these properties must be consid-
ered by the CEL algorithm, making the search space grow
exponentially and degrading the performance of the
algorithm.

Moreover, according to the text of the work in which the
COSAR ontology is proposed, the property occursIn should
relate the events to the activities in which they occur. In the
public version of the ontology, this property relates the
activities to the apartments in which they are carried out, as
well as the property activityOccursInApt does. We un-
derstand that it is an erratum and therefore the range of the
property occursIn has been modified to refer to the Activity
concept. As in the SPHERE model, the inverse properties of
the properties occursIn and producesEvent, which relate the
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events to the activities and the events with the sensors,
respectively, have also been made explicit. All the individuals
in the ontology have been removed, and the SensorEvent and
Artifact concepts have been defined as disjoint concepts for
the sake of efficiency. The Artifact concept encompasses all
objects in the smart environment, including sensors.

To determine the activity being performed at each in-
stant, the CEL technique, described in Section 3, has been
applied. The DL-Learner application [58], an open source
application that implements some CEL algorithms, has been
used for this task. More precisely, we have employed the
CELOE and the OCEL algorithms implementation in the
experiment [59], with 0% of noise percentage and FastIn-
stanceChecker (FIC) as the reasoner. The FIC reasoner is
a special kind of reasoner, specifically developed for the DL-
Learner application that basically makes some violations of
the open world assumptions in OWL to improve the effi-
ciency of the reasoning mechanism. This is very convenient
in the context of CEL algorithms because of the extremely
high number of class descriptions that have to be evaluated
in the process.

6. Results and Discussion

Table 3 shows the accuracy (C*/(C*+C7)) of the class
expressions obtained by the DL-Learner application to
classify all the activities of the two datasets used in the
experiment. The implementation of the OCEL algorithm
only generates information about the accuracy. The
implementation of the CELOE algorithm also generates the
f-measure ((2 - accuracy - recall)/ (accuracy + recall)), which
is a more representative measure of the quality of the
classifiers. The values of the f-measure obtained with the
CELOE algorithm are shown in Table 4. In all cases, the DL-
Learner application has been configured to stop the search
for new class expressions after five minutes.

The best overall result is obtained using the Salguero
ontology and the OCEL algorithm, with an average accuracy
of 92.04%. There is no significant statistical difference with
respect to the result obtained with the OMA ontology which
obtains a slightly lower average accuracy (90.07%) with the
same algorithm. The difference between these two cases is
more noticeable in the activities corresponding to the
Ordoniez dataset. Activities such as Breakfast or Sleeping are
much better recognized when the OMA ontology is used,
while activities such as Toileting, Dinner, and Spare time TV
are better recognized using the Salguero ontology. As an
example, the class descriptions (3) and (4) in Table 5 show
the best descriptions found with the OCEL algorithm for the
Breakfast activity. The class description (3), obtained using
the OMA ontology, describes the activity Breakfast as the
activity that begins and ends with the activation of the
kitchen door sensor or in which the sensor of the fridge is
activated and the third of the recorded events is produced by
a sensor placed on a door. In addition, the Breakfast activity
never ends with the activation of the main door sensor and
must always include the activation, at some instant, of the
kitchen door sensor. The class description (4), obtained with
the Salguero ontology, describes the activity Breakfast as the
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activity in which the door sensor in the living room is never
fired after the kitchen door sensor is activated. The activity
cannot start with the activation of the main door sensor. As
can be seen, the sensor of the main door is, somewhat
surprisingly, relevant to determine if the Breakfast activity is
happening or not in both cases. It is also important to point
out that, in the case of the Salguero ontology, the order in
which the events occur is more relevant, imposing in this
case that the door sensor in the living room must not be
activated after the kitchen door sensor. In the case of the
OMA ontology, however, contextual information has been
introduced in the description of the Breakfast activity,
considering the type of sensor that should produce the event
but not the specific sensor. This information was not
available in the Salguero ontology and is one of the con-
tributions of this work.

Actually, the Noor ontology is the ontology with which
better description is found for the Breakfast activity, with an
accuracy of 97.43% for both CEL algorithms. However, the
class description found by both algorithms for the de-
scription of the Breakfast activity (description (6) in Table 5)
does not seem to provide much relevant information, apart
from restricting the duration of the activity between five and
ten minutes. Nevertheless, given the high value of the f-
measure, we may consider the interval as a key feature of the
activity. The same happens with the Grooming and Spare
time T'V activities, for which high values of the f-measure are
also obtained with the Noor ontology. In view of the results,
the typical duration of the Grooming activity is between one
and five minutes (description (7) in Table 5), while the Spare
time TV activity usually exceeds ten minutes (description (8)
in Table 5).

As can be seen in Figure 5, the OCEL algorithm always
reports better accuracy than the CELOE algorithm. How-
ever, it is important to remember that the implementation of
the OCEL algorithm does not provide information about the
f-measure. The accuracy value represents how many of the
activities described by the generated class expression actually
correspond to the activity being described, but it does not
provide information about how many of the activities that
should also be recognized are described by the generated
class expression. The f-measure is a more relevant measure
in the field of supervised learning, since it includes both
accuracy and completeness. The CELOE algorithm is also
considered in the experiment for this reason.

The accuracy values obtained with the CELOE algorithm
are very similar to those obtained with the OCEL algorithm.
The best results are achieved when the OMA and the Sal-
guero ontologies are employed (Figure 5). The same situ-
ation occurs when the results are analyzed from the f-
measure point of view (Figure 6). The results obtained with
the OMA and the Salguero ontologies are generally better
than those obtained with the rest of the ontologies. Although
the difference is not statistically significant (p <0.1), we can
see that the results obtained with the Salguero ontology are
slightly better than those obtained with the OMA ontology.
In fact, there is not a single activity in which the results
obtained with the OMA ontology are better than those
obtained with the Salguero ontology. Considering that the
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TaBLE 3: Accuracies of class descriptions found by the CEL algorithms for both datasets.
CELOE OCEL
Dataset Activity
COSAR Noor OMA Salguero SPHERE COSAR Noor OMA Salguero SPHERE
Answer the phone 12.57 8511 51.50  51.50 33.53 9222 8511 98.80  98.80 89.22
Choose outfit 99.40 8511 100.00 100.00 100.00 100.00 85.28 100.00 100.00  100.00
Clean 79.64  73.76 95.21 97.60 95.21 99.40  82.62 100.00 99.40 99.40
: Fill medication yc1) 5160 9701 9701 9401 4611 6543 9641 10000 7725
Singla et al. [57] dispenser
Prepare birthday card 90.42  60.99 92.81 94.61 90.42 94.01 71.10 98.20  98.20 97.60
Prepare soup 96.41  55.85 99.40 100.00 96.41 100.00 76.95 100.00 100.00  100.00
Wash DVD 95.81 5213 97.60  98.80 95.81 99.40 64.01 98.80 100.00 99.40
Water plants 83.23 100.00 90.42  90.42 88.02 88.02  100.00 91.02 95.21 97.60
Breakfast 57.56  97.43 61.56 74.00 57.56 81.56 97.43 87.78 77.11 57.66
Dinner 40.00 94.86 72.00 72.00 67.33 51.56 94.86 8l.11 90.44 56.67
Grooming 19.56  90.30 41.11 82.00 41.11 49.33  90.30 65.11 64.44 49.33
Leaving 93.78 6717 94.67  96.67 93.78 94.00 67.17 94.89  99.56 94.00
Ordofez et al. [53] Lunch 55.56  60.57 75.11 81.56 55.56 72.67 70.50 87.78  94.22 72.67
Showering 96.89  71.38 100.00 100.00 96.89 100.00 78.86 100.00 100.00 100.00
Sleeping 68.89 63.38 7933  80.89 68.89 7222 7237 94.89  90.67 68.89
Snack 62.89 7780 6644  79.33 62.89 80.44 83.47 81.11 82.44 62.89
Spare time TV 61.78 83.76 62.44  66.44 61.78 61.78 83.76 7244  80.00 61.78
Toileting 19.33  100.00 57.33  57.33 55.11 71.33  100.00 72.89  86.22 69.11
Average 65.55 7618 79.66  84.45 75.24 80.78  81.62 90.07  92.04 80.75
TABLE 4: f-Measure of class descriptions found by the CELOE algorithm for both datasets.
CELOE
Dataset Activity
COSAR Noor OMA Salguero SPHERE
Answer the phone 22.34 66.67 34.15 34.15 27.45
Choose outfit 97.67 66.67 100.00 100.00 100.00
Clean 55.26 45.99 84.00 91.30 84.00
Singla et al. [57] Fill medication dispenser 30.77 30.53 88.89 88.89 80.00
Prepare birthday card 72.41 36.42 77.78 82.35 72.41
Prepare soup 87.50 40.29 97.67 100.00 87.50
Wash DVD 85.71 31.82 91.30 95.45 85.71
Water plants 60.00 100.00 72.41 72.41 67.74
Breakfast 18.72 80.00 20.28 27.33 18.72
Dinner 7.53 50.00 14.86 14.86 13.02
Grooming 32.71 80.92 3991 68.48 39.91
Leaving 73.08 35.10 76.00 83.52 73.08
- Lunch 11.50 10.36 18.84 23.85 11.50
Ordofiez et al. 53] Showering 50.00 10.26 100.00 100.00 50.00
Sleeping 29.29 21.72 38.41 40.28 29.29
Snack 35.52 42.07 37.86 49.73 35.52
Spare time TV 55.90 75.83 56.33 59.08 55.90
Toileting 32.40 100.00 47.54 47.54 46.28
Average 47.68 51.37 60.90 65.51 54.34

main difference between both ontologies is that in the
OMA ontology also includes information about the context
of the activities, we could deduce that the sequence in
which the events occur is more relevant to determine the
type of activity that is happening, instead of other in-
formation such as the type of sensor or its location. Al-
though the OMA ontology also includes information about
the order in which events occur, the search space for the
CEL algorithms is much larger in the case of the OMA
ontology. On the contrary, the CEL algorithm spends the
entire execution time just testing different sequences of
events when the Salguero ontology is used.

The importance of the order of events is clearly reflected
in the case of the Showering activity. The CELOE algorithm
manages to find a class expression that perfectly defines this
activity when the OMA and Salguero ontologies are used. In
both cases, the Showering activity is defined as the activity
that ends with the activation of the shower sensor (de-
scription (9) in Table 5). The fact that this sensor is the last to
be activated during the activity is very relevant, since when
this restriction in the order is not imposed, the f~-measure
value decreases to 50%, as in the case of the COSAR ontology
and SPHERE (see descriptions (10) and (11)). The duration
of this activity is also irrelevant. The class expression
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TaBLE 5: Best descriptions found for some activities.

Class description

Explanation

—_~ o~~~

endsWith some DoorKitchen)

and

(startsWith some DoorKitchen)

)or (

(has some FridgeKitchen)

and

(startsWith some

(hasNext some

(hasNext some (producedBy some DoorSensor))))
)

)and (endsWith some (not (MaindoorEntrance))
)and (has some DoorKitchen)

(

has some (
DoorKitchen
and (4)
(isFollowedBy max 1 (not (DoorLiving)))
)
)and (startsWith some (not(MaindoorEntrance)))
(
(startsWith some
(isFollowedBy only ShowerBathroom))
and
(startsWith only DoorKitchen)
) or (hasItem some BasinBathroom)

3)

©)

LongerThan5minutes and
(not(LongerThanlOminutes))
LongerThanlminute and

(not (LongerThan5minutes))

(6)
(7)
LongerThan10minutes (8)

endsWith only ShowerBathroom 9)

contains some

(isProducedBy only ShowerBathroom) (10)

inverseHas some ShowerBathroom (11)

LongerThanlminute and

(not (LongerThan5minutes)) 12)

Breakfast (OMA-OCEL): an activity that starts and ends with
the activation of the kitchen door sensor or an activity in
which the fridge has been opened and the third event has been
fired by a door sensor. In any case, the sensor in the main
entrance door cannot be the last sensor activated and the
sensor in the kitchen door has to be activated at some instant
during the activity.

Breakfast (Salguero-OCEL): an activity in which the living

door sensor has not been activated after the kitchen door has

been opened. The activity cannot start with the activation of
the main entrance door.

Grooming (Salguero-CELOE): an activity in which the living

door sensor has not been activated after the kitchen door has

been opened. The activity cannot start with the activation of
the main entrance door.

Breakfast (Noor-CELOE): an activity that lasts between 5 and
10 minutes.
Grooming (Noor-CELOE): an activity that lasts between 1
and 5 minutes.
Spare time TV (Noor-CELOE): an activity that lasts more
than 10 minutes.
Showering (OMA-CELOE): an activity that always ends with
an activation of the shower sensor.

Showering (COSAR-CELOE): an activity that contains an
event produced by the shower sensor.
Showering (SPHERE-CELOE): an activity that contains an
event produced by the shower sensor.
Showering (Noor-CELOE): an activity that lasts between 1
and 5 minutes.

produced by the algorithm when the Noor ontology is used,
shown in the description (12) in Table 5, barely achieves an f-
measure value of above 10%.

It is also important to note that the order of the events is
not always relevant for the recognition of some of the ac-
tivities. In the case of the Grooming activity, for example, its
duration is much more relevant than the activation of
a specific sensor. In fact, the class description (7), also
obtained after applying the CELOE algorithm to the Noor
ontology, obtains a much higher f-score value (80.92%) than
the one obtained when the Salguero ontology is used (see
description (5) in Table 5), which considers the activation of
the basin sensor, mainly.

In view of the results, we can conclude that the Salguero
ontology is in general the most appropriate ontology for the
application of CEL techniques for the recognition of ADL.

The OMA ontology, whose core is based on the Salguero
ontology, also obtains very good results in general but
slightly lower. The CEL algorithms obtain worse results in
general when using the other ontologies although it is also
important to highlight the fact that the Noor ontology
produces the best descriptions for some of the activities, such
as the Water plants and Toileting activities, for which perfect
descriptions are generated. In all the activities in which the
best results are achieved using the Noor ontology, the CEL
algorithms end up finding that the best way to describe these
activities is according to their duration. The Water plants
and Toileting activities are described as activities whose
duration is less than thirty seconds and one minute, re-
spectively (they are in different datasets). The activity
Grooming usually lasts between one and five minutes, while
the Breakfast and Dinner activities usually last between five
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and ten minutes. The Spare time TV activity is the only one
with a duration longer than ten minutes. The Noor ontology
produces better results in these cases because it is the only
one that makes this information explicit.

Since the SPHERE ontology follows an approach similar
to the OMA and Salguero ontologies, its behavior is anal-
ogous to these proposals. Although the results obtained with
the SPHERE ontology do not improve any of the results
obtained with the OMA and Salguero ontologies, the activity
descriptions found with the SPHERE ontology are good, in
general.

7. Conclusion

The proliferation of smart homes has led to multiple pro-
posals for the automatic recognition of ADL, being many of
them based on the use of ontologies. In this work, we have
evaluated the CEL technique as a mechanism for the

known datasets, as well as the conversion of these datasets to
five different ontologies available in the literature for the
representation of ADL. The development of this framework
has included the extension of an ontology that we previously
proposed for the recognition of ADL. This ontology, unlike
the others in the literature, was designed to solely describe
activities as sequences of sensor events, without considering
more information about the context in which they happen.
The rest of the ontologies available in the literature use the
opposite approach, describing the activities according to the
sensors that are activated, their type, and location, as well as
information about the people who perform them. In this
work, we have extended the previously proposed ontology to
also consider the contextual information available in the rest
of the ontologies.

Once the framework was developed, an experiment
was carried out to determine the suitability of the different
ontologies for the representation of ADL and the per-
formance of two CEL algorithms for their automatic
recognition. In view of the results, we can conclude that
the order in which events occur is more relevant for most
of the activities than the rest of the contextual information.
CEL algorithms end up generating much more repre-
sentative class expressions when ontologies that consider
the sequences of events are used. In fact, the best overall
results are obtained with the ontology that only describes
the ADL as sequences of events and does not include any
other additional information. Furthermore, when the al-
gorithms employ the extended version of that ontology,
which also includes contextual information, the results are
still class expressions in which the order of events is more
relevant. There are, however, some activities for which this
rule is not met. In those cases, the best results have been
obtained with the Noor ontology, which is the only one
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that represents the duration of the activities explicitly. In
fact, the duration of the activities is a key feature to
recognize activities such as Breakfast, Toileting, and An-
swer the phone.

In view of this result, we are currently working on the
incorporation of this information in the extended version of
the ontology. Our goal is to find the most efficient way to
make this information explicit using automatic reasoning,
without having to annotate it when generating the ontology
from the dataset.

Data Availability

The data used to support the findings of this study were made
available by their corresponding authors in the UC
Irvine Machine Learning Repository (https://archive.ics.uci.
edu/ml/datasets/Activities+of+Daily+Living+%28 ADLs%29+
Recognition+Using+Binary+Sensors) and the Center for
Advances Studies in Adaptive Systems Repository (http://
casas.wsu.edu/datasets/adlinterweave.zip), as described in
Section 5. For the sake of completeness, we decided to also
make available all the ontologies that were generated in the
experiment from the original data along with the source code
of the applications in the framework proposed in this work.
They are all available at https://sourceforge.net/p/adl-
miningframework/code/HEAD/tree/trunk/tests/.
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