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Abstract: Due to the large number of elderly people with physical and cognitive issues, there is
a strong need to provide indoor location systems that help caregivers monitor as many people as
possible and with the best quality possible. In this paper, a fuzzy indoor location methodology is
proposed in a smart environment based on mobile devices and Bluetooth Low Energy (BLE) beacons
where a set of Received Signal Strength Indicators (RSSI) is received by mobile devices worn by the
inhabitants. The use of fuzzy logic and a fuzzy linguistic approach is proposed to deal with the
imprecise nature of the RSSI values, which are influenced by external factors such as radio waves,
causing significant fluctuations. A case study carried out at the Smart Lab of the University of Jaén
(UJAmI Smart Lab) is presented to demonstrate the effectiveness of the proposed methodology,
where our proposal is compared with a non-fuzzy logic approach, obtaining an accuracy of 91.63%,
approximately 10 points higher than the methodology without using fuzzy logic. Finally, our
theoretical proposal is accompanied by a description of the UJAmI Location system, which applies
the theory to the functionality of locating elderly people in indoor environments.

Keywords: bluetooth low energy; beacons; ageing people; fuzzy logic; received signal strength
indicators; indoor location system

1. Introduction

Currently, life expectancy is above 80 years due to improved quality of life, which
means that the number of older people worldwide is growing rapidly. In 2020, the number
of people over 65 years of age was 727 million (9.3% of the total world population), and it
is estimated that the population of elderly people will double to 1.5 billion (16.0% of the
total world population) over the next three decades [1].

People are ageing and many have a strong need to stay in their homes, even if they
live alone, which means that systems are needed to monitor their behaviour in order to
anticipate or alert to undesired situations [2]. Indoor positioning systems (IPSs) represent a
key tool for behavioural monitoring [3] because they make it possible to monitor relevant
behavioural habits in people, which can be used as an indicator of falls [4] or for the
recognition of human activities [5,6]. This technology can provide us with information,
for example, on whether an inhabitant has been in the kitchen eating, has spent too much
time on the sofa, waking and sleeping times or the number of times he/she has visited
the bathroom.

One of the main challenges of IPSs when wanting to accurately estimate location is
dealing with the uncertainty inherent to the applied technologies in these systems [6–8]
due to calibration issues, data loss, indoor obstacles or battery consumption limitations.
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In addition, there is a significant gap between the number of theoretical proposals in the
literature and those that are developed in real systems for real-life applications.

To provide solutions to these two challenges, this paper presents two proposals, one
theoretical and one practical: First, a fuzzy indoor location methodology based on BLE
beacons is presented in order to address the uncertainty involved in the location process.
Second, the fully-functional UJAmI Location system developed on the basis of the proposed
methodology is presented.

Regarding the theoretical proposal, a fuzzy indoor location methodology with the
use of fuzzy linguistic terms and fuzzy temporal windows to manage the fluctuations of
the BLE beacons has been proposed. These approaches have provided excellent results in
other contexts with uncertainty present in sensor data, such as activity recognition [6,9,10],
pressure ulcers [11], preeclampsia [12] or cardiology [13,14]. Furthermore, to validate
the theoretical proposal, a case study is carried out at the UJAmI Smart Lab [15] of the
University of Jaén using the UCAmI Cup dataset [16], which is available for download
online https://ceatic.ujaen.es/ujami/en/repository (accessed on 5 August 2021).

To achieve the practical proposal, the indoor location system UJAmI Location has
been developed under the proposed methodology. This application has been developed
with the aim of providing a real solution to the previously discussed challenges that affect
ageing populations. The functionality of this system is presented through case studies in
the context of the UCAmI Cup dataset.

This paper is organised as follows. In Section 2, related works based on indoor location
are reviewed in the ageing context. In Section 3, the fuzzy indoor location methodology is
proposed. A case study to validate the proposed methodology is presented in Section 4. The
UJAmI Location system implementing the proposed fuzzy methodology is then described
in Section 5. In Section 6, a discussion of the proposals presented in this paper is addressed.
Finally, conclusions are drawn in Section 7.

2. Indoor Location in the Context of Ageing

In this section, we describe the importance of indoor location as a relevant cur-
rent topic.

In the context of ageing populations, there is a special need for indoor location solu-
tions in multiple scenarios. For example, detecting the location of a resident in a nursing
home at all times while checking what inhabitants are doing and whether anything unusual
is happening. In response to this demand, monitoring systems based on the Internet of
Things (IoT) have emerged. These spaces are also referred to as smart homes and are com-
posed of smart devices that are often unobtrusive in ambient-assisted living contexts [10].
This fact has attracted the attention of numerous researchers over the last two decades.
This is demonstrated by the fact that when filtering by “Indoor Location System” and
“Positioning Location System” in the Scopus platform, approximately 1500 papers are
retrieved. The increasing trend in the number of papers related to this topic between 2000
and 2020 is illustrated in Figure 1.

There is a multitude of real-life applications for IPSs. For example, as we mentioned,
identifying ways of monitoring aging populations [5,6,10]. Another example is their
application in the retail sector: knowing where customers are at any given time, their path
can be analysed for commercial purposes [17]. Furthermore, these systems can be used to
guide customers in a shop and facilitate the search for items [18]. Finally, another example
is their use in emergency situations, such as behavioural analysis of trajectory in drills [19],
which can help improve indoor evacuations, or even in orientation in enclosed and poorly
lit spaces such as may be the case in subway tunnels [20].

https://ceatic.ujaen.es/ujami/en/repository
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Figure 1. Works related to IPS between 2000 and 2020.

A relevant definition of IPS is provided by Brena et al. [3], who consider it as the
estimation of the target’s location from the input data collected from a set of sensors. In
many cases, these location systems perform the estimation using two methods: a reference
to a specific location, e.g., “bedroom”, or a position based on coordinates. The general aim
of IPSs is to obtain the position of users or objects, but the way in which this is achieved
differs depending on the technology used. Yang et al. [21] identify a location system as a
set of beacons and a sensor associated with the target that allows the user to be located by
processing wireless signals [22].

Multiple approaches or models that provide methodologies based on different tech-
nologies to locate people within enclosed spaces have been proposed. In this context, it
is very common to use Ultra-Wideband [6,23,24], BLE combined with a device that has
Bluetooth connection (activity band or other) [25–28] or even Radio-Frequency Identifica-
tion [29–32].

This paper proposes the use of BLE transmitters or beacons for indoor location [33] due
to the fact that these devices are widely used and are known for their excellent performance
in terms of battery, small size, light weight, high accuracy for positioning and, finally, for
being easily deployable at a low cost. BLE technology emerged in 2009 designed for IoT
as an extension of Bluetooth Classic [34]. In this case, the technology is intended for cases
where it is not necessary to exchange a lot of data continuously. This means very low
power consumption compared to the previous version, improving their characteristics:
increased range, more secure connections and greater packet capacity. BLE versions 5.0 and
5.1 are the most recent versions and again enhance the features mentioned above [35,36]. In
addition, version 5.1 adds Angle of Arrival and Angle of Departure, which provide a new
form of location accuracy. The latest version of BLE is 5.2, and it substantially improves the
technology with a new Enhanced Attribute Protocol that improves performance and speed
when multiple devices are connected simultaneously, less power consumption, reduced
interference with other devices and improved connection reliability [37].

In the literature, multiple Bluetooth-based indoor location systems have been proposed
to obtain location based on the following six main parameters: proximity, triangulation,
centroids, radio signal strength (RSS), fingerprinting or hybrid techniques combining the
previous ones.

The first one of these is proximity-based. Proximity [38,39] and laterality [40] tech-
niques were already being used in the 2000s, but a long time was needed between scans.
It is a very simple technique that relies on the proximity of the target to the highest RSS
value, though this is not entirely true under non-line-of-sight propagation. If we know



Int. J. Environ. Res. Public Health 2021, 18, 8326 4 of 22

where an object is located and a user approaches the object, then we know which area it is
in [41]. The main problem with this technique is that it does not provide very high accuracy,
requiring the use of different position calculation techniques [42]. An early work in this
field was done by Faragher and Harle [26]. It showed a comparison between WiFi and BLE
technology. The authors observed one of the most important challenges in BLE positioning:
fast fading, more noticeable even than in WiFi technology. The second method we found is
multilateration. This positioning technique is based on triangulation, using the distance
between the target to be located and the beacons to estimate its position [43]. The main
measures used to perform this estimation are Time of Flight, Time Difference of Arrival and
propagation loss. The next technique is based on Bluetooth RSSI values and utilises a prop-
agation model to estimate distance based on path loss. Examples of this type of method
are Zhu et al. [44] and Neburja et al. [45]. Finally, there is the fingerprint-based positioning
technique. This method is very popular and is not only used with BLE. It mainly consists of
two phases: calibration and positioning. The calibration phase, also called training phase
or offline phase, aims to collect the signal strength from different beacons positioned at
reference points (RP) and each RP has a signal pattern or fingerprint. In the training phase,
it is essential to filter out erroneous values, because RSSI values fluctuate over time [46].
This approach has been very important for BLE positioning. Fingerprint is an excellent
choice for proximity if the number of beacons is small, as shown in Mendoza et al. [42].

The revised approaches provide differing accuracy, depending on the number of
beacons used, the environment and the size of the site. Mendoza et al. [47] provided a
review of these methods, showing that accuracy varies between one and three metres. More
than half of these experiments were in small environments (between 12 m2 and 176 m2),
and the remaining were in much larger spaces (an entire floor or several offices). The
results have shown that location experiments in larger environments have higher accuracy.

With Bluetooth technology, decisions can be made on how to deploy the beacons ac-
cording to the purpose of the positioning. However, it is a challenge to find a combination
of beacons for every environment. Other challenges to be considered are the fast fading
problem discussed above, and other issues such as multi-path and the absorption of the
human body at 2.4 GHz frequencies [48], which is particularly evident in smartwatch de-
vices [49]. Furthermore, the environments themselves can often restrict beacon placement,
and in some cases a thorough search of the parameter space is unfeasible [50]. In this paper,
we have considered that the best option is to deploy the beacons in an indoor space and to
reduce positioning errors through parameters such as temporal window size, aggregation
method, sampling frequency and transmit power.

Energy costs are a further factor to be taken into account in this type of system. Like in
smart cities, it is always beneficial to have a minimum cost for real-time location and energy
efficiency at all times [51] due to the fact that the power consumption of BLE beacons is an
indispensable challenge.

Regarding the data privacy and security of IPSs, many of them, including the one
proposed in this paper, use mobile devices that include built-in sensors to obtain accurate
location data so as to inform about physical activity level and mental health. The study
provided in [52] showed that data could be easily accessible when using mobile devices,
and that users are unaware of the dangers involved and have a false sense of privacy. There
is no unified solution to cover all threats in mobile technology security. However, a further
fundamental consideration is that any system based on sensor data from mobile technology
ensures better privacy than systems based on vision cameras [53]. The security and privacy
considerations of the system proposed in our paper will be discussed in Section 6.

3. Fuzzy Indoor Location Methodology

In this paper, we present an indoor location methodology based on BLE technology
using fuzzy logic techniques to deal with the uncertainty associated with technology-
derived problems. To do so, first, a fuzzy framework is proposed, followed by fuzzy
aggregation for indoor location.
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3.1. Fuzzy Framework for Indoor Location

The system proposed in this paper is based on proximity positioning in the enclosed
space, which is calculated taking into account the signal emitted by the beacon and the
signal that the mobile device is able to receive (RSSI).

The following notions and terminology areas are presented in the proposed fuzzy
framework using mobile devices.

1. A smart environment in which a set of area classes exist is defined as {A1, . . . , Al , . . . , AL}.
2. There is a set of BLE beacons {B1, . . . , Bj, . . . , BJ} ∈ Al that is associated with a unique

area or in an object of this area, Al .
3. Each inhabitant has an associated mobile device D. The mobile device can be a

smartphone, smartwatch or wearable device, the only requirement is that it receives
the RSSI value provided by the BLE beacons deployed in the smart environment.
Each device receives the RSSI value reading frequency, and these readings generate
the RSSI signal stream StRSSI . In this work, the stream is defined by a set of measures
StRSSI = {mi} where each measure is defined by a 3-tuple mi = {B

j
i , vi, ti}, where Bj

i
is the beacon that has an associated area Al , and vi is the RSSI value of this beacon in
a timestamp ti.

4. A fuzzy linguistic term called proximity P is defined with membership function µp(x),
being Vmi = µp(vi) ∈ [0, 1] the membership degree of vi in mi contained in RSSI for
the linguistic term P [54].

5. A fuzzy temporal window, TW, is defined with membership function Tmi = µTW(∆ti)
∈ [0, 1] [54], where ∆ti is described directly as a distance function of each sample
timestamp to the current time ∆ti = ti − t0.

3.2. Fuzzy Aggregation for Indoor Location

Based on previous works [6,9–11,14], we have integrated fuzzy aggregation of the
terms in the RSSI stream using a fuzzy temporal window.

First, proximity membership degrees, Vmi , for each vi in the RSSI signal stream RSSI
are computed with its fuzzy temporal window Tmi by Equation (1).

Vmi ∩ Tmi = µp(vi) ∩ µTW(∆ti) ∈ [0, 1]; f or each mi ∈ StRSSI (1)

A joined set per area BAl is defined for all the measures of the StRSSI that includes the
aggregated membership degrees related with beacons of the same area by Equation (2).

BAl =
⋃

Bj∈Al

Vmi ∩ Tmi ∈ [0, 1]; where {B1, . . . , Bj, . . . , BJ} ∈ Al (2)

We note that several fuzzy operators can be used to implement the aggregation.
However, in this paper, we propose a fuzzy weighted average [54], which is recommended
in cases where there are high sample rates from sensors [6]. The aggregation process is
defined by Equation (3).

Vmi ∩ Tmi =
∑Vmi × Tmi

∑ Tmi

(3)

The area corresponding to the maximum value of the fuzzy aggregation of proximity
values per area in a fuzzy temporal window is assigned to the timestamp ti by Equation (4).

Locti = Max(BAl); l{1, . . . , L} (4)

4. Case Study

In this section, we describe a case study in order to properly evaluate the effectiveness
of the proposed methodology presented in Section 3.

To do so, we describe the selected dataset and the details of the environment in
which the data were collected. Then, we explain the processing that was applied using
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the proposed fuzzy methodology to obtain the person’s indoor location. Finally, a com-
parison between the methodology with fuzzy processing and without fuzzy processing
is performed.

4.1. UCAmI Cup Dataset

The research study has been carried out at the UJAmI Smart Lab [15] of the University
of Jaén by using the UCAmI Cup dataset [16,55]

This smart lab is a small intelligent apartment divided into several areas: a living
room, a dining room, a bathroom, a bedroom and a kitchen. These areas can be used by one
or more inhabitants at the same time. The bedroom is integrated with the bathroom (toilet
and sink). The kitchen is very large and has plenty of storage space. It also includes basic
appliances such as a washing machine, dishwasher, oven and microwave. In addition, the
smart lab includes a living room with a sofa, a television and a work space which can be
considered to be an integrated office.

To validate the proposed methodology, the UCAmI Cup dataset [16,55] was used to
obtain particular fingerprints or location patterns. The dataset was generated by a person
over a period of 10 days by obtaining data from four heterogeneous sources located in the
UJAmI Smart Lab. Among them, there is proximity information between a mobile device
and 15 BLE beacons placed on various objects in the smart lab. These beacons were fixed
in all areas of interest in each of the smart lab areas. The placement of the beacons for this
case study is shown in Figure 2.

Figure 2. Location of Estimote Sticker beacons in the UJAmI Smart Lab. (1) TV controller, (2) Book,
(3) Entrance door, (4) Medicine box, (5) Food cupboard, (6) Fridge, (7) Pot drawer, (8) Water bottle,
(9) Garbage, (10) Wardrobe door, (11) Pyjamas drawer, (12) Bed, (13) Bathroom tap, (14) Toothbrush,
(15) Laundry basket.

The data were collected each day and were divided into three subsets corresponding
to morning, afternoon and evening, each subset with an approximate duration of 90 min.
In addition, the dataset contains the activities that the inhabitant carried out during the
data acquisition. As our work focuses on indoor location, we have associated each activity
with the area or areas in which it is performed. For example, the activity Go to bed has been
associated with the bedroom area. Table 1 shows the correspondence between the activities
and the smart lab areas.
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Table 1. Correspondence between activity and area.

ID Activity Activity Areas

Act01 Take medicine Kitchen
Act02 Prepare breakfast Kitchen
Act03 Prepare lunch Kitchen
Act04 Prepare dinner Kitchen
Act05 Breakfast Kitchen
Act06 Lunch Kitchen
Act07 Dinner Kitchen
Act08 Take a snack Kitchen
Act09 Watch TV Living room
Act10 Go home Entrance
Act11 Play a video game Living room
Act12 Relax on the sofa Living room
Act13 Leave house Entrance
Act14 Visit in the smart lab Entrance
Act15 Take out the trash Kitchen, Entrance
Act16 Wash Bathroom
Act17 Brush teeth Bathroom
Act18 Use toilet Bathroom
Act19 Wash dishes Kitchen
Act20 Turn on washing machine Bedroom, Kitchen
Act21 Work at the table Workplace
Act22 Get dressed Bedroom
Act23 Go to bed Bedroom
Act24 Get up from bed Bedroom
Act25 Read a book Living room

4.2. Intelligent Processing Using the Fuzzy Indoor Location Methodology

In this subsection, the proposed fuzzy indoor location methodology presented in
Section 3 is applied in the UCAmI Cup dataset to process the location of the inhabitant in
an intelligent way.

This application of the methodology uses, on the one hand, the proximity data source
obtained from BLE beacons and a mobile app installed on a device and, on the other
hand, the data of the activities that the inhabitant carried out during data acquisition. The
proximity data stored in the dataset contains the following information: timestamp, unique
identifier of the beacon, object with which the beacon is associated and, finally, the collected
RSSI value.

In order to carry out the validation of the proposed fuzzy methodology presented
in Section 3, the dataset was processed based on the following parameters: (1) A fuzzy
proximity value defined by the trapezoidal membership function and (2) a fuzzy tempo-
ral window size defined by the trapezoidal membership function. These functions are
illustrated in Figures 3 and 4.

Figure 3. Trapezoidal membership functions for proximity value.
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Figure 4. Trapezoidal membership functions for temporal window.

To explain the intelligent processing with the proposed fuzzy methodology, a fragment
of the UCAmI dataset has been selected (see Table 2), corresponding to the Brush teeth
activity carried out by the inhabitant.

Table 2. Subset of data corresponding to the Brush teeth activity.

TW DT Bc Bc
Area RSSI Fuzzy

Value BTA BDA KTA Av
BTA

Av
BDA

Av
KTA Loc

1 13:29:29 BT BTA −89 0.6 [0.6] - - 0.6 - - BTA
2 13:29:29 TB BTA −88 0.7 [0.7, 0.6] - - 0.65 - - BTA
3 13:29:33 WB KTA −93 0.2 [0.35, 0.3] - [0.2] 0.35 - 0.2 BTA
4 13:29:33 PD BDA −92 0.3 [0.35, 0.3] [0.3] [0.2] 0.35 0.3 0.2 BTA
5 13:29:33 BT BTA −76 1.0 [1.0, 0.35, 0.3] [0.3] [0.2] 0.55 0.3 0.2 BTA
6 13:29:33 TB BTA −88 0.7 [0.7, 1.0, 0.35, 0.3] [0.3] [0.2] 0.59 0.3 0.2 BTA
7 13:29:39 BT BTA −76 1.0 [1.0] - - 1.0 - - BTA
8 13:29:39 PD BDA −94 0.1 [1.0] [0.1] - 1.0 0.1 - BTA
9 13:29:39 TB BTA −88 0.7 [0.7, 1.0] [0.1] - 0.85 0.1 - BTA
10 13:29:40 TB BTA −88 0.7 [0.7, 0.7, 1.0] [0.1] - 0.8 0.1 - BTA
11 13:29:43 WD BDA −92 0.3 [0.7, 0.35, 0.5] [0.3, 0.05] - 0.52 0.17 - BTA
12 13:29:44 PD BDA −100 0.0 [0.35, 0.0, 0.0] [0.0, 0.3, 0.0] - 0.12 0.1 - BTA

TW: Temporal Window, DT: Datetime, Bc: Beacon, Bc Area: Beacon Area, BTA: Bathroom area, BDA: Bedroom area, KTA: Kitchen area, Av:
Average, Loc: Location, WB: Water Bottle, MB: Medicine Box, BT: Bathroom Tap, TB: Toothbrush, PD: Pyjama Drawer.

As can be observed, this subset provides the following information:

• Temporal Window (TW) represents the temporal window identifier to manage the
fluctuations of the RSSI values from BLE beacons. The most accurate correlation
between the activity carried out and the inhabitant’s location is obtained using a
5-second temporal window.

• Datetime (DT) is the date and time at which the RSSI value of the beacon was obtained
by the mobile device.

• Beacon (Bc) shows the name of the beacon from which the RSSI value has been
obtained by the mobile device.

• Beacon Area (Bc Area) indicates the area where the beacon is located in the smart lab,
as illustrated in Figure 2.

• RSSI is the value received in the mobile device for the signal emitted by the beacon.
• Fuzzy Value represents the fuzzy RSSI value obtained from the fuzzy proximity

membership function proposed in Figure 3.
• Bathroom area (BTA) specifies the calculated fuzzy values grouped in the defined

temporal window, after applying the membership function proposed in Figure 4, and
that belong to beacons located in the bathroom area.

• Bedroom area (BDA) shows the calculated fuzzy values that are grouped in the
temporal window, to which the fuzzy temporal window membership function shown
in Figure 4 has been applied, and that belong to beacons in the same bedroom area.
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• Kitchen area (KTA) groups the calculated fuzzy values in the defined temporal win-
dow, as considered in Figure 4, and that belong to beacons located in the same
kitchen area.

• Average Bathroom (Av BTA) shows the average value of the grouped values of the
same bathroom area.

• Average Bedroom (Av BDA) represents the average value of the grouped fuzzy values
of the same bedroom area.

• Average Kitchen (Av KTA) provides the average value of the grouped values of the
same kitchen area.

• Location (Loc) is the location of the inhabitant in the smart lab based on the highest
value of the averages obtained in each area.

The intelligent processing performed is based on the application of the equations
presented in Section 3. The evaluation of these equations is detailed below.

To calculate the fuzzy value, we rely on the RSSI value read from the beacon. We use
the fuzzy membership function illustrated in Figure 3 to obtain a proximity term between
0 and 1, giving more importance to RSSI values closer to the inhabitant, and reducing more
distant RSSI values in order to distinguish the location of the inhabitant in the smart lab
more clearly. Based on this fuzzy value, we calculate the proximity membership degrees
considering its fuzzy temporal window defined in Figure 4. This temporal window gives
preference to fuzzy values closer in time. This processing is described in Equation (1).

The next step in the processing involves applying Equation (2), clustering the previ-
ously obtained fuzzy values belonging to beacons located in the same area, taking into
account the temporal window. The aggregation in each temporal window is presented in
Table 2 in the column corresponding to each area (BTA, BDA and KTA).

For the aggregation of the fuzzy proximity terms of each area in a fuzzy temporal
window, we apply Equation (3), where we obtain the average of fuzzy values for each area,
as shown in the columns Average Bathroom (Av BTA), Average Bedroom (Av BDA) and
Average Kitchen (Av KTA) in Table 2.

Finally, applying Equation (4), we calculate the location where the inhabitant is in the
smart lab, obtaining the maximum of the previous aggregation values defined for each
area. This information is illustrated in the Location column in Table 2.

4.3. Fuzzy vs. Non-Fuzzy Comparison

In this subsection, we compare the results obtained with the methodology using fuzzy
processing versus non-fuzzy processing. To do so, a full day’s dataset is used, i.e., for the
activities performed by the inhabitant in the morning, afternoon and evening.

Because the dataset is not labelled with the location but with the activity description,
each proximity value was computed with the activity being carried out by the inhabitant
according to the timestamp available in each data source. Furthermore, when there are
proximity values to a beacon in the selected dataset but no specific activity is registered in
that period of time, the activity value Undefined is assigned to that period.

To describe the inhabitant’s location in the smart lab, we compare the location obtained
with the proposed fuzzy processing and the location obtained without applying fuzzy
processing, considering only raw RSSI values from the beacons provided by the UCAmI
Cup dataset. The figures below represent the areas visited by the inhabitant in the morning,
afternoon and evening, identifying each area of the smart lab with a different colour. There
are two charts: Figure 5a (top) represents the visited areas applying the fuzzy processing
described in the previous section, and Figure 5b (bottom) shows the areas visited by the
inhabitant without applying any fuzzy processing. Furthermore, at the top of both charts,
the areas of the smart lab involved in each activity are noted, based on the information
shown in Table 1.
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Figure 5. Areas visited and activities carried out by the inhabitant in the morning (a) with fuzzy processing and (b) non-fuzzy
(raw data).

Figure 5 graphically represents the activities performed by the inhabitant in the
morning, as well as the areas visited while performing them. The first of the morning
activities carried out by the inhabitant is Get up from bed. During this activity, the inhabitant
is in the bedroom area of the smart lab (green line). There is no significant difference
in identifying the location of the inhabitant during this activity without applying fuzzy
processing. Next, he/she performs the activity Use toilet. During this activity, we can
observe in Figure 5a that the inhabitant goes to the bathroom area (red line) from the
bedroom where he/she previously was in the smart lab (green line). In addition, there is a
gap in the inhabitant’s path because in a short interval of time, weaker broadcasting signals
are received from the kitchen beacons than from the bathroom. This is due to fluctuation in
the broadcasting signals emitted by the beacons as well as in the frequency of emission. In
Figure 5b, there is no gap, but it is more difficult to discern in which area the inhabitant is
located, as similar values can be seen for different areas.

While the inhabitant performs the Wash activity, we observe in Figure 5a that the area
in which the person is located must be the bathroom, although weaker signals from the
kitchen are also represented, showing that with the processing the inhabitant’s location is
correctly attributed to the bathroom (red line). At the end of this activity, we can observe
that the processed data indicates that the inhabitant is in the kitchen area (yellow line). This
inconsistency occurs due to the use of fuzzy temporal windows, as they can sometimes
produce a displacement or delay when detecting a new area in which the inhabitant is
located. If we observe Figure 5b, it is difficult to distinguish which area the inhabitant is in
while performing the activity.

During the Prepare breakfast and Breakfast activities, the main area in which the inhabi-
tant is located is the kitchen (yellow line), as can be seen in Figure 5a. However, during
both activities, we identified moments where the inhabitant is recorded as being in the
bathroom area, due to fluctuations in the broadcasting signals emitted by the beacons.
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At the end of the Breakfast activity, the inhabitant’s location is recorded as the bathroom
area. This inconsistency is explained by the use of fuzzy temporal windows in the data
processing carried out. Figure 5b shows situations in which the location of the inhabitant
changes from one area to another. The fact of not giving preference to RSSI values that
are closer in time and nearer the inhabitant means that there is a great variation in the
detected location of the inhabitant and, therefore, a loss of precision when determining
his/her real location.

Finally, the inhabitant performs the activity Brush teeth in the bathroom (red line) and
Get dressed in the bedroom (green line). There are no significant differences between the
data shown in Figure 5a,b for the location of the inhabitant in this period of time. We note
again that Unde f ined represents moments when the inhabitant is in some area of the smart
lab but no specific activity is identified, so we cannot determine which area the inhabitant
is in during that period of time.

The activities carried out in the afternoon and the areas visited by the inhabitant in this
period of time are illustrated in Figure 6. The first activity performed by the inhabitant is
Go home, and the area where he/she is located is the entrance (grey line) in both Figure 6a,b,
where no fuzzy processing is applied. Due to the use of temporal fuzzy windows in the
processing, we can observe an inconsistency in the location data, as the inhabitant is located
in the kitchen area at the end of the activity. Later, the inhabitant performs the activity
Prepare lunch and Lunch, where the kitchen area (yellow line) predominates in both charts.
However, it is in Figure 6a where the constant location of the inhabitant in the kitchen
area can be observed, as the values of the kitchen area are given preference after applying
fuzzy processing. While the inhabitant is performing the Lunch activity, there is a brief
period where the processing locates the inhabitant in the bathroom area, which is caused
by fluctuations in the broadcasting signals of the beacons. In Figure 6b, when carrying
out the Lunch activity, there is greater variability in the location of the inhabitant, placing
him/her in the kitchen, the bathroom or the entrance area.

Next, the inhabitant goes to the bathroom (red line) to perform the activity Brush teeth,
and subsequently performs the activity Watch TV for a period of time in the living room
(blue line).

Note that during this activity period, the inhabitant can be in several areas, as shown in
Figure 6a, where there are moments in which the inhabitant goes from the living room to the
bedroom, and then back to the living room. This is because the inhabitant may be moving
between different areas when performing a particular activity, but one area predominates
over the others. Again, in Figure 6b, there is no stable location of the inhabitant, showing
that the inhabitant changes his/her location over short periods of time.

Then, for a short while, the inhabitant performs the activity Use toilet, but both charts
show that the user is in the living room area. This is because of the values considered in this
temporal window, as well as the short period of time in which this activity is carried out.

The inhabitant then carries out the Turn on washing machine activity. This activity
involves the inhabitant going to the bedroom to get the laundry and then to the kitchen
area to turn on the washing machine. Due to the short period of time in which the inhabitant
performs the activity, the fuzzy processing performed does not detect values close to the
bedroom area, showing only that the inhabitant is in the kitchen area (yellow line) while
performing this activity, although the raw data in Figure 6b, show such values. The next
activity is Take a snack where the inhabitant is located in the kitchen area (yellow line).
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Figure 6. Areas visited and activities carried out by the inhabitant during the afternoon (a) with fuzzy processing and
(b) non-fuzzy (raw data).

As with the activities carried out in the morning, there are periods of time during the
afternoon when the activity is labelled as Unde f ined due to the inhabitant being in some
area of the smart lab without performing a known specific activity. Finally, the inhabitant
performs the activity Leave house. In Figure 6a, we can see that the inhabitant goes from
the kitchen (yellow line) to the entrance area (grey line) to carry out this activity, but in
Figure 6b, at no time is the inhabitant located at the entrance, but rather in the kitchen.

For the last time period described, activities carried out and areas visited in the evening
are illustrated in Figure 7. The inhabitant performs the activity Go home, located in the
entrance area of the smart lab. Both Figure 7a,b provide similar information for this activity.
There is a period of time with Unde f ined activity, which indicates that the inhabitant is in
some area but not performing a known activity. Next, the inhabitant performs the activities
Prepare Dinner, Dinner and Take medicine in the kitchen area (yellow line). There is a greater
stability in the location data shown in Figure 7a compared to the information provided
in Figure 7b. However, we observe a small period in which the processing performed
in Figure 7a incorrectly places the inhabitant in the bathroom. This is due to the data
processed during that temporal window, where more data is processed from the bathroom
area than from the kitchen where the inhabitant is really located. This can also be seen in
Figure 7b where fuzzy processing has not been performed.
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Figure 7. Areas visited and activities carried out by the inhabitant during the evening (a) with fuzzy processing and
(b) non-fuzzy (raw data).

The next activity performed is Take out the trash, and as can be observed, in this activity
the inhabitant has to go to the kitchen and then to the entrance of the smart lab. In this
activity, Figure 7a has an inconsistency where the inhabitant is shown to be going to the
bathroom (red line) instead of the entrance (grey line). Figure 7b shows that there is a delay
and the inhabitant goes to the entrance once the Take out the trash activity is finished.

The inhabitant then carries out the Brush your teeth activity in the bathroom area (red
line) and the Get dressed activity in the bedroom area (green line). While the inhabitant
performs this activity, both Figure 7a,b show that the inhabitant finishes it in the kitchen
area for a long period of time. This may be due to mislabelling of the dataset in the
performance of the activity. Finally, the inhabitant performs the defined Go to bed activity
in the bedroom area (green line).

To perform a qualitative comparison between the methodology using fuzzy logic
and without using fuzzy logic, the fluctuations between areas are compared. Thus, the
more the areas within an activity fluctuate, the lower the accuracy of the methodology.
For example, if the activity “Brush teeth” is being performed, an accurate RSSI is one that
always gives the location of the bathroom. In our case study, the bathroom beacons are
close to the bedroom and the kitchen. Therefore, if the IPS, within the activity “Brush
teeth”, computes bedroom and kitchen locations, it will be less accurate than an IPS that
gives only the bathroom.

To qualitatively compute accuracy, each RSSI sample is determined by a beacon, which
is assigned an area. In addition, this RSSI sample is assigned an activity, which is performed
in one or more areas. Therefore, the ground truth is obtained from this information.
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For each methodology (fuzzy logic and non-fuzzy logic), the location computed for
each of the samples generated within each activity is compared. As shown in Table 3, for
each of the samples within each activity, the number of True Positive (TP) is shown.

Table 3. Qualitative comparison between the fuzzy and non-fuzzy processing methodologies.

Time of Day Samples Fuzzy TP Fuzzy
Accuracy

Non-Fuzzy
TP

Non-Fuzzy
Accuracy

Morning 219 193 88.13% 166 75.80%
Afternoon 773 712 92.11% 613 79.30%
Evening 226 211 93.36% 209 92.48%

Full-day 1218 1116 91.63% 988 81.12%

Table 3 shows that a higher accuracy is obtained when the location is computed by
the fuzzy logic methodology by 10.51% percentage points.

5. UJAmI Location

In this section, we present UJAmI Location, which implements the fuzzy methodology
presented in this paper. To do so, first, we offer a general description of the system, then
we present its architecture and, finally, its functionality.

5.1. General Description

The indoor location system presented in this work is contextualised in the need
to locate people with some kind of sensory, cognitive or mobility limitation in hospital
buildings, care homes or residences. In such environments, it is very useful to know the
location of the inhabitants in order to improve their care, detecting possible anomalies and
improving resource management. For this reason, the system allows users to define basic
elements, such as basic identification details (address, contact information, location map,
etc.), as well as the different zones or areas into which the map is divided, the location of
the beacons and the inhabitants of the space with their assigned devices. In this way, the
system provides useful information on where inhabitants have been or are in real-time,
how long they have been there and the most frequented areas in the space.

The designed system is called UJAmI Location, and it consists of a mobile application
developed for Android operating system that searches for beacons inside a delimited
space and sends the information to the server, as well as a web system that processes the
information and manages the location data, both in real-time and over time, providing
linguistic feedback to the user.

5.2. UJAmI Location Architecture

In this section, the architecture of the UJAmI Location system is presented. The aim of
the system is to locate the inhabitant within any indoor environment in real-time and at all
times. For this purpose, we have implemented a system that is based on the architecture
shown in Figure 8.

In this architecture, we can distinguish three main components: sensors, client
and server.

The sensors comprise Bluetooth beacons that are distributed among objects that are
associated with areas of interest. For example, in a bedroom these objects can be the bed or
the closets where clothes are stored. In this paper, Estimote Stickers (https://estimote.com/
proximity, accessed on 5 August 2021) are used as BLE beacons integrated in the UJAmI
Location, which were chosen due to their versatility. However, any other Bluetooth beacon
can be integrated into the system.

https://estimote.com/proximity
https://estimote.com/proximity
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Figure 8. UJAmI Location architecture.

On the client side, two elements can be highlighted: the mobile application, used for
sample gathering and cloud storage, and the browser display, used to visualise the web
system. The mobile application was developed for the Android operating system and was
included in a mobile device that the inhabitant carried with him/her all the times. This
application collects the samples and sends the RSSI values to be processed by the proposed
method in the server. Furthermore, the website allows monitoring the inhabitant by
visualising his or her information through the web browser of any conventional computer.
By tracking through a website, we provide incredible versatility, ensuring full access to
the service from a mobile device, a smart tablet or a computer, as long as there is an
internet connection.

Finally, on the server side with the data model, three elements can be identified:

• The database with the model that is responsible for receiving, storing and retrieving
the data.

• The REST service that acts as an intermediary between the database and any applica-
tion that needs to store or retrieve information.

• The web service used to support the REST service and the web application to monitor
the inhabitants.

The REST service provides a separation between the database and the client side,
guaranteeing independence from the technologies and languages used, as well as high
reliability, scalability and flexibility.

5.3. UJAmI Location Functionality

In this section, the functionality of UJAmI Location is presented.
As mentioned above, there are several essential components, but the main focus is

on the mobile application and the monitoring web service. The main goal of the mobile
application is to collect RSSI samples of the BLE beacons while inhabitants are in the
smart environment, for example, inside a residence, a hospital or any enclosed place. The
inhabitant wears a mobile device in which the application is installed to collect the samples
automatically, process the information through the algorithm presented in the previous
section and send the information to the database through the REST service. The interface
of this application can be seen in the Figure 9.
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Figure 9. Mobile application interface.

Therefore, in summary, the information in the mobile application goes through the
following steps:

1. Each inhabitant has an associated mobile device where the UJAmI Location applica-
tion is started up.

2. The mobile device collects samples from RSSI beacons from a time frequency.
3. The mobile device processes the RSSI samples with the proposed fuzzy method in a

fuzzy temporal window to compute the area where the inhabitant is according to the
model presented in Section 3.

4. The mobile device sends the computed area to the server to store it.

Regarding the web service, it has been designed with the aim of providing information
to the caregiver that is responsible for the inhabitant, whether in a nursing home or in
a hospital.

From the admin role, the following functionality is provided: beacon management,
user management and real-time monitoring of the inhabitant’s location in the areas that
have been previously defined. Figures 10 and 11 show the main screens of this monitor-
ing system.

In addition, the system is not only capable of displaying the inhabitant’s location as
shown in Figure 12, it is also capable of displaying a record of the inhabitant’s activity in
natural language, showing a summary of what the inhabitant has done over a specific day.
An example of this is illustrated in Figure 13.
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Figure 10. Management of different elements and data export and import.

Figure 11. (1) Area management, (2) sensor management, (3) inhabitant management, and (4) de-
vice management.
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Figure 12. Summaries of the areas visited during a particular day in natural language.

Figure 13. (1) Real-time tracking and (2) information about inhabitant location.
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6. Discussion

This section provides a discussion of the proposed theoretical methodology as well as
the practical proposal, the UJAmI Location system, presented in this paper.

On the theoretical side, the fuzzy indoor location methodology has been validated with
the UCAmI dataset, obtaining an accuracy of 91.63%, approximately 10 points higher than
the methodology without using fuzzy logic. Regarding the strengths of our methodology,
we point to the fact that it improves the identification of a person’s location within an indoor
space while the inhabitant is performing a particular activity. The methodology succeeds
in reducing variation in the location data produced by similar RSSI values in beacons
located in different areas that do not correspond to the real location due to the nature of the
signal emitted by the devices used. Giving preference to RSSI values that are closer in time
and closer to the inhabitant provides increased stability in the inhabitant’s location and,
therefore, higher accuracy. Thus, applying fuzzy processing on the data collected provides
more stable and less variable location data of the person in fuzzy temporal windows.

Despite the advantages of the proposed methodology, we have also detected some
limitations. The first one is that in short intervals of time, there are moments in which
no signals are received from beacons located in the area where the inhabitant is, but
broadcasting signals are received from beacons located in areas other than where the
inhabitant is really located. This is due to fluctuations in the broadcasting signals emitted
by the beacons, as well as in the frequency of emission. These problems were detected
and mentioned in [48]. However, it is worth highlighting the successful performance of
our theoretical proposal with fuzzy modelling, considering that the configuration of the
beacons and power was preconfigured, so it was not configured and parameterised ad hoc
to achieve optimal results.

Another weakness of our proposal is that, at the end of some activities, the processing
data indicate that the inhabitant is in a different area than the expected one. This inconsis-
tency occurs due to the use of fuzzy temporal windows, as they can cause a delay when
detecting a new area in which the inhabitant is located.

In the case study, where the inhabitant carries out an activity involving a single area
over a long period of time, the inhabitant may be moving between different areas while
performing this particular activity, but one area predominates over the others.

As far as our practical work, the UJAmI Location system, we discuss some important
considerations such as security, privacy and deployment in a real environment. The
proposed UJAmI Location system contains specific data regarding location and daily life,
that is, information of a private nature. Security considerations need to be addressed in
the mobile device [52]. In our case, the device only collects the RSSI values emitted by
the beacons. These RSSI values contain noise, imprecision and fluctuations, requiring a
methodology to compute the location correctly. The RSSI data are sent to the server by
https protocol where the area or location of the person is computed. In our case, in a
server on a web system with encrypted authentication where the RSSI data are received,
processed and stored.

Regarding security and privacy, the location systems are no different in this regard
to other systems based on IoT or based on information and communication technologies.
It is necessary to deal with problems related to the authenticity, confidentiality, integrity
and reliability of data exchanged with appropriate cryptography algorithms and robust
security protocols [56].

Despite the risks that affect any ICT-based system, the UJAmI location system provides
great benefits both to direct users (elderly people) and indirect users (family members and
caregivers). The use of systems such as the one presented in this proposal can improve the
quality of life, comfort and safety of the ageing population. In this regard, the proposal is
aligned with the third goal of the UN’s Sustainable Development Goals entitled “Good
health and well-being” [57,58].
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7. Conclusions

A fuzzy indoor location methodology based on mobile devices and BLE beacons has
been proposed in which RSSI streams are modelled according to a fuzzy linguistic approach
to deal with the problem of uncertainty inherent to the use of BLE beacons. A case study has
been presented in the UJAmI Smart Lab of the University of Jaén where the effectiveness of
the proposed methodology is illustrated, comparing the processed results (91.63% accuracy)
with results that have not been processed with fuzzy logic (81.12% accuracy). The proposed
methodology has been integrated in a practical application, the UJAmI Location system.
The architecture and the full functionality of this innovative system has been presented in
the paper. It provides a key tool that to be used in the context of ageing populations. Our
future works will focus on using data-driven approaches to train fuzzy classifiers to define
the membership functions of the fuzzy linguistic variables involved.
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