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Abstract. Fog Computing is an approach involving smart devices. These devices carry out data processing to provide
collaborative services to reach a common goal, usually, in the cloud. In the fog computing paradigm, uncertainty and
vagueness are inherent to the data processing due to the limitations of computational and communication capabilities of
the smart devices. Fuzzy logic and protoforms represent a powerful tool to model and compute imprecise data presented
within the fog-computing paradigm. In this paper, we present a fuzzy cloud-fog approach based on fuzzy temporal windows
and fuzzy aggregation. The innovations of this paper are: i) to model the uncertainty involved in fog nodes linguistically,
ii) to compute and distribute relevant linguistic information (protoforms), and iii) to publish the computed protoforms in
the cloud to generate complex protoforms, which reach the common goal. This new fuzzy cloud-fog approach is applied
to the problem of activity recognition in smart homes. In this context, the smart devices in a smart home are represented
by fog nodes, which cooperate for activity recognition using a fuzzy cloud-fog computing approach to provide solutions in
ambient-assisted living. Finally, to demonstrate the effectiveness of the proposal in handling situations/environments where
multiple and heterogeneous devices are involved (such as UWB beacons, smart objects and smart wearable devices), a case
study of the proposed fuzzy cloud-fog approach is implemented in the smart lab of the University of Jaén. So, the results
obtained with the proposed approach in the case study are compared to the results obtained with a non-fuzzy approach with
the aim of showing the advantages of the fuzzy methodology.

Keywords: Fuzzy fog computing, fuzzy cloud computing, smart devices, UWB technology, activity recognition, protoforms,
fuzzy temporal windows, fuzzy aggregation

1. Introduction

The Internet of Things (IoT) is a paradigm that
has emerged as an integral part of our daily lives by
enabling any object around us to generate, process,
connect, and transfer data via network technologies
[12, 15].

∗Corresponding author. M. Espinilla, Computer Science, Uni-
versity of Jaén, Campus Las Lagunillas Jaén, 23071, Spain.
E-mail: mestevez@ujaen.es.

This IoT paradigm includes sensing and comput-
ing nodes, smart devices, which are responsible for
collecting data, reasoning, reporting, and reacting to a
specific sensed phenomenon or user interactions. So,
each makes decisions according to the data process-
ing in this node or other nodes within the network.
The main advantage is that communication in the
IoT is machine-to-machine (M2M) between nodes,
without human intervention [16].

In addition, cloud and edge computing archi-
tectures support the IoT paradigm to achieve the
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following important tasks: reduce costs, manage
resource consumption, enhance performance, and
connect the IoT nodes more effectively [3].

Although both cloud and fog computing offer sim-
ilar resources and services, the latter is characterized,
specifically, by offering a new range of applications
and services closer to the end user [7]. The main fea-
tures that define the Fog computing paradigm are: a)
low latency and location awareness; b) wide-spread
geographical distribution; c) mobility; d) a large num-
ber of nodes, e) the predominant role of wireless
access, f) a strong presence of streaming and real time
applications, g) heterogeneity [4].

In the IoT paradigm with a cloud–fog approach,
the cooperation between smart devices opens many
opportunities to make intelligent decisions or predic-
tions in multiple and heterogeneous contexts [25].
This includes applications such as medicine and
healthcare [10] or smart cities [3].

The accuracy of such decisions depends on the
reliability of the generated sensor data, which con-
tain uncertainty due to resource constraints of the
sensors such as battery power, computational and
memory capacities as well as communication band-
width [2, 29–31, 33]. In addition, these sensors could
be deployed in an unprotected way, causing mal-
function [5]. Therefore, sensor data streams contain
uncertain information with noise, missing and redun-
dant data that should be modeled in an appropriate
way.

In order to solve this problem, we extend the IoT
paradigm based on a cloud–fog approach with a
fuzzy approach so as to model and process the uncer-
tainty and heterogeneity in an adequate way. In this
paper, a methodology to model and aggregate sen-
sor data streams based on protoforms is proposed. In
this new fuzzy fog-cloud computing approach, fog
nodes compute relevant linguistic fuzzy expressions,
protoforms, from the sensor data stream generated
in each smart device (nodes). These protoforms are
distributed to other fog nodes, which fuse the proto-
forms for a common aim in the cloud. To process
sensor data in fog nodes, fuzzy temporal windows and
fuzzy quantifiers are used to compute fuzzy sensor
data streams by means of aggregation fusion methods
[19, 20].

Protoforms were proposed by Zadeh [36, 38] as
a useful knowledge model for reasoning [37], sum-
marization [14] and aggregation [35] of data under
uncertainty, which are modelled by fuzzy sets whose
degree of truth to fuzzy sets is defined by membership
functions.

These fuzzy techniques have been successfully
applied to deal with the uncertainty and vagueness
of data generated by sensor devices in multiple areas
such as an intelligent multi-dose medication con-
troller for fever [21] and predicting the urgency
demand of COPD patients from environmental sen-
sors within smart cities [22] and cardiac rehabilitation
using wrist-worn heart rate devices [23].

In this paper, the fog nodes within the pro-
posed fuzzy cloud-fog computing approach have
been designed to collaborate for real time activity
recognition (AR) [6] in a smart home from a set of
smart devices [1, 18]. The inhabitant in the smart
home wore a smart wearable device, which gener-
ates protoforms that describe the movement of the
inhabitant as well as receiving the computed proto-
forms from other nodes to identify the activity. This
is achieved in real time.

The scope of application of this paper, AR in real
time, is directly related to the proposed fuzzy cloud-
fog computing approach because AR systems have
the ability to detect human actions and their goals.
Real-time refers to the recognition of activities: (i)
when they are being undertaken [34], (ii) while new
sensor data are being recorded from multiple devices,
and (iii) with the processing of data to produce results
within an acceptable period of time [18].

Additionally, the proposed fuzzy cloud-fog
approach is suited to this scope of application for
three crucial reasons. The first reason is that the prob-
lem of AR targeted by this work represents a reputable
and challenging research topic for supervising older
adults and aiding them in living independently and
with the best quality of life for as long as possible
[27]. For this reason, AR is considered as a criti-
cal component in smart homes to address some of
the problems associated with supporting the age-
ing population in ambient-assisted living [28]. The
second reason is that fuzzy linguistic models have
been successfully proposed for managing uncer-
tainty and vagueness in an interpretable way, which
is key in obtaining high performance in AR [24].
Finally, the third reason is that activity recogni-
tion can be computed with protoforms linguistically
and efficiently, which enables activity recognition
in a central node with computed protoforms. Third,
complex contexts can be easily extended and cus-
tomized using protoforms, such as, user adaptation
and multi occupancy AR in smart environments
[9, 26].

The key points of the proposed fuzzy cloud-fog
approach in this paper are defined as follows:



M.A. López-Medina et al. / Fuzzy cloud-fog computing approach 711

• The use of fuzzy temporal windows and linguis-
tic quantifiers to process the sensor data stream
in each fog node to manage uncertain sensor data
generated.

• Each fog node is modelled to transmit relevant
linguistic information defined by protoforms,
which linguistically summarize the sensor data
stream from each smart device. Thus, raw data
are not sent– only relevant data, which has been
processed linguistically.

• In the fuzzy cloud computing approach, complex
protoforms are computed and distributed to other
fog nodes to offer a new and intuitive linguistic
representation of highest-level information.

• The proposed fuzzy cloud-fog approach is
applied to AR. This area of application is a
challenging research topic in an uncertainty con-
text in which the advantages of the new fuzzy
cloud-fog computing approach are evidenced to
achieve the objective of recognizing the activity
in real time.

Finally, this paper not only presents a theoretical
proposal for the use of fuzzy logic in the fog-
computing paradigm–we also develop and integrate
the new fuzzy cloud-fog computing approach in the
Smart Lab of the University of Jaén [8] to recog-
nize activities of an inhabitant from heterogeneous
devices to demonstrate the effectiveness of our pro-
posal. The obtained results are compared with the
results obtained with a non-fuzzy approach in order
to show the benefits of fuzzy processing.

The remainder of this paper is structured as fol-
lows: Section 2 reviews fuzzy concepts to compute
fuzzy sensor data streams using protoforms. Section
3 presents a novel fuzzy fog computing approach
that uses fuzzy linguistic temporal windows and
fuzzy aggregation methods to generate, connect, and
transfer data via network technologies. Section 4
introduces a case study to show the utility and appli-
cability of the proposed model for AR in a smart
environment. Finally, in Section 5, conclusions are
discussed.

2. Computing fuzzy sensor data stream using
protoforms

In this section, a fuzzy modeling of the sensor data
stream generated by smart devices in an uncertain
context is reviewed [19, 20].

A smart device D generates sensor data by means
of a pair s̄i = {si, ti} where si represents a given value
according to the nature of the sensor and ti is the time-
stamp. So, the sensor data stream of the smart device
is defined by SD = {s̄0, ..., s̄i, ..., s̄n}.

A fuzzy value term, VD, can be associated with
a smart device D, by means of a fuzzy membership
function �VD(si).

A fuzzy temporal window (FTW) can be computed
to model the sensor data in order to generate weighted
fuzzy linguistic terms based on fuzzy temporal lin-
guistic terms and provide flexibility in the presence
of uncertainty. A FTW is described in a simple man-
ner according to the distance of the current time t0 to
a given timestamp ti as �ti = (|t0 − ti|). So, a fuzzy
temporal term, TD, can be associated with a smart
device D, by means of a fuzzy membership function
�TD(�ti).

The relevance of a pair s̄i in a fuzzy value term VD,
in a linguistic temporal term TD, of smart device D,
is defined by an intersection operation to fuse both
degrees of membership by means of Equation (1).

V ∩ T (s̄i) = μVD(si) ∩ μTD(�ti) ∈ [0, 1] (1)

The relevance of a sub-set of measures in the sensor
data stream that are associated with the FTW associ-
ated to TD, i.e., μTD(�ti) > 0 are aggregated using
the union operator in order to obtain a single degree
of the degrees implied in a fuzzy value term in a
linguistic temporal term by means of the Equation (2).

V ∪ T (SD) = ∪(V ∩ T (s̄i)) ∈ [0, 1] (2)

Next, Q defines a fuzzy quantifier to evaluate the
impact and fulfillment of the linguistic term V within
the temporal window T. A fuzzy quantifier applies
the following transformation:

μQ([0, 1] → [0, 1] (3)

to the aggregated temporal degree μQ(V ∪ T (SD)).
From the fuzzy value term V, the fuzzy linguistic

temporal window T and, finally, the fuzzy quantifier
Q, the concept of ad-hoc protoform P0 is defined by:

P0(SD) = QVT (SD) = Q(V ∪ T (SD)) (4)

in order to integrate an interpretable and rich-
expressive approach to model the expert knowledge
linguistically.

Finally, protoforms can be combined using fuzzy
logical operators to increase the linguistic capabil-
ities of the model. We briefly review the following
basic operations, which could be easily increased
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with advanced fuzzy operations in other contexts
[32]:

• Fuzzy negation operator, which is represented as
the complement ¬ in the following fuzzy func-
tion ¬P0(SD) = 1 − P0(SD)

• Fuzzy union operator, which is represented
by the t-norm P0 ∪ Pl(SD) = P0(SD) ∪ Pl(SD).
The semantic function proposed for the
fuzzy union operator is min: P0 ∪ Pl(SD =
min(P0(SD), Pl(SD)).

• Fuzzy intersection operator, which is repre-
sented by the co-norm P0 ∪ Pl(SD) = P0(SD) ∩
Pl(SD). The semantic function proposed for
the fuzzy intersection operator is max: P0 ∩
Pl(SD = max(P0(SD), Pl(SD)).

3. Fuzzy cloud-fog approach in a smart
environment for activity recognition

In this section, the fuzzy model for fuzzy process-
ing of the protoforms in smart fog nodes is proposed,
as well as its architecture.

3.1. Fuzzy framework

The aim of this new fuzzy framework is to define
the components required for AR in a smart home
in which fog nodes and smart devices have been
deployed to publish a linguistic summary for the
central model in order to compute complex activity
protoforms.

The following notions and terminology are pre-
sented in the proposed fuzzy framework for multi
occupant AR with wearable devices.

1. A smart home in which a set of activity classes
exist is defined as A = {A1, ..., Ai, ...AAI}.

2. A set of smart devices, fog nodes, is defined
as D = {D1, ..., Dj, ...DJ }, that is associated
with a set of objects or areas, respectively. For
each smart device Dj , the following elements
are defined:

2.1 A fuzzy value variable with a set of fuzzy
value terms and its membership func-
tions: Vj = {Vj

0 , ..., V
j
k , ... V

j
k }.

2.2 A fuzzy temporal variable with a
set of fuzzy linguistic temporal terms
and its membership functions: T j =
{T j

0 , ..., T
j
h , ... T

j
H }.

2.3 A fuzzy quantifier variable with a set
of quantifiers and its membership func-
tions: Qj = {Qj

0, ..., Q
j
r , ... Q

j
R}.

2.4 A set of relevant protoforms for the set
of activities defined by PQ

j
X(SDj ) = Q

j
r

V
j
k T

j
h (SDj ), which computes the sensor

data stream of the devices to publish a
linguistic summary for a central node.

3. A central node (CD) is defined as the main
coordinator which is subscribed to all prede-
fined protoforms from the fog nodes SCD =
{PQ

j
X(SDj )}. This central node combines the

protoforms in order to generate complex activity
protoforms PAi. Each activity Ai is computed
by a set of protoforms from fog nodes which are
fused by applying fuzzy operators, to obtain a
degree of the activity in real time.

3.2. Architecture of the fuzzy cloud fog approach

In this section, we present the architecture of the
proposed fuzzy cloud-fog approach based on the
fuzzy framework.

First, each smart device Dj , is associated to a smart
fog node, which collects the data from its sensors in
order to compute the membership degree of its own
protoforms PQ

j
X(SDj ).

The protoforms are previously defined linguisti-
cally with a fuzzy value term V

j
k , a fuzzy temporal

window T
j
h , and a fuzzy quantifier Q

j
r . The mem-

bership degrees and description of the protoforms
are computed and spread using a publish/subscribe
protocol with MQTT1. Under this architecture, any
subscriber, as a central node for AR, can receive
changes in the membership degrees and the linguistic
description of the protoforms in real time. The central
node CD fuses the protoforms using fuzzy operators
to compute the complex activity protoforms which
describe the AR at the end of the processing in real
time.

Figure 1 illustrates the architecture of the proposed
fuzzy cloud-fog computing in the human activity of
“drink”.

In Fig. 1 of the architecture, two smart devices are
involved which are related to two fog nodes. There is
a central node, for example a mobile device, which is
subscribed to the protoforms of these two fogs. The
first fog node is the wearable device that generates
acceleration data streams and computes two proto-

1http://mqtt.org/

http://mqtt.org/
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Fig. 1. Proposed fuzzy cloud-fog approach to recognize the activity “drink” in real time.

forms. The second fog node is a low cost computer
(Raspberry pi) with indoor location technology in the
kitchen that generates location data streams.

In real time, membership degrees of protoforms are
spread to subscribing nodes using a publish/subscribe
protocol. The mobile device fuses the subscribed
protoforms in real-time to compute the degree of the
developed activity.

4. Human activity recognition in a smart lab

In this section, we develop and integrate the new
fuzzy cloud-fog computing approach in the smart lab
of the University of Jaén to recognize the activities
of an inhabitant in a real scenario to demonstrate the
effectiveness of the proposal in this paper.

To do so, we first describe the scene of the case
study, as well as the Smart Lab and smart devices
that are involved in the scene. Second, the protoforms
computed by the smart devices in fog computing are
described. Complex protoforms computed in cloud
computing are then presented. Finally, the results of
the real scene following the proposed approach are
presented and discussed.

4.1. Scene in the UJAmI smart lab

The case study includes a popular set of six
human activities in the context of ageing population
in ambient-assisted living: sleeping, brushing teeth,
drinking, watching TV, making a phone call and leav-

ing home. One inhabitant undertook these activities
sequentially in the UJAmI smart lab described below.

UJAmI Smart Lab2 [8] is based in the University
of Jaén, Spain. The lab was designed and deployed
to replicate a real apartment that can sense, adapt
and respond to human needs, habits, gestures, and
emotions.

The UJAmI Smart Lab measures approximately 25
square meters, being 5.8 meters long and 4.6 meters
wide. As shown in Fig. 2, it is divided into five areas:
hall, kitchen, workplace, living room and a bedroom
with an in suite bathroom, and has multiple and het-
erogeneous smart devices with sensors and actuators.

Figure 3 illustrates the set of smart devices involved
in the scene of this case study based in the UJAmI
Smart Lab.

The inhabitant wore a smartwatch with accelera-
tion sensors in the Smart Lab. The model used in this
scenario is the Polar M6003 smartwatch with Android
OS.

Additionally, smart devices with acceleration sen-
sors are located in objects throughout the smart lab.
In this case study, the following two smart devices are
considered: the toothbrush in the bathroom and a cup
(Fig. 4). To do so, two ESP8266 Wi-Fi development
boards with an acceleration sensor where added to
these items. Figure 4 illustrates the smart board that
was attached to the cup and in the toothbrush to collect

2http://ceatic.ujaen.es/ujami/en/smartlab
3https://www.polar.com/es/productos/sport/M600-GPS-

smartwatch

http://ceatic.ujaen.es/ujami/en/smartlab
https://www.polar.com/es/productos/sport/M600-GPS-smartwatch
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Fig. 2. UJAmI Smart Lab at University of Jaén.

the acceleration data as well as compute and publish
its own protoforms.

These smart devices have been selected accord-
ing to the nature of the activities to be recognized in
this case study. An extended set of objects could be
included to detect a broader set of activities.

Smart location beacons with UWB technology
[11]. Three beacons are located in this Smart Lab,
while the inhabitant wears a tag with this UWB tech-
nology. The Raspberry Pi 3 was used with modules
for UWB technology to facilitate this (see Fig. 5).
Each smart accurate beacon provides the distance
from its location to the location of the inhabitant’s
tag.

Finally, smart binary devices. These are the sim-
plest kind of smart device. In spite of their simplicity,
however, these devices allow the system to discrimi-
nate interactions within the environment in a simple
way. In this case study, the following three smart
binary devices are considered: the TV remote, the
phone and the exit door.

Among these devices, a supervisor fog node is
modelled as the main coordinator, receiving the fuzzy

processing of the protoforms, which are computed
within the fog nodes of smart devices. These are then
fused to recognize the activity that is being carried
out in real time.

4.2. Protoforms in fog computing

In this section, the description of the protoforms
that are computed in each smart device is presented.

4.2.1. Location of the inhabitant
The location of the inhabitant is generated by ana-

lyzing the collected values based on distances from
three smart location beacons with UBW technology
(B1, B2 and B3).

As shown in Fig. 1, B1 is located in the bedroom,
B2 is located in the living room and B3 is located in
the kitchen.

Each smart location beacon broadcasts its signal;
if the tag is in the range of a beacon, the beacon
obtains an indicator in order to calculate the distance
of the tag, which is measured in meters. The following
fuzzy sets are defined over the indicator of distance,
expressed in meters (m).

CloseBX (m): TS (1, 1, 0.2, 0.4).
MiddleBX (m): TS (2, 3, 4, 5).
FarBX (m): TS (0, 0, 3, 5).
VeryFarBX (m): TS (0, 0, 4, 5).
A fuzzy temporal window is defined, considering

the current time t0 with a trapezoidal membership
function, the universe being represented in seconds
(s).

From3s5 s (�t): TS (2, 3, 5, 6).
Regarding the sensor data in the fuzzy tempo-

ral windows, a Quantifier, Qm, is applied, which
represents “most” that is defined by the following
trapezoidal membership function.

Qm (x): TS (0, 0, 0.5, 1).
According to the fuzzy sets defined previously, the

following complex protoforms in the Tag (PTBX) are
computed, considering the smart beacon BX:

PTCBX: Most of the Distance Is CloseBX From 3 s
to 5s→ Qm CloseBX(m-BX) From3s5 s(t0 ).

PTMBX: Most of the Distance Is MiddleBX From
3 s to 5 s → Qm MiddleBX(m-BX) From3s5 s(t0 ).

PTFBX: Most of the Distance Is FarBX From 3 s
to 5 s → Qm FarBX(m-BX) From3s5 s(t0 ).

PTVFBX: Most of the Distance Is VeryFarBX From
3 s to 5 s → Qm VeryFarBX(m-BX) From3s5 s(t0 ).

For simplicity, the following equivalences are
defined:

Location is bedroom: PTCB1 and PTFB2.
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Fig. 3. Smart devices involved in the case study.

Fig. 4. ESP8266 board (left) that was attached to a cup (right) to collect acceleration sensor data.
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Fig. 5. Smart accurate beacon composed of Raspberry pi 3 with
UWB technology.

Location is washbasin: PTMB1 and PTMB2.
Location is kitchen: PTFB1 and PTCB2.
Location is living room: PTCB3 and PTFB2.
Location is hall: PTVFB1 and PTMB2.
Where and operator is represented with the norm

minimum.

4.2.2. Movement of the inhabitant
The movement of the inhabitant is generated and

computed by the acceleration of the smartwatch worn
by the inhabitant. The acceleration signal is repre-
sented by m/s2 in each axis (X, Y and Z) and the
following fuzzy sets are defined.

UpX(x) : TS(0, 0.25, 0.75, 1)

UpZ(z) : TS(0, 0, 0.25, 0.5)

Furthermore, the magnitude (Mag) of acceler-
ation that considers all three axes is computed
by means of the following expression: Mag =
(sqrt (x ∗ x + y ∗ y + z ∗ z)).

The following fuzzy sets are defined over the mag-
nitude acceleration.

Low (Mag): TS (0, 0, 0.2, 0.4).

High (Mag): TS (0, 0, 0.5, 0.1).

Two fuzzy temporal windows are defined, con-
sidering the current time t0 with a trapezoidal
membership function, being the universe represented
in seconds (s).

From5s10 s (�t) : TS(3.5, 5, 10, 11).

From3s5 s (�t) : TS(2, 3, 4, 5).

A Quantifier, Qg, is defined representing “most
of the time”, which is defined by the following
trapezoidal membership function. It is noteworthy

that Qg will be used in other smart devices with
acceleration.

Qg(x) : (0, 0, 0.5, 0.75).

According to the fuzzy sets defined previously, the
following complex protoforms in the smart wearable
device (PSW) are computed:

PSW1: Most of the time Mag Is Low From 5 s to
10 s → Qg Low(Mag) From5s10 s(t0 ).

PSW2: Most of the time Mag Is High From 3 s to
5 s → Qg High (Mag) From3s5 s(t0 ).

PSW3: Most of the time X Is UpZ From 3 s to 5 s
→ Qg UpX (X) From3s5 s(t0 ).

PSW4: Most of the time Z Is UpZ From 3 s to 5 s
→ Qg UpZ (Z) From3s5 s(t0 ).

For simplicity, the following equivalences are
defined:

Movement is low: PSW1.
Movement is high: PSW2.
Movement is up hand: PSW3 AND PSW4.

Where and operator is represented with the norm
minimum.

4.2.3. Acceleration of smart devices
The movement of each device is also generated and

computed using the acceleration of each smart device
in each axis as well as the magnitude acceleration.

Protoforms in these fog nodes are defined accord-
ing to the nature of each object in the following
sub-sections.

Inclination of Smart Cup: In this smart device, the
relevance of the acceleration is its Y-axisused to com-
pute the inclination of the cup. For this reason, the
following fuzzy set is defined.

LeanedY (y): TS (0, 0, 0.5, 0.75).

A fuzzy temporal window is defined, considering
the current time t0 with a trapezoidal membership
function, being the universe expressed in seconds (s).

From1s3 s (�t) : TS(0, 1, 3, 4).

According to the fuzzy sets defined previously, the
following complex protoform in the smart cup (PSC)
is computed:

PSC1: Most of Y Is LeanedY From 1 s to 3s→ Qg
LeanedY (y) From1s3 s(t0 ).

For simplicity, the following equivalence is
defined:

Cup is tilted: PSC1.

Movement of Smart Toothbrush: In this smart
device, the relevance of the acceleration is in its
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magnitude, to compute the movement. For this rea-
son, the following fuzzy set is defined.

High (Mag): TS (0, 0, 1, 2).

A fuzzy temporal window is defined, considering
the current time t0 with a trapezoidal membership
function, being the universe expressed in seconds (s).

From1s2 s (�t) : TS(0, 1, 2, 3).

According to the fuzzy sets defined previously, the
following protoform in the smart toothbrush (PST) is
computed:

PST1: The great part of Mag Is High From 1 s to
2s→ Qg High(Mag) From1s2 s(t0 ).

For simplicity, the following equivalence is
defined: Toothbrush is moving: PST1.

4.2.4. Active smart binary devices
The activation of each smart binary device is gen-

erated by a binary value b ∈ {0, 1}. In this case study,
there are three smart binary devices: the phone (PH),
the TV remote (TV) and the exit door (ED).

When the PH is off-hook, the device generates a
value of 1, otherwise a value of 0. When the TV is
on the device generates a value of 1, otherwise a 0.
When the door is open, the device generates a value
of 1, when closed a value of 0 is generated.

The following classic set is defined over each smart
binary value. It is worth noting that this crisp set is
represented by the identity function:

ActivePH (b) = b.
ActiveTV (b) = b.
OpenD (b) = b.
The simplicity of the values generated by these

devices allows for simple discrimination of interac-
tions within the environment.

To process the activation of these devices in a
temporal way, a fuzzy temporal window is defined,
considering the current time t0 with a trapezoidal
membership function, being the universe in seconds
(s).

Now (�t): TS (0, 0, 1, 2).
Due to the crisp nature of these devices and the

straight relation of the binary value and the object
activation, they lack the quantifiable form. Therefore,
according to the sets defined previously, the following
complex protoforms in each smart binary devices are
computed:

PPH: Phone is active now → ActivePH (b) Now
(t0 ).

PTV: TV is active now → ActiveTV (b) Now (t0 ).
PD: Door is open now → OpenD (b) Now (t0 ).

4.3. Fusing protoforms in cloud for activity
recognition

In the fuzzy fog approach, each smart device
publishes the fuzzy computed degree and linguis-
tic description of protoforms to a subscriber in the
cloud. This information is received by any interested
publisher. In this work, the central node fuses the
protoforms from smart devices for AR in real time
using fuzzy operations, generating complex proto-
forms.

The complex protoforms are related to activities
presented in this case study. The degree to which the
protoform is related to the activity is calculated in
real time. They have been defined utilizing expert
knowledge as follow:

PSleeping: location IS bedroom AND movement IS
low.

PTooth brushing: location IS washbasin AND
movement IS up AND toothbrush IS moving.

PDrinking: location IS kitchen AND movement IS
up had AND cup IS tilted

PWatching TV: location IS living room AND move-
ment IS low AND TV IS active now

PCalling phone: location is living room AND
movement IS up had AND phone IS active now

PExitHome: location is hall AND door IS active
now.

Where and operator is represented with the norm
minimum.

4.4. Results

Within the scenario, each smart device computed
its protoforms following the proposed fog computing
approach. Only the degree and description of the com-
puted protoforms in each smart device were published
in real-time, reducing the amount of information sent
through the network and providing more linguistic
information of sensors and objects.

In order to illustrate the computations of the
protoforms in each device, examples of computed
protoforms from the fog nodes are described.

Regarding the location of the inhabitant, the raw
distance expressed in meters (Y-axis) over time
(X-axis) by the three smart accurate beacons is rep-
resented in Fig. 6, considering the position of the tag
that is worn by the inhabitant.

Membership degrees of the computed protoforms
related with the location of the inhabitant are illus-
trated in Fig. 7. The protoforms of the locations are
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Fig. 6. Raw data expressed in meters (Y-axis) of the smart location
beacons over time (X-axis).

bedroom washbasin kitchen livingroom hall

Fig. 7. Membership degrees of the locations protoforms over time.

Fig. 8. Raw data expressed on meters (Y-axis) of the wearable
devices over time (X-axis).

computed by fitting into the area where each activity
is carried out.

Between the kitchen and the living room, the mem-
bership degree of the hall location slightly increases.
This is due to the fact that the hall is between the
kitchen and the living room, as can be seen in Fig. 3.

Regarding the movement of the inhabitant, the
acceleration in its three axes (X, Y, Z) and the mag-
nitude over time is illustrated in Figs. 8 and 9,
respectively.

Membership degrees of the computed protoforms
related with the movement of the inhabitant are illus-
trated in Fig. 10.

Fig. 9. Magnitude of the acceleration (Y-axis) of the smart wear-
able devices over time (X-axis).

Fig. 10. Membership degrees of movement of the inhabitant over
time.

Fig. 11. Membership degrees of activity protoforms (Y-axis) over
time (X-axis) from a fuzzy point of view. Ground truth is repre-
sented at the top.

Finally, the complex protoforms have been com-
puted in the wearable device of the inhabitant,
considering its own protoforms as well as proto-
forms published by other smart devices using light
and intuitive operations based on fuzzy methodol-
ogy. Membership degrees of the complex protoforms,
activity protoforms, are shown in Fig. 11. The col-
ored horizontal lines in the figure above indicate
when each real activity begins and ends over the
time, ground truth. The colored vertical lines repre-
sent membership degrees for each activity using the
complex activity protoforms.

4.5. Discussion

The proposed fuzzy methodology and the expert
knowledge has successfully described activity
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Fig. 12. Membership degrees of activity protoforms (Y-axis) over
time (X-axis) from a crisp point of view. Ground truth is repre-
sented at the top.

degrees which match up with the sequence of activi-
ties of the scenario. It is worth noting that in the end of
the scene, two activities: watching TV and using the
phone, overlap in time, which is the sequence which
was undertaken during the scenario.

In order to compare the results generated by the
fuzzy fog proposal, Fig. 12 shows the results with
the same methodology from a crisp point of view. To
do so, we apply an �-cut with a value of 0.9 to all
membership functions involved in the case study.

Regarding the crisp point of view, the activity of
drinking (drinking from the cup) is more accurate
from a fuzzy perspective. From the crisp perspective,
this activity is reduced in time.

Furthermore, in our case study, there is a situation
with overlapping activities. Specifically, watching
TV and using the phone. The crisp point of view loses
the progressive state of changing from one activity to
another. So, the fuzzy point of view represents this
progression in a more adequate way.

Finally, the main advantage of the fuzzy model is
that it represents the progress in starting and finishing
each activity with a membership degree in the time-
line. The crisp model reduces the space in the timeline
where information on the development of the activ-
ity is provided, obviously including the degree that is
also lost.

5. Conclusions

In the IoT paradigm with a cloud–fog approach,
multiple and heterogeneous smart devices cooperate
with each other in order to make intelligent deci-
sions or predictions in various contexts, such as,
medicine, healthcare or smart cities. The accuracy of
such decisions depends upon the reliability of the gen-
erated sensor data, which contain uncertainty due to
incompleteness, ignorance, vagueness, imprecision
and ambiguity.

In this paper, the cloud-fog computing approach
has been extended with a fuzzy point of view in order
to model the uncertainty involved in this paradigm
and process it in a linguistic and interpretable
way.

From the fog computing point of view, the sensor
data stream in each fog node has used fuzzy temporal
windows and linguistic quantifiers to manage uncer-
tain sensor data. Each fog node publishes relevant
linguistic information defined by protoforms, which
summarize the sensor data stream from each smart
device linguistically.

In the fuzzy cloud computing approach, complex
protoforms have been computed, providing a new
and intuitive linguistic representation of the highest-
level information from the protoforms computed and
transferred by the fog nodes.

The proposed fuzzy cloud-fog approach has been
applied to AR in real time. The benefits of this
new fuzzy cloud-fog computing approach are shown
to achieve the objective of recognizing the activity
in real time. Our proposal has been developed and
implemented in the smart lab of the University of Jaén
with multiple smart devices (UWB beacons, smart
objects and a smart wearable device) to recognize
six activities of an inhabitant in a real life scenario
to demonstrate the effectiveness of the proposal put
forward in this paper.

Finally, the results obtained with the proposed
fuzzy approach in the smart lab have been compared
with the results generated by a non-fuzzy approach.
The benefits of the fuzzy approach are mainly that
it offers a progression of each activity closer to the
ground truth, providing a membership degree of each
activity.

Regarding to the managerial implications, smart
devices offer cost efficiency and are becoming
smaller and consuming less energy. The installation
and setup of these devices is also not very com-
plex. Therefore, it is relatively easy to operate these
devices in the proposal of fuzzy cloud-fog computing
approach.

Acknowledgments

This research has received funding under the
REMIND project Marie Sklodowska-Curie EU
Framework for Research and Innovation Horizon
2020, under Grant Agreement No. 734355. Fur-
thermore, this contribution has been supported by
the Action 6- 2017 from the University of Jaén,
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Aguilera and M. Espinilla Estévez, Real-time monitoring
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