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Abstract
The automatic detection of falls within environments where sensors are deployed has attracted considerable research
interest due to the prevalence and impact of falling people, especially the elderly. In this work, we analyze the capabilities
of non-invasive thermal vision sensors to detect falls using several architectures of convolutional neural networks. First,
we integrate two thermal vision sensors with different capabilities: (1) low resolution with a wide viewing angle and (2)
high resolution with a central viewing angle. Second, we include fuzzy representation of thermal information. Third, we
enable the generation of a large data set from a set of few images using ad hoc data augmentation, which increases the
original data set size, generating new synthetic images. Fourth, we define three types of convolutional neural networks
which are adapted for each thermal vision sensor in order to evaluate the impact of the architecture on fall detection
performance. The results show encouraging performance in single-occupancy contexts. In multiple occupancy, the low-
resolution thermal vision sensor with a wide viewing angle obtains better performance and reduction of learning time, in
comparison with the high-resolution thermal vision sensors with a central viewing angle.
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Introduction

The most recent studies of the World Bank estimated
that the number of elderly people is increasing and
expected to double again by 2050 worldwide. As the
average age of the population continues to rise, elderly
people are continuing to suffer from certain chronic
diseases like dementia, hypertension, diabetes, gait
issues.1,2

Fall detection is a major challenge in the area of pub-
lic health care, especially for the elderly, and reliable
surveillance is a necessity to mitigate the effects of falls.3

In this context, an alarming 42% of people aged 70 and
above are involved in falls annually, with 37.3 million

of those requiring medical attention as a result of their
severity.1,4

Accidental falls experienced by elderly people are a
prominent cause of hospitalization, death due to the
injuries sustained, and reduced independence. Several
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risk factors exist in relation to falls in older adults, stud-
ies mainly identifying physical frailty, poor balance,
unsteady pace, poor muscle strength, and cognitive
impairment. The prevalence of falls also escalates as
age increases, particularly when combined with other
risk factors such as chronic disease, poor sleep patterns,
and diminished vision.5

Ambient assisted living (AAL) is becoming an
important consideration to provide assistive technolo-
gies aimed at sustaining independence, well-being, and
quality of life.6 So, there has been a growing need to
promote and support ‘‘aging in place’’ due to demo-
graphic issues, increasing health care costs, a shortage
of caregivers, and the fundamental fact that a large
portion of elderly people prefer to remain independent
in their own homes for as long as possible.7

These issues open up new research avenues for track-
ing activities related to elderly people’s daily routine,
specifically with the aim of guaranteeing their safety.
Over the last decade, interest in ubiquitous computing
technologies has provided researchers with enough
opportunities to design monitoring and intervention
systems, which could provide continuous 24/7 real-time
monitoring in environments with sensors, with the goal
of improving the quality of life of elderly people.8

In order to evaluate the proposed methodology, a
case study is presented to evaluate the methodology for
fall detection using data collected by two different ther-
mal vision sensors (TVSs) and multiple convolutional
neural networks (CNNs) in two different smart labs:
the smart lab of Ulster University9 and the smart lab of
the University of Jaén.10 Moreover, the data set design
for data collection includes single-occupancy as well as
multi-occupancy scenes.

The article is structured as follows: in this section,
we have provided a review of related research in the
fields of TVSs and fall detection. The methodology for
the evaluation of CNNs to classify the shapes of falls
from heterogeneous TVSs is presented in
‘‘Methodology’’ section. The experimental setup of the
case study and a discussion of the results are presented
in ‘‘Experimental setup’’ section. Finally, in
‘‘Conclusions and ongoing works’’ section, conclusions
and ongoing works are discussed.

Related works

The automatic detection of falls within AAL scenarios
has attracted considerable research interest due to the
prevalence and impact of falls in the elderly, being a
crucial research area.3 Impact-related accidents in
indoor environments such as falls and collisions have
been identified and studied in an attempt to avoid falls
or reduce aid response time.11 Fall detection
approaches in AAL scenarios are divided into two

categories: wearable/ambience sensors and vision
sensors.3,12

In approaches based on wearable/ambience sensors,
sensors are attached to an inhabitant under observa-
tion—namely, wearable sensors or smart phones, or
objects that make up the environment where the activ-
ity takes place—namely, dense sensing. These
approaches work with time series of state changes and/
or various parameter values that are usually processed
through data fusion, probabilistic, or statistical analysis
methods and formal knowledge technologies.13 The
main benefit of the wearable or ambience sensor is its
cost efficiency. However, two main disadvantages of
this kind of sensor are intrusiveness and fixed relative
relations with the object or the inhabitant that can be
easily disconnected. Furthermore, installation and
setup can be complex. For these reasons, this kind of
device is not a very good choice for the elderly.3

Approaches based on vision sensors exploit com-
puter vision techniques like feature extraction, struc-
tural modeling, movement segmentation, action
extraction, and movement tracking to analyze visual
observations for pattern recognition.13 In recent years,
the number of approaches in this category has increased
due to the fact that video cameras are commonly
included in the wearable technologies or systems we use
daily.3 Previously, general vision sensors entailed disad-
vantages concerning privacy and ethics. After the emer-
gence of TVSs, these disadvantages can be mitigated,
being an excellent alternative to find solutions for the
elderly.

Exploring state-of-the-art fall detection systems, we
found recent studies within vision sensor-based
approaches. In the proposal presented in Bromiley
et al.,14 the image stream from the thermal detector is
monitored. To do so, extracted features include hori-
zontal and vertical gradients, aspect ratio, and centroid
angle to horizontal axis of the bounding box. Falls were
confirmed when the angle reached a value below 45 . A
fall detection system was proposed in De Miguel et al.15

based on a low-cost device comprising an embedded
computer and camera, executed in a low-cost device
such as Raspberry Pi, obtaining good performance val-
ues (i.e. 96% sensitivity), comparable to other systems
using more expensive and more powerful hardware. An
approach for unobtrusive indoor fall detection by an
infrared (IR) thermal array sensor was proposed in
Hayashida et al.16 The main innovation of this pro-
posal was to perform the fall detection within the sen-
sor node by a computationally inexpensive algorithm
which notifies the server only when a fall has occurred.
A method was proposed in Rougier et al.17 to detect
falls by analyzing human shape deformation during a
video sequence. A shape matching technique was used
to track the person’s silhouette along the video
sequence. The shape deformation is quantified from
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these silhouettes based on shape analysis methods. In
Asbjorn and Jim,18 data collected from a ceiling-
mounted 80 3 60 thermal array were combined with
an ultrasonic sensor device. This approach monitored
activities, recognizing the location and posture of an
individual. In Taramasco et al.,19 a non-invasive moni-
toring system for fall detection in older people was pre-
sented by using very low-resolution thermal sensors for
classifying a fall and then alerting the care staff.
Furthermore, the authors analyzed the performance of
three recurrent neural networks for fall detection: long
short-term memory (LSTM), gated recurrent unit, and
bi-LSTM. Finally, a methodology based on CNNs to
detect falls from non-invasive TVSs was presented in
Medina-Quero et al.20 with data augmentation tech-
niques. The results show encouraging performance in
single-occupancy contexts, with up to 92% accuracy,
but a 10% reduction in accuracy in multiple-occupancy
contexts.

Another work related to our proposal but without
the application to fall detection was presented in
Bayareh et al.,21 studying the diabetic foot by means of
a Raspberry Pi as an embedded system and the Lepton-
Flir Development Kit as an IR sensor. The IR sensor
was characterized to measure the superficial tempera-
ture of the human skin radiometrically.

Most of the proposed vision-based approaches lack
flexibility due to the fact that these approaches are
often case-specific, depending on different scenarios
and TVSs.

In this article, we present a methodology to analyze
the capabilities of non-invasive TVSs22 to detect falls
by means of several architectures of CNNs in different
scenarios. We propose the use of the CNNs because
they have provided excellent results in multiple areas
such as speech recognition,23 image classification,24 or
gas classification.25

The learning process with CNNs requires a large
amount of data.26 Therefore, it is necessary to collect
multiple images from different inhabitants, orienta-
tions, and cases, which takes a great effort. This pro-
cess could make customization and configuration in
different contexts hugely difficult. This disadvantage
can be overcome by data augmentation to enlarge the
number of learning cases from a limited set27 and there-
fore reduce over-fitting.28

Similar approaches have been proposed in recent
works,29,30 where the selection of images from objects
in a small number of human-annotated examples is
then projected in the environmental background to
provide new synthetic examples, as well as in thermal
vision data sets.20

In our proposal, the two studied TVSs have different
capabilities. The first TVS has low resolution with a
wide viewing angle and the second one has high resolu-
tion and a central viewing angle. Three types of CNN

are adapted for each TVS in order to evaluate the
impact of the architecture on fall detection perfor-
mance. Furthermore, a large data set is generated from
a set of few images as a data source, by using ad hoc
data augmentation, that is, increasing the original data
set size by generating new synthetic images.

Finally, we propose to include fuzzy representation
of thermal information to compute the fuzzy color of
human temperature.31 The aim of including fuzzy pro-
cessing of TVS data provides (1) a filter for irrelevant
information, (2) reduction of noise from non-feasible
values,32 (3) scaling and focusing the relevant data
range for the CNN kernels during the learning process.
The use of a fuzzy approach has been demonstrated as
a successful tool to reduce uncertainty in multiple
applications.33–36

Methodology

In this section, we describe the methodology applied.
First, in ‘‘TVSs for analyzing fall detection’’ section, we
describe the TVSs evaluated in this work. Second, in
‘‘Fuzzy representation of thermal information’’ section,
we define a fuzzy representation of thermal informa-
tion to improve the performance of the fall detection.
Third, in ‘‘Data augmentation’’ section, we detail an ad
hoc data augmentation for fall detection in the previ-
ous learning stage. Fourth, in ‘‘Design of the CNN’’
section, we describe several configurations of CNNs
evaluated for each TVS.

TVSs for analyzing fall detection

In this work, we have integrated two TVSs with differ-
ent capabilities to evaluate their performance in analyz-
ing fall detection:

� Low resolution with a wide viewing angle: in this
case, we deployed the TVS Heimann HTPA
32 3 31,37 which provides thermal vision with a
32 3 31 matrix, where each value defines a heat
point of temperature. An effective factory cali-
bration is integrated in the device, with no distor-
tion by the fish-eye lens.38 The data are collected
from the TVS by means of a twisted Ethernet
cable which is connected to the local area net-
work. The middleware SensorCentral39 inte-
grates the TVS as a sensor source, providing the
thermal sensor data within a Web Service in
JSON format.

� High resolution with a central viewing angle: in
this case, we deployed the Lepton LWIR module
included in FLiR Dev Kit,40 which provides ther-
mal resolution with an 80 3 60 matrix. In addi-
tion, a Raspberry PI41 was used in order to
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collect the information from the TVS42 in real
time.

In a formal definition, each TVS provides a matrix
Mw, h which is formed by an array of numbers mi, j

whose value represents a heat point of temperature.
The dimensions of the matrix are defined by weight w

and height h.
In Figure 1, we provide some figures on the sensors

deployed and evaluated in this work.

Fuzzy representation of thermal information

The data collected by the TVS represent the heat tem-
perature in a matrix of points. In order to provide a
visual representation, a transformation function to gray
scale values is required. In this work, we propose to
define a fuzzy set to represent a fuzzy color43 of human
temperature by means of a membership function
mM (mi, j), which relates the temperature values mi, j to a
degree of relevance between 0 and 1

mM (mi, j) : R! ½0, 1�

In order to describe the fuzzy set straightforwardly,
the shape of the membership function is given by a tra-
pezoidal function which is defined as a lower limit l1,
an upper limit l4, a lower support limit l2, and an upper
support limit l3 (see TS in the ‘‘Abbreviations’’ in the
appendix)

mM (mi, j)= TS(½l1, l2, l3, l4�)

The aim of including fuzzy data processing from
TVSs provides (1) a filter for non-relevant information,
(2) the reduction of noise from non-feasible values,32

(3) scaling and focusing the relevant data range for the
CNN kernels during the learning process. In Figure 2,
we show an example of the application of fuzzy
representation.

Data augmentation

In this section, we propose the augmentation and enlar-
gement of the image data from the original data set by
means of image transformations. Thus, the innovation
of our proposal is based on the creation of a new larger
set of synthetic images to train the model. In this work,
we have included the following image transforma-
tions—translation, rotation, and scale—to augment the
original image data set:

� Translation: the original image is relocated
within a maximal window size ½tx, ty�+ by using a
random process, which generates a random
translation transformation ½tx, ty�, tx 2 ½0, t+x �,
ty 2 ½0, t+y �.

� Rotation scale: the rotations are provided by two
methods. First, the translated image is flipped
horizontally and vertically by using a random
process, which applies the transformation to a
percentage of cases, defined by wH , wR respec-
tively. Second, a rotation and scale transforma-
tion is defined by a maximal rotation angle a+

and a scale factor s+, which generates a random
rotation with an angle a 2 ½0,a+� and a random
scale s 2 ½1� s+, 1+ s+�. These transformations
are then applied in the center of the image. We
note that this rotation overcomes the original
image size, for which reason a random scale of
the image is provided.

Figure 1. The thermal vision sensors for analyzing fall detection evaluated in this work: (a) Heimann HTPA and sensor central
provides a thermal sensor with low resolution with wide viewing angle, (b) FLiR Dev Kit and Raspberry Pi provides a thermal sensor
with high resolution and central viewing angle.
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An example of new synthetic images is shown in detail
in Figure 3 in order to extend the data set.

Design of the CNN

In this section, we describe several CNN architectures
to classify the falls sustained by inhabitants. The two
TVS devices show wide differences regarding technical
characteristics and development purposes. For this rea-
son, they are integrated within systems with different
computing performance.

Regarding the low-resolution TVS, in our case a
Heimann HTPA, the thermal sensor collects a smaller
sized matrix of heat points which can be integrated in
low-cost boards with low computing performance. For
this purpose, three configurations of CNNs to classify
fall detection with this kind of device are evaluated:

� CNN0
2 : a CNN with two-kernel layers and opti-

mized configuration for MINIST data set.44

� CNN+
2 : a CNN with two-kernel layers and a

finer granularity configuration of kernels.
� CNN3: a CNN with three-kernel layers.

These three CNN configurations have been
previously identified as suitable structures for fall
detection,20 and their details are shown in Table 1.

Regarding the high-resolution TVS, in our case, an
FLiR DEv Kit and a Raspberry Pi, the matrix of heat
points is wider in size, requiring deeper CNN configura-
tions to classify fall detection. In this work, we propose
three CNN configurations:

� CNN4: a CNN with four-kernel layers and a
deeper configuration than the previous ones (see
Table 2).

� Alex5: based on the configuration of AlexNet,
which is a five-layer CNN for large and deep
CNNs with high performance in image
classification.28

Figure 2. Images 1 and 2 show sample data from a low-resolution TVS. Image 3 shows sample data from a high-resolution TVS.
Category B describes the raw TVS image data, and Category A shows the same data with fuzzy representation.

Figure 3. Images 2A and 2B show augmentation from a high-resolution TVS, and images 1A and 1B from a low-resolution TVS.
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� Res+ Inc: a deeper CNN with 10-kernel layers
which integrates two techniques to reduce the
high-dimensional hyper-parameter tuning by
means of deeper architectures:

Inception, which includes multiple-sized kernels
operating on the same layer.45 In this work, we
integrate convolutions by 3 3 3 and 1 3 1.
Residual, which integrates residual blocks with
the same topology ending with identity-shortcut
to connect outputs from lower layers as input in
upper layers.46 The residual blocks include con-
volutions by 3 3 3 and 1 3 1 for a given input
and output size which is defined for each layer:
res_block([in, out]).

The CNN architectures for the high-resolution TVS
are shown in Table 2.

Experimental setup

In this section, we detail the experimental setup of the
case study carried out to evaluate the fall detection
methodology using data collected by two different
TVSs and multiple CNNs.

The data collection design to detect falls was divided
into single-occupancy and multi-occupancy. In single-
occupancy, we included three subcategories: (1) empty
room, (2) one person standing/walking, and (3) one
fallen person. In multi-occupancy, we added two new
subcategories: (4) two to three people standing/walking
and (5) one fallen person with another person standing/
walking. The image data from three participants were
collected with the two thermal sensors. While the data
were being collected, each person simulated several nat-
ural positions to simulate falls, and also took a walk
around the vision area of the TVS to capture walking.

Description of case studies

The first case study was carried out in the Smart Lab of
Ulster University9 (https://www.ulster.ac.uk/research/
institutes/computer-science/groups/smart-environments).
The experiment was carried out in the hall of the Smart
Lab. Three participants (one woman, two men) were
involved in collecting data in the hall, using a TVS
installed on the ceiling. The participants were 1.72, 1.68,
and 1.83 m tall. The vision of the TVS in the hall
was determined by a square 3.5 m bounding box
(12.25 m2).

The second case study was carried out in the UJAmI
smart lab of the CEATIC (Center for Advanced
Studies in Information Technology and
Communication) of the University of Jaen (Spain)10

(http://ceatic.ujaen.es/ujami/). The experiment was also
developed in the hall of the Smart Lab; analogously,
three participants (one woman, two men) were involved
in collecting data in the hall, using a TVS installed on
the ceiling. The participants were 1.88, 1.64, and
1.70 m tall. The vision of the TVS in the hall was deter-
mined by a square 2.5 3 2.0 m bounding box (5.0
m2).

In order to evaluate the two data sets, they were
divided into 10% for testing and 90% for training by
using a cross-validation (10-cross validation). Accuracy
and time were collected for over 2000 learning steps for
each CNN in the case of the low-resolution TVS and
200 learning steps for the high-resolution TVS. For
each data set with 10 cross-validations, we computed
(1) the average accuracy of the last 20 learning steps
and (2) the average time wasted in all steps.

Table 1. Configurations of convolutional neural networks for
low-resolution thermal vision sensors. [N, N] 3 M is the
convolution of window dimensions whose size is (N3N) and M
is the size of filters.

CNN0
2 CNN+

2 CNN3

[5,5]3 16 [3,3] 3 16 [3,3] 3 16
ReLU ReLU ReLU
[2,2], max pooling [2,2], max pooling [2,2], max pooling
[5,5]3 16 [5,5]3 64 [5,5]3 32
ReLU ReLU ReLU
[2,2], max pooling [2,2], max pooling [2,2], max pooling

[7,7]3 16
ReLU

Connected (1024) Connected (1024) Connected (1024)
Dropout (0.5) Dropout (0.5) Dropout (0.5)
Connected (1024) Connected (1024) Connected (1024)
Soft max Soft max Soft max
Cross-entropy Cross-entropy Cross-entropy

Table 2. Configurations of convolutional neural networks for
high-resolution TVSs.

CNN4 Alex5 Res+ Inc

[5,5]3 64 [5,5] 3 64 res_block((64,128)
ReLU ReLU ReLU
[2,2], max pooling [2,2], max pooling res_block((64,128)
[5,5]3 64 [5,5]3 128 ReLU
ReLU ReLU res_block((128,256)
[2,2], max pooling [2,2], max pooling ReLU
[3,3] 3 128 [3,3] 3 128 res_block((128,256)
ReLU ReLU Identity-shortcut
[2,2], max pooling [2,2], max pooling ReLU
[3,3] 3 128 [3,3] 3 256 res_block((128,256)
ReLU ReLU ReLU
[2,2], max pooling [3,3] 3 256 res_block((128,256)
Connected (1024) ReLU ReLU
Dropout (0.5) [2,2], max pooling res_block((128,256)
Connected (1024) Connected (1024) ReLU
Soft max Dropout (0.5) res_block((128,256)

Connected (1024) Identity-shortcut
Soft max ReLU

Cross-entropy Cross-entropy Average-pool
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The results presented in this work are available in
following URL (http://150.214.174.25:8052/thermal/).

Evaluation of low-resolution TVS with wide viewing
angle

In this section, we detail the results achieved with the
three types of CNNs and the performance of the fuzzy
representation of thermal information to detect falls
from thermal vision images. From the original data set,
we include the following data augmentation steps:

� Translation: the original images have been trans-
lated within a maximal window size,
½tx, ty�+ = ½3, 3�.

� Rotation scale: each image is flipped horizontally
and vertically by a random probability
wH = 0:5,wR= 0:5 respectively, that is, hori-
zontally in half of the cases, and vertically in the
other half. Second, a rotation and scale transfor-
mation is defined by a maximal rotation angle
a+ =p=2 and scale s+ = 0:1. We note this con-
figuration provides random rotation in all quad-
rants and angles.

� Crop-scale: we compute a final centered image
with a window size of 28 pixels, ½sx, sy�= ½28, 28�,
in order to fix to the bounding box of the smart
lab for the case scene.

Evaluation of the best CNN configuration. In this section,
we present the results from the low-resolution, wide
viewing angle TVS, which was evaluated previously in

Medina-Quero et al.20 to detect the best CNN config-
uration. In Table 3, we include the data for the single-
and multi-occupancy data set. CNN3 provides the best
results in classifying fall detection with up to 91% accu-
racy in single-occupancy contexts and a 6% reduction
in accuracy for multi-occupancy.

Evaluation of fuzzy representation of thermal information. In
this section, we evaluate performance when applying
fuzzy representation to the raw data of the matrix of
heat points. To define the fuzzy set which represents
human temperature, we have included the following tra-
pezoidal membership function (TR is described in the
‘‘Abbreviations’’ in the appendix).

mM (mi, j)= TR(½l1, l2�)

where l1 = 219 and l2 = 252 correspond to the average
temperature collected by the TVS from background
and human presence, respectively. These parameters
can be straightforwardly computed from a few samples
in the tuning stage of the system.

In order to provide a symmetrical evaluation, both
with fuzzy representation and raw data, a new augmen-
ted data set has been computed and the performance of
the best configuration CNN3 has been analyzed for both
cases and the same augmented data. In Table 4, we
show the results of the single- and multi-occupancy
data with raw and fuzzy representation, including the
evolution of accuracy while learning in Figure 4. In
Figure 5, we also include a confusion matrix for the
best model in single-occupancy contexts.

Evaluation of high-resolution TVS with central viewing
angle

In this section, we detail the results of the three types of
CNNs to detect falls from the high-resolution, central
viewing angle TVS. From the original data set, we
include the following data augmentation and fuzzy
steps applied to previous learning data:

� Translation: the original image is translated
within a maximal window size ½tx, ty�+ = ½7, 7�.

Table 3. Table summarizing the results of single- and multi-
occupancy data for the low-resolution, wide viewing angle TVS.

Occupancy CNN Time (min) Accuracy (%)

Single CNN0
2

22.48 89.3
Single CNN+

2 30.36 90.8
Single CNN3 27.86 91.9
Multi CNN0

2
22.53 83.9

Multi CNN+
2 30.36 84.0

Multi CNN3 28.00 85.7

CNN: convolutional neural network.

Bold value represents the highest precision values obtained.

Table 4. Table summarizing the results of single and multi-occupancy data with raw and fuzzy representation for the best
configuration CNN3. In Figure 5, we also include a confusion matrix for best the models in single- and multi-occupancy scenarios.

Occupancy CNN3 F1-score Precision Recall Accuracy (%)

Single Raw 0.9 0.91 0.9 92.3
Single Fuzzy 0.96 0.97 0.96 97.2
Multi Raw 0.84 0.84 0.83 86.8
Multi Fuzzy 0.93 0.93 0.93 94.3
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� Rotation scale: each image is flipped horizontally
and vertically by a random probability
wH = 0:5,wR= 0:5 respectively, that is, hori-
zontally in half of the cases, and vertically in the
other half. Second, a rotation and scale transfor-
mation is defined by a maximal rotation angle
a+ =p=2 and scale s+ = 0:3.

� Fuzzy configuration: mM = TR(½l1, l2�), where
l1 = 8150, l2 = 8405 which is provided as a suit-
able device configuration from previous works.42

In Table 5, we include the data for the single- and
multi-occupancy data set for each CNN configuration
proposed in this work. In addition, the evolution of
accuracy while learning is shown in Figure 6. In
Figure 7, we also include a confusion matrix for the
best model in multi-occupancy contexts.

Discussion

In this work, two TVS devices with (1) low resolution
and wide viewing angle and (2) high resolution and

central viewing angle, data processing stages and differ-
ent CNN architectures are proposed to classify human
falls in single and multi-occupancy contexts.

First, high performance is obtained in single-
occupancy scenarios, achieving over 90% accuracy for
both devices. For the low-resolution, wide viewing
angle TVS, we evaluate the impact of including fuzzy
representation of thermal information with previous
results, which has been demonstrated to increase learn-
ing speed and accuracy notably, which with CCN3 is
increased by +5%, achieving 97:2% accuracy, and by
more than +7:5%, achieving 94:3% accuracy, for
single- and multi-occupancy contexts. respectively. This
fact highlights the use of pre-processing the thermal
data to improve both performance and learning time of
CNN models.

Furthermore, despite the capabilities of CNNs to
extract visual features, the initial processing of informa-
tion, such as fuzzy representation, is key to obtaining
encouraging results. In the case of the high-resolution
TVS, different CNN architectures have been evaluated,
obtaining the best performance with the configuration

Figure 4. Evolution of accuracy of the best configuration CNN3 for single and multi-occupancy (fuzzy vs raw representation).

Figure 5. Confusion matrix for the best models. Fuzzy-based single- and multi-occupancy with CNN3.
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Alex5 based on AlexNet28 with 93:8% accuracy. We
also note learning time is up to 10 times longer in Alex5

than CNN due to the differences in the size of the matrix
data (from 28 3 28 to 60 3 80).

Second, notable performance is obtained in multi-
occupancy; the results show a variance of 2:3% and
7:7% of accuracy between best model and second one

in single and multi-occupancy for the high-resolution
TVS, but a wide difference in performance is noted
between the wide viewing angle and the central viewing
angle TVS. For the low-resolution TVS with a wide
viewing angle, the best performance is achieved using
CNN3 with an accuracy of 94:3%. For the high-
resolution device, Alex5 provides the best result but

Table 5. Table summarizing the results of the single and multi-occupancy data for the high-resolution TVS with a central viewing
angle.

Occupancy CNN Time (min) F1-score Precision Recall Accuracy (%)

Single CNN4 100 0.85 0.87 0.84 88.9
Single Alex5 282 0.92 0.89 0.94 93.8
Single Res+ Inc 828 0.89 0.91 0.88 91.5
Multi CNN4 167 0.59 0.56 0.62 69.7
Multi Alex5 474 0.7 0.66 0.73 77.8
Multi Res+ Inc 738 0.61 0.59 0.62 70.6

CNN: convolutional neural networks.

Figure 6. Evolution of accuracy of the six types of CNN for the high-resolution TVS with a central viewing angle in single and
multi-occupancy contexts.

Figure 7. Confusion matrix for the best models. Single and multi-occupancy with Alex5.
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with an unremarkable accuracy of 77:8%, derived from
the conflicting images collected in a very limited space.
Regarding the performance difference, we also note the
reduction of learning steps in high-resolution
approaches due to the augmentation of learning time.
In this sense, a longer data set and learning time could
improve these approaches, but it is outside the aim of
this work, where straightforward methods for agile
deployment are proposed.

It is noteworthy that one of the key reasons for this
low performance derives from differences in the vision
area between the two devices (12.25 and 5.0 m2, respec-
tively). The conflicting images we collected of standing
and fallen people in the multi-occupancy context repre-
sent a greater visual challenge in limited spaces.

Conclusions and ongoing works

In this work, we have evaluated two TVSs with differ-
ent capabilities located in the roof of a smart environ-
ment to classify the shapes of falls. Two case studies in
the Smart Lab of the University of Ulster (UK) and in
the Smart Lab of the University Jaen (Spain) are exam-
ined. Several CNN configurations are evaluated for
each TVS. A low-resolution TVS with a wide viewing
angle using fuzzy representation of thermal informa-
tion provides outstanding performance in single- and
multi-occupancy contexts.

In future works, we will analyze the impact of tem-
poral sequences in dynamic data sets with fall detection
in natural conditions using Deep Learning approaches
on temporal models, such as LSTMs.
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Appendix

Abbreviations

The following abbreviations are used in this article:

TR

TR(x)½l1, l2�=
1 x ł l1
(l2 � x)=(l2 � l1) l1 ł x ł l2
0 l2 ł x

0
@

TS

TS(x)½l1, l2, l3, l4�=

0 x ł 0
(x � l1)=(l2 � l1) l1 ł x ł l2
1 l2 ł x ł l3
(l4 � x)=(l4 � l3) l3 ł x ł l4
0 l4 ł x

0
BBBB@

TVS Thermal Vision Sensor
CCN Convolutional Neural Network
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