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Abstract. Association Rules (ARs) and Approximate Dependencies (ADs) are significant fields in data mining and the focus of
many research efforts. This knowledge, extracted by traditional mining algorithms becomes inexact when new data operations
are executed, a common problem in real-world applications. Incremental mining methods arise to avoid re-runs of those algo-
rithms from scratch by re-using information that is systematically maintained. These methods are useful to extract knowledge in
dynamic environments. However, the implementation of algorithms only to maintain previously discovered information creates
inefficiencies. In this paper, two active algorithms are proposed for incremental maintenance of previous discovered ARs and
ADs, inspired by efficient computation of changes. These algorithms operate over a generic form of measures to efficiently
maintain a wide range of rule metrics simultaneously. We also propose to compute data operations at real-time, in order to cre-
ate a reduced relevant instance set. The algorithms presented do not discover new knowledge; they are just created to efficiently
maintain previously extracted valuable information. Experimental results in real education data and repository datasets show
that our methods achieve a good performance. In fact, they can significantly improve traditional mining, incremental mining,
and a naïve approach.
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1. Introduction

Mining Association Rules (ARs) and Approximate Dependencies (ADs) are important research fields
among several data mining techniques. It aims at discovering useful correlations or tendencies among at-
tributes, hidden in data repositories. Many algorithms have been proposed to improve the mining process
and create more efficient methods [5,14,21,32,44]. However, these proposed algorithms could become
expensive when dealing with huge amounts of data, commonly stored in data warehouses or very large
and big databases.

The knowledge discovered by ARs and ADs methods is specific for the current stage of the repository
in which they were run. In real-world applications, data repository is not static and records are commonly
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inserted, updated or deleted, following real activities in the universe of discourse. These continuous
changes can render the measures of rules inexact and eventually invalid [24].

The need for incremental mining of rules arises to avoid having algorithms to re-run from scratch and
re-scan the whole data. This is specifically useful when real-time data information is required. Example
applications can be found in the field of data streams like web click stream data, sensor networks data,
and network traffic data [27,28,41]. Emerging research in big data offers similar issues in association
with velocity and volume [35,43]. At this time, many research efforts are being made to improve the
performance [18,22,24,26]. These efforts will reduce the problem of updating ARs to find the new set of
large itemsets and share an intermediate maintenance form (frequent itemsets) for this goal [13].

In this work, the update problem is focused on maintaining the measures of previously discovered
rules, covering the decision-makers needs for real-time data information. This approach can also be
helpful to the refine rules processes, at post-mining stage [6]. Our perspective neither removes previ-
ously discovered rules or adds new ones; it just efficiently update initial mined rules measures. A splitter
form of rule is defined, allowing rules direct maintenance in a wide range of literature metrics [15,23],
and simultaneously, maintaining these metrics in an efficient way. The maintenance problem is handled
from a change computation point of view. The process of change computation deals with modifications
induced by data operations; it is an important field in active database systems [42]. Additionally, the ma-
terialized view maintenance and the integrity constraint checking are significant fields of active systems
that provide multiple methods [8,9,20,31]. Two algorithms, inspired in these methods, are proposed in
this paper. One of them is intended for rules immediate maintenance and the other for rules deferred
maintenance. Both algorithms reuse previous results incrementally to avoid measures calculations from
scratch. So far, there is no method to maintain ARs and ADs from this perspective.

Experimental results are obtained from active relational databases with real educational data and
repository datasets. They show that the proposed algorithms achieve good performance and improve
classical mining, incremental mining and a naïve approach significantly. The proposed algorithms are
being implemented and compared in two of the most used open source database management systems.

The main contribution of this paper is twofold. First, we propose two efficient algorithms to directly
maintain the previously discovered rules, a very well addressed research from [11]. Second, from a
deferred perspective, we propose to consider at real-time the interactions between data operations in
order to create a reduced relevant instance set. A common characteristic of the proposed algorithms is
the efficient maintenance of existing rules, keeping their real-time measures available. It is made without
having access to the database itself, making self-maintainable approaches [12,20].

The remainder of this paper is organized as follows. The next section defines basic concepts and
describes the current research problem. Section 3 presents a change computation scope with integrity
constraints and materialized views for ARs and ADs. Section 4 describes the proposed algorithms, in-
cluding an initial naïve approach. In Section 5 we briefly review related work and compare it with our
approach. Section 6 presents the experimental results of the proposed and reviewed methods for the
performance evaluation. Finally, Section 7 concludes this paper summarizing the results of our work.

2. Problem statement

This section defines concepts used in this paper and describes the research problem. ARs and ADs are
different data relationships that share some similarities [30]. These two data dependencies are referred
to as Data Rules (DRs) in the remainder of this paper for a common reference.
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2.1. Association rules definition

Association rules can formally be represented as an implication of itemsets (sets of items) in trans-
actional databases [1]. Let It = {It1, It2, . . . , Itm} be a non-empty set of m distinct attributes. Let T
be the transaction scheme that contains a set of items such that It ⊆ T . An AR is an implication of the
form X ⇒ Y where X,Y ⊂ It such that X �= ∅, Y �= ∅ and X ∩ Y = ∅. In this statement X and Y are
called rule itemsets and they are the antecedent and consequent of the rule, respectively.

There are two important classical parameters to measure using the association rules: support and
confidence. Support is defined as the fraction of records that contains X ∪ Y in all records. Confidence
is the fraction of the transactions that contains X ∪ Y in records that contain X.

Alternative metrics are very well established [23] and they solve some drawbacks associated with the
original indicators. An example is the certainty factor (CF) [4] in Eq. (1) that is a confidence alternative.
The certainty factor takes values in [−1, 1]. It is positive when the dependence between X and Y is
positive, 0 when they are independent, and a negative value represents negative dependence.

CF(X ⇒ Y ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Conf(X ⇒ Y )− Supp(Y )

1− Supp(Y )
, Conf(X ⇒ Y ) > Supp(Y )

Conf(X ⇒ Y )− Supp(Y )

Supp(Y )
, Conf(X ⇒ Y ) < Supp(Y )

0, otherwise.

(1)

Association Rules were first studied in market basket data, where each basket is a transaction contain-
ing the set of items bought by a client. In a relational database context, it is usual to consider that items
are pairs <attribute, value> and transactions are tuples in a relation.

2.2. Approximate dependencies definition

Approximate dependency rules (also called partial determinations or approximate functional depen-
dencies) are related to the satisfaction of a normal function dependency f : X → Y over a relation r.
An AD requires that f is hold in almost all records of r. In other words, the ADs allow very small
portions of records of r that violates f [29]. This exception or error of f is commonly used to calculate
the approximate measures, representing the fraction of records that must be removed for X → Y to be
assured [19].

There are many possible ways for defining the approximateness of data dependencies. These methods
are summarized and compared in [14] being g3 measure [21] widely used. Other studies exist that unify
ADs and ARs [30,37]. In [37] a new definition of ADs is shown by the representation of ADs as ARs in
the new transaction set. Here, the introduced set Tr contains r2 tuples, |Tr| = |r × r| = n2 considering
|r| = n. This measures ADs more accurately based in pairs of tuples. We consider ADs under this
definition without losing any generality.

2.3. Data rules maintenance problem

Real-world applications can be affected by many data operations. A common approach in active
databases known as event-condition-action rules [34] defines these data operations at event occurrences
that can be primitive or composite. The primitive type, called primitive structural event (PSE), is a single
low-level event. A composite type is a combination of multiple primitive or composite structural events
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(CSE). These events produce a database transition (DBs0, DBs1) where DBs0 is the initial state and DBs1

is the final state.
Three types of PSE are considered: inserting a record Δt+, deleting a record Δt−, and updating a

record Δt−+. An update event can be seen like an independent event in which t−+
0 is the record before

the update event corresponding at DBs0 state and t−+
1 is the record after update in the DBs1 state.

Let us consider an initial database state DBi and a composite structural event over this state that pro-
duces a database transition (DBi,DBf ). Let DRSi = {(DR1,DRMi

1), (DR2,DRMi
2), . . . , (DRn,DRMi

n)}
be a set of mined data rules and their measure value, discovered in DBi state. This paper focuses on
efficiently finding the new measures of discovered data rules in the final state DBf . In other words,
the data rules maintenance problem can be reduced to find a data rule set DRSf = {(DR1,DRMf

1),
(DR2,DRMf

2 ), . . . , (DRn,DRMf
n)}.

3. Rules maintenance under the change computation scope

Change computation is the capability to compute data modification operations. Their methods have
been accepted in active databases, materialized view maintenance, and integrity constraint checking [42].
All these methods share similar characteristics like definition of modifications to be monitored, compu-
tation of changes, and reaction to defined changes.

Materialized views, integrity constraints, and DRs share the capacity of reflecting data information,
but for different purposes. In this section we present DRs under the change computation scope, allowing
and formalizing the use of those methods in the data rules maintenance problem.

3.1. Data rules and materialized view

Views define derived data, which can be materialized in database systems. The process of keeping
these views up-to-date in database transitions is called materialized view maintenance [16]. Let a view
be defined by query Q and materialized in MV. Any correct materialization of MV in a database state
DBs always returns the same data as Q: MV(DBs) = Q(DBs). Specifically, the materialization of a view
must be equivalent to its querying: MV ≡ Q. An important aspect to materialize a view is the speed of its
querying, a desirable quality when response time is critical. If tm1 is the time for computing MV(DBs)
and tm2 the time for computing Q(DBs) then, in general terms, tm1 � tm2.

Just like a view DRs define some data information, but in a particular way because they expose at-
tributes correlated in an implication form. A rule of the form X ⇒ Y establishes, with some measure,
that when X occurs so does Y . If quantitative ARs [39] are considered, then their attributes are the triplet
<l, a, u> representing l � a � u with r, s numbers of attributes in X, Y respectively. An example of a
such rule can be defined by a selection condition SC in Eq. (2).

SC ≡
r∧

i=1

li � aXi � ui ∧
s∧

j=1

lj � aY j � uj (2)

Such a condition defines a query over the data repository that selects the co-occurrence of rule an-
tecedent and consequent. Materializing similar queries can be used for directly maintaining DRs mea-
sures in the rule base and not to materialize an intermediate form (itemsets) or data mining views [3].
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3.2. Data rules and integrity constraint

Integrity is a mandatory property for a relational database and it is associated with two components:
validity and completeness. Validity represents the truth of data, completeness represents the totality of
relevant data, and integrity constraints are conditions that guarantee its satisfaction at any time [33].

Each state of a database must satisfy all integrity constraints. Let ICS be a set of integrity constraints
in denial form and F a boolean function that evaluates if any constraint violates or not a database state.
A consistent database state of DBs guarantees that all integrity constraints in ICS evaluated with F must
return false: ∀ic ∈ ICS (F (ic,DBs) = false). A correct database transition must have a final consistent
state. Integrity constraints checking methods are aimed at holding the database’s integrity [9].

DRs only represents data knowledge and never deny any database state. Nevertheless, they have an
inherent restriction: they measure threshold. The measure evaluates the level of interest of the rules while
its perspectives establish a minimum acceptable value that defines DRs existence. Let DRSs be a set of
mined DRs in a database state DBs, G a function that evaluates the measure of a DR and δ the minimum
threshold. A correct DRS set guarantees that all DR evaluated with G must return a value equal to or
greater than δ: ∀dr ∈ DRS (G(dr,DBs) � δ). The DRs incremental maintenance goal is not to maintain
the measure threshold, but it can be part of the efficient evaluation of G.

4. Data rules maintenance proposals

Many research activities propose measures of rules with different properties, and their number is over-
whelming [15,23]. Existing measures for DRs are usually defined by counting a total number of records
that satisfy some condition. These conditions are generally associated with the antecedent, consequent,
rule examples, and counterexamples among others [15,23].

In our proposals, the DR measure is considered a set of k distinct measure-parts DRM = {Mp1, Mp2,
. . . ,Mpk} in which each item represents a different part of the measure formula. Measure parts must
be atomic, it means that they cannot be divided into smaller items and still bring the same measure
value. For example, confidence can be split in two parts: count of (antecedent ∪ consequent) and count
of records. On the other hand, the certainty factor Eq. (1) needs four parts: count of antecedent, count
of consequent, count of (antecedent ∪ consequent), and count of records. In this way, it is possible to
efficiently maintain several metrics at the same time because metrics share some measure-parts. For
example, following [23] is possible with only five distinct measure-parts to maintain 20 measures simul-
taneously. The final data rule measure is a formula over DRM parts.

Three methods are considered for rule maintenance. The first one consists of a naïve approach. This
initial strategy is later enhanced from a change computation perspective in an immediate and a deferred
way thus becoming the second and the third methods. The improvements are oriented towards two
essential points: rules to be maintained and data instances to be analyzed.

4.1. Naïve approach

One way in which a naïve strategy may arise is via database queries. By this form each item of DRM
is obtained following Eq. (2) as a query over all data: Mp1 = Qp1,Mp2 = Qp2, . . . ,Mpk = Qpk. As a
result, previous information of measure-parts is not used to recalculate new values. Rule base is updated
from scratch after each primitive or composite structural event takes place.
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Fig. 1. Example of measure-parts structures.

These queries are quite different depending on if they are devoted to maintain ARs or ADs. In the
case of ARs, count queries represent how many records satisfy a part select condition. For ADs group
by queries are needed according to the efficient calculation of measures in [37]. A group by query allows
exploring in the set of n records instead of exploring the corresponding set of n2. For both, measure-parts
take an integer positive value Mp1,Mp2, . . . ,Mpk ∈ Z

+.
The naïve approach involves maintaining all rules after each data operation and querying the entire

data. Additionally, many irrelevant instances are analyzed which results in a waste of time. The only
attractive aspect of the naïve approach involves not introducing extra manipulation as a reaction of
database operations and the simplicity of their implementation. However, this is irrelevant when the
stored data is large and count or group by queries become highly inefficient.

4.2. Measure parts structures for ARs and ADs

This issue is handled by maintaining measure-parts incrementally. However, due to the differences
between ARs and ADs, naïve queries are necessary to define two measure-parts structures. For the
remainder of this paper, measure-parts defined specifically for one AR and one AD will be ARM and
ADM, respectfully. Measure parts for an AR have the same definition as the general DR measure-parts,
ARM = {Mp1,Mp2, . . . ,Mpk} taking each measure part an integer positive value Mp1,Mp2, . . . ,Mpk ∈
Z
+.
Incremental view maintenance provides interesting solutions for group by queries [36]. These solu-

tions are redefined for specifically maintaining ADM. ∀MPk ∈ADM one auxiliary relation AEk is de-
fined, then ADM = {AE1,AE2, . . . ,AEk}. The attribute list of each AE scheme contains the attributes
of the base relation involved in that measure part plus a count attribute (catt). The catt attribute reflects
how many groups of attribute values are in the base relation.

An example of ARs and ADs structures are provided in Fig. 1. The r0 base relation will share all the
examples of this paper, and maintenance will be achieved over these structures in an immediate and a
deferred way.

The incremental maintenance of measure-parts structures allow obtaining the level of interest of the
rule without re-scanning the whole data, an important aspect when managing large amount of data.

4.3. Immediate incremental maintenance proposal

An immediate approach is oriented to update the rule base immediately after the event takes place, in
an active fashion. This approach verifies the specific rules that must be updated and it computes only the
changes made by a primitive structural event. It means that only one record can be checked at a time.
Incremental view maintenance algorithms offer multiple solutions. Specifically, a counting algorithm
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for view maintenance [16] provides an interesting perspective. The following Algorithm 1 presents the
proposed immediate incremental maintenance where rule measures are updated for data operations.

Algorithm 1 Immediate incremental maintenance for a DR
Input: A composite structural event CSE that modifies the attributes related in list L, and measure-parts
DRM of X ⇒ Y data rule.
Output: Updated measure-parts DRM.
Method:

for all PSE ∈ CSE do
if (PSE = Δt−+) then � update event

if (L ∩ {X ∪ Y } �= ∅) then
for all Mpk ∈ DRM do

if (L ∩ {involved attributes in Mpk} �= ∅) then
update Mpk, increment with t−+

0 ;
update Mpk, decrement with t−+

1 ;
end if

end for
end if

else if (PSE = Δt+) then � insert event
for all Mpk ∈ DRM do

update Mpk, increment with t+;
end for

else � delete event (PSE = Δt−)
for all Mpk ∈ DRM do

update Mpk, decrement with t−;
end for

end if
end for

Not all rules must be checked in update events. It is only when the values of the attributes are changed
or their unknown value changes, especially L = {a ∈ R|t−+

0 [a] �= t−+
1 [a]}. Not all parts of DRM need

to be recalculated either. For example, if an update operation modifies only the antecedent attributes of a
rule, then it is not necessary in certainty factor measure Eq. (1) to recalculate the part of the consequent.
Through these conditions, maintenance can avoid unnecessary rules updates. In an insert or delete event,
all record attributes are affected and always change measures of rules (except when they have unknown
status).

The measure-parts MPk are constantly updated in the proposed algorithm. However, the incrementing
of measure-parts is quite different depending on the DR type. To illustrate our immediate proposal for
ARs let us look at the following example in Fig. 2. Here, three structural events modify the r0 relation
and immediately, for each event, a previous algorithm maintains the ARM set. These structural events
share all the examples of this paper.

Another example, in Fig. 3, illustrates the immediate proposal for ADs. It is not difficult to follow the
Algorithm 1 for each PSE and the modification of all AEk auxiliary relations in ADMri set.

Finally, to obtain AD measure each measure part MPk ∈ ADM is calculated by aggregating the
catt attribute in AEk. For this immediate proposal, rule base refreshing is made without accessing base
relation.
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Fig. 2. Example of immediate incremental maintenance for an AR.

Fig. 3. Example of immediate incremental maintenance for an AD.

(a) (b)

Fig. 4. Immediate incremental maintenance (a), and deferred incremental maintenance approach (b).

4.4. Deferred incremental maintenance method

A deferred approach efficiently maintains a rule base up-to-date but not for each data operation like
immediate approach. This method computes modified instances in a data transition and updates the
rule base for these relevant instances. Principal differences of immediate and deferred maintenance ap-
proaches are illustrated in Fig. 4.

Typically, incremental mining algorithms consider different types of operations but do not consider
the interactions between such operations [24,26]. We propose an algorithm specifically for these interac-
tions; in the best scenario it reduces the number of operations significantly and in the worst case it only
maintains the same original number.

The deferred proposal is divided in two subproblems as Fig. 4 highlights. The first subproblem consists
of computing the relevant instances affected in a database transition. In this step, a relevant operation set
at real-time is built, after each primitive structural event takes place. A different approach would be to
scan the original operation set to reduce their number. The second one is related to incrementally update
the rule base with those relevant instances. The integrity constraint checking handle these subproblems
in its field [8,9].

The computation of relevant instances in a transition must consider the relationships among primitive
structural events. These interactions are controlled by net effect policy [8,10,34]. For example, if a record
is inserted and deleted in the same database transition, then these events do not cause any variation on the
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final database state and its measures of rules. Thus, the following policies are considered for structural
event interactions. If a record is:

– Inserted and later deleted, then it does not count.
– Inserted and later updated, then it counts as inserted.
– Several times updated, then it counts as one update.
– Updated and later deleted, then it counts as deleted.
– Deleted and later inserted, then it counts as updated.
Generally, non-modeled update events such as deletion followed by insertion are registered by an

auxiliary relation [8,10]. In this approach a different consideration is assessed, each database relation
related to any rule has only two auxiliary relations. These auxiliary relations register the insert, update,
and delete events. Their relation schemas are copies with different names of the base relation scheme
and they must store the newest and oldest record values. Insert and delete auxiliary relations store t+ ∪
t−+
1 and t− ∪ t−+

0 records respectively, according with net effect considerations. These structural event
interactions are applied over relations at real-time by the active Algorithm 2.

Algorithm 2 Compute relevant instances that may modify DRs
Input: A composite structural event CSE, I and D the auxiliary relations of base relation.
Output: Auxiliary relations I and D updated for a CSE.
Method:

for all PSE ∈ CSE do
if (PSE = Δt−+) then � update event

if ({t−+
0 ∩ I} = ∅) then

insert into I values t−+
1 ;

insert into D values t−+
0 ;

else
update u ∈ I set u = t−+

1 where u = t−+
0 ;

end if
else if (PSE = Δt+) then � insert event

insert into I values t+;
else � delete event (PSE = Δt−)

if ({t− ∩ I} = ∅) then
insert into D values t−;

else
delete u ∈ I where u = t−;

end if
end if

end for

This active process adds a minimum activity over regular data operations, just the necessary ones to
store relevant instances and to apply net effect policy. A small example is demonstrated by the Fig. 5
where for each transition of a relation, the transition of their auxiliary relation is visible. In this example,
the original three structural events are reduced to two relevant instances.

The rule base is updated only with these instances, by incrementing previous rule’s information. These
rule base updates could be made automatically with a decision-maker’s rule base access or scheduled.
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Fig. 5. Example of compute relevant instances for primitive structural events.

Fig. 6. Example of ARM deferred actualization for relevant instances.

In addition, the rule base should be updated if new data rules need to be added or some of the existing
ones must be deleted. In this step, the Algorithm 3 is presented in order to update DRM.

Similar to Algorithm 1, the incrementing of measure-parts of Algorithm 3 is quite different depending
on the DR type. After the measure-parts are updated, the algorithm truncates all data from the auxiliary
relations, a special feature in constant measure access. To illustrate our deferred proposal for ARs, let us
look at the following example in Fig. 6.

The incrementing measure-parts of Algorithm 3 for ADs keeps the ADM auxiliary relations up-to-
date. Notice that in this strategy it is not necessary to delete records in auxiliary relations. Instances
that do not already exist in base relation have zero value in catt attribute. This deferred proposal, like
the immediate one, updates rule base without access to the base relation. Also, it entails the benefits
of having only two auxiliary relations instead of more. Heuristically, the time for querying I and D
auxiliary relations is still much lower than the one of querying the whole data like naïve approach. In
rare occasions, this is not accomplished. For example, if the entire base data is deleted, then querying it
is very fast and querying D auxiliary relation is highly inefficient.

Algorithm 3 Deferred incremental maintenance for relevant instances
Input: I , D auxiliary relations of Algorithm 2 output, and measure-parts DRM.
Output: Updated measure-parts DRM.
Method:

for all MPk ∈ DRM do
update Mpk, increment with I;
update Mpk, decrement with D;

end for
empty I;
empty D;
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Table 1
Computational complexity of proposed algorithms

ARs ADs
Active Measure update Active Measure update

Immediate approach O(n) O(1) O(n ∗ logm) O(logm)
Deferred approach O(n ∗ log n) O(log n) O(n ∗ log n) O(logm ∗ log n)

4.5. Complexity analysis

Since our proposals consider an active component, algorithms’ analysis are split to consider the com-
plexity imposed on the regular data operations and complexity of measure update. It is also necessary to
separate the proposed algorithms according to DRs type. The final complexities are related in Table 1.

In this analysis n is considered the number of primitive structural events and m represents the greatest
cardinality of measures auxiliary relations in ADs structures. Heuristically, m should not be too large
in huge amounts of data since it is part of an approximate dependency. However, m may be gradually
increased over time with new data operations. For all auxiliary relations, a common database B-tree
structure is considered in which data operations can be evaluated in O(log n). Nevertheless, it is possible
to consider a hash table implementation having complexity O(n) as the worst case but an expected
performance of O(1).

The active component of the proposed algorithm is very important because it implies the overhead
imposed on system regular operations. The overall algorithm complexity is obtained by adding both
results, which coincide with the active complexity because it has the highest activity.

The principal advantage of immediate proposal is speed increasing in update measures. The instant
actualization of rule base after each primitive structural event avoid any manipulation at measure ac-
cess, except their calculation with measure-parts. However, ADs active step of the immediate proposal
presents a complexity based on m that reduces its efficiency.

We do not compare immediate and deferred approaches, they are different solutions and the best
method must be selected according to system requirements. For example, if the system has a huge num-
ber of structural events and needs a few accesses to the rule base, then deferred proposal is preferable.
Moreover, if the system has a good performance for structural events and needs a lot of accesses to the
rule base, then immediate approach must be chosen.

5. Related work and comparison with our approach

Numerous algorithms for mining ARs have been proposed at this time based on Apriori approach [1].
These Apriori-like algorithms generate candidate itemsets level-by-level, which might cause multiple
scans of the database and high computational costs. In order to avoid re-scanning the whole data and
breaking Apriori bottlenecks, many algorithms have been proposed by using tree-structures [22,38]. The
frequent-pattern tree (FP-tree) proposed by [17] is a milestone in the development of ARs based on this
method. The FP-tree is used to compress a database into a tree structure which stores only large items.
After the FP-tree is constructed, a mining algorithm called FP-growth derives all large itemsets in a
second step [17].

In real-world applications, data repository is not static. Generally, data will increase with time. Tradi-
tional batch mining algorithms solve this problem by re-scanning the whole data when new transactions
are inserted, deleted or modified. This is clearly inefficient because all previous mined information is
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(a)

(b)

(c)

Fig. 7. Batch mining method (a), incremental mining method (b), and incremental maintenance proposal (c) for real-time
measures.

wasted. The incremental mining defines this issue as an update problem and reduces it to find the new
set of large itemsets incrementally. Algorithm FUP (Fast UPdate) [11], proposed by Cheung and his
coworkers, is the first algorithm for incremental mining of association rules when new data transactions
are added to a database.

Although the FUP approach improves a mining performance in dynamic environments, the original
database is still required to be re-scanned. Extended tree structures are being designed for FP-tree to
efficiently handle this problem [18,22,24,26]. These proposals improve pioneer tree-structure in different
ways but ma intain the execution of FP-growth algorithm in a second step. Some related researches are
still in progress.

Unlike incremental mining methods, we handle the update problem by maintaining the measures of
previous discovered rules. That does not lead to maintain itemsets information, instead, existing rules
measures are directly updated in an incremental way. After the rules discovering process, we keep only
the extracted rules and no rule is removed or added, thus allowing the still expensive incremental mining
algorithm. In Fig. 7 three scenarios illustrate when a system decision-makers needs the real-time mea-
sures of previously discovered rules. That includes the batch mining method, the incremental mining
method, and our proposal.

As can be appreciated in Fig. 7, discovering new knowledge is out of our scope, maintaining efficiently
up-to-date measures of rules is our main objective.

6. Experimental results

Several experiments have being performed on real data and real structural events obtained from
SWAD, a web system for education support at the University of Granada [7]. The studied dataset consists
of information about students’ courses containing nine attributes over 5 K instances. The most relevant
attributes are the student’s sex (sex), the average of questions answered in all student exams (avg_aqst),
the sum of visits to signature web files (sum_vfiles), the count of clicks in the platform (cnt_clicks), the
count of downloads files (cnt_dfiles), and the average of all exam scores (avg_score).
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Fig. 8. Proposals comparison for ARs maintenance on execution times (left) and measures update times (right) in PL/pgSQL.

Results illustrate the performance of proposed algorithms in order to maintain seven ARs and seven as-
sociated ADs. These ARs were discovered using the KEEL data mining software tool [2]. Maintenance
is implemented using the certainty factor metric Eq. (1) from two open source database management
systems: PostgreSQL Server version 9.2.2 and MySQL Server version 5.6.13. Both management sys-
tems have similar results. For our proposed algorithms, we included PostgreSQL results for ARs and
MySQL results for ADs. The experiments were carried out on a dedicated GNU/Linux server with eight
processors i7-2600 at 3.4 GHz and 15 GB of main memory.

The experiments have been designed to observe two approaches’ behavior: active process execution
time and measures update time. The first one provides the execution time when processing different
numbers of primitive structural events on studied dataset. Here, naïve approach represents the regular
behavior of the database where no active algorithm is executed. The second one exposes the consumed
time for update measures of rules, after the same primitive structural events take place. The primitive
structural events contain database insert, update, and delete operations extracted from real database
transitions. In Figs 8 and 9, PostgreSQL results for ARs maintenance and MySQL results for ADs
maintenance are respectively presented.

It can be noticed from Fig. 8 (left) the relatively small extra execution time added to the active parts
of our proposals for ARs maintenance. Otherwise, measures updating times for the naïve and immediate
approaches (right) do not depend on the structural events quantity and remain almost constant. Just
the deferred proposal increases measure update time as expected. This deferred proposal behavior is
not worrying since it corresponds with a single measure update time. For constantly measure access,
auxiliary relations are always truncated.

Results for ADs in Fig. 9 show similar behavior to those for ARs. Here, the naïve and deferred ap-
proaches have small differences in execution time (left). However, the execution time of the immediate
approach increased very quickly due to auxiliary structures needed in ADs proposals. This behavior
probably compromises database performance in stressed scenarios.

All these experiments are a close look to proposals behavior in a small dataset. In order to observe
the scalability of those algorithms, we obtained the total time of update rule base for different database
sizes synthetically generated. The complete execution time is calculated as the sum of executing 5 K
primitive structural events and updating measures of rules. Results for maintaining the ADs in MySQL
are illustrated in Fig. 10.
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Fig. 9. Proposals comparison for ADs maintenance on execution times (left) and measures update times (right) in MySQL.

Fig. 10. Proposals comparison of total execution time for
ADs maintenance in different database records size.

Fig. 11. Related and proposed algorithm comparison of to-
tal execution time for ARs maintenance in different database
records size.

Notice that our proposals maintain almost the same total execution time, an important consequence of
a self-maintainable characteristic. This keeps the lowest execution time in very large or big databases.
Clearly, the naïve approach presents a low performance when database grows in size. The experiments
for this result only consider a single measure update in the rule base, multiple updates increase the
difference between the naïve and proposed methods.

The performance of proposed algorithm was also compared to traditional and incremental algorithms
for ARs maintenance. In Fig. 11 a total execution time for proposed algorithms, batch mining, and in-
cremental mining methods, for different database sizes is presented. Our proposal reflects the time of
executing 5 K data operations plus measure update of rules. Batch and incremental mining methods re-
flect the mining execution time for the same measure update goal. The Apriori algorithm stands for batch
mining methods. For incremental mining methods, in order to include a wide variety of incremental algo-
rithms [18,22,24,26] we only obtain the FP-growth execution time and depreciate the FP-tree build time,
assuming that it was incrementally maintained. This approach is referred as incremental FP-growth. For
Apriori and FP-growth algorithms the minimum support threshold was set at 10% and minimum confi-
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Fig. 12. Related and proposed algorithm comparison of total execution time for ARs maintenance in different datasets.

dence threshold at 80%. Both mining algorithm experiments were created using the KEEL data mining
software tool.

Finally, in Fig 12 we also evaluate proposed algorithms in different datasets obtained from the UCI
Machine Learning Repository [25]. These datasets are the Color Moments part of Corel Image Features
(color moments), the Diabetes 130-US hospitals for years 1999–2008 (diabetes) described in [40], and
Census-Income (KDD) data part (census income). Details about these datasets can be found on the UCI
Machine Learning website. For diabetes and census datasets nine attributes were selected. Seven ARs
were extracted using KEEL from each dataset in order to be incrementally maintained by proposed
algorithms. The mining algorithms conditions for this experiment remain constant.

It is obvious to conclude from Figs 11 and 12 that the proposed algorithms are faster than the other
two algorithms. In fact, the differences are increased in a way that database size is bigger because they
remain almost constant. The above time results are accepted especially in time-critical systems where
decision-makers need to make decisions using the existing rule’s information as soon as possible.

7. Conclusion and future work

In real-world applications, records are commonly inserted, updated or deleted outdating the previous
extracted knowledge as inexact and invalid. In some scenarios, it is necessary to re-run traditional min-
ing or incremental mining algorithms only for updating previous discovered rules. It is possible, from
another perspective, to maintain the known rules incrementally by computing data changes efficiently.

In this article, two algorithms have been proposed specifically for maintaining the previous discovered
rules. These algorithms operate over a generic form of measures, allowing the maintenance of a wide
range of rule metrics in an efficient way. We also propose to consider the interactions between data
operations at real-time in order to create a reduced relevant instance set. Experimental results with real
data and operations show that our proposals achieve a better performance against the batch mining,
incremental mining, and a naïve approach. These improvements are increased when database size is
bigger, making it suitable in very large or big database systems.
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There are still some interesting research issues related to the contributions of this paper that can be
applied to other areas. Specifically, to incrementally maintain other types of data rules like fuzzy associ-
ation rules, to consider interactions between data operations in existing incremental mining algorithms,
and to explore the memory usage of the proposed algorithms in different implementations.

Acknowledgements

The authors would like to thank the members of the Iberoamerican Association of Postgraduate Uni-
versities (AUIP) for their international academic mobility program. We also thank Prof. Antonio Cañas
Vargas for providing some of the data used in the experiments. We are grateful to all people who have
contributed with their suggestions for improving the final version of the manuscript.

References
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