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Abstract Group decision making has been widely studied
since group decision making processes are very common in
many fields. Formal representation of the experts’ opinions,
aggregation of assessments or selection of the best alterna-
tives has been some of main areas addressed by scientists
and researchers. In this paper, we focus on another promis-
ing area, the study of group decision making processes from
the concept of influence and social networks. In order to do
so, we present a novel model that gathers the experts’ initial
opinions and provides a framework to represent the influence
of a given expert over the other(s). With this proposal it is
feasible to estimate both the evolution of the group decision
making process and the final solution before carrying out the
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group discussion process and consequently foreseeing pos-
sible actions.

Keywords Group decision making · Aggregation
operators · Social network · Influence

1 Introduction

Decision making can be defined as a set of activities whose
aim is to find satisfactory solutions for a given problem. This
problemusually involves the analysis of a finite set of alterna-
tives. From this analysis, decisionmakers, judges or expert(s)
should decidewhich of the alternatives is the best one to solve
an issue.Decisionmaking can be approached from twopoints
of view:

– Individual decisionmaking: in which an expert must pro-
vide the best alternative from a set of possible solution,
either evaluating the utility of each alternative or assess-
ing a set of criteria that described them.

– Group decisionmaking: in which a group of experts must
reach a solution to a given problem.

Although decision making has been widely studied, only
a few areas have drawn the attention of researchers. For
instance, the formal representation of the experts’ opinions
(Kacprzyk and Roubens 1988; Kitainik 1993; Luce and Sup-
pes 1965; Pérez-Asurmendi andChiclana 2014;Tanino1984,
1990; Ureña et al. 2015), the aggregation of the information
(Pérez et al. 2014; Seo and Sakawa 1985) and the selection
of the best alternative(s) (Cabrerizo et al. 2015; Morente-
Molinera et al. 2016) have been developed in depth by many
authors.
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1654 L. G. Pérez et al.

Another promising field is the consensus in decision mak-
ing problems (Alonso et al. 2010;Cabrerizo et al. 2010;Calza
et al. 2015; Ciasullo et al. 2015; Gong et al. 2015; Kacprzyk
et al. 1997; Mata et al. 2009, 2014). In this kind of problems,
the aim is to reach a given course of action that the majority
of experts approve and that the minority agree to consent.
Thus, the minority feel that their opinions also contribute to
reach the best possible decision for the group.

In this paper, we focus on another interesting area related
to group decision making. We present a model based on
‘influence’ concept that let us estimate both the evolution
of the group decision making process and the final solution
from the experts’ initial opinions.

The utility of this field is propitious since on the one hand,
we can predict beforehand the final decision of a given prob-
lem and, on the other hand, this model will let us know
how the opinion of one expert affects their partners’ opin-
ions throughout the process.

Few papers have dealt with the modelling of influences
between people through discussion and exchanges of opin-
ions (Friedkin and Johnsen 1990; Friedkin et al. 1999) and
our aim is to apply these studies to group decision making
processes.

A Group DecisionMaking (GDM) process usually entails
an activity in which experts interact with each other to reach
a final solution. These interactions consist of an exchange
of opinions and information. Because of these interactions,
experts with a wider background, experience and knowledge
will be recognised and empowered with a higher status. This
status reflects the influence of a given expert over the other(s).
Hence, with a suitable representation for the influence among
the experts and their initial opinions, we may be able to pre-
dict both the evolution of the experts’ opinions and their final
decisions.

Social network analysis (Scott and Carrington 2011;
Wasserman and Faust 1994) studies relationships among
social entities or actors as well as patterns and implica-
tions of these relationships. These relationships may be of
many sorts: economic, political, interactional, affective, etc.
Social network analysis is based on the idea that actors
and their actions are interdependent and the network struc-
tural environment provides opportunities for or constraints
on individual actions.

Using social network analysis in GDM problems can pro-
duce important benefits since it allows us to model and study
the relationship between experts and, therefore, infer or esti-
mate the influence among themselves. The aim of this paper
is to model this situation.

The structure of this paper is the following: First of all,
in Sect. 2 we review some preliminaries; then the model is
presented in Sect. 3. Finally, Sect. 4 shows an example and
the conclusions are pointed out in Sect. 5.

2 Preliminaries

In this section, we sum up some aspects needed to understand
our proposal such as group decisionmaking, consistency and
social influence networks theory.

2.1 Group decision making

In Group Decision Making problems (GDM), a group of
expertsmust decidewhich alternative(s) is the best one todeal
with an issue. For this reason, each one of them provides an
assessment of every possible alternative. To represent these
judgements, some structures are proposed. The most com-
mon ones are the following:

– A preference ordering of alternatives (Seo and Sakawa
1985): in this case, experts provide their preferences on
a set of alternatives as an ordered vector of alternatives,
from the best one to the worst one.

– Utility vectors (Luce and Suppes 1965; Tanino 1990):
with this representation experts provide their preferences
as a set of utility values for each alternative. The greater
the value, the more preferred the alternative.

– Preference relations (Kacprzyk 1986; Kacprzyk and
Roubens 1988; Kitainik 1993; Tanino 1984): based on
the idea of pairwise comparisons, experts’ preferences
are described by means of preference relations in which
each value represents the preference of one alternative
over the other.

Once experts have provided their opinion,wemust accom-
plish the selection of the best alternatives. This process
usually involves two phases (Alonso et al. 2009; Pérez et al.
2010; Roubens 1997; Wu et al. 2015):

– An aggregation phase: in this step, experts’ opinions are
aggregated to obtain a global opinion.

– A selection phase: in this phase the best alternative(s) is
chosen and presented as the decision making solution.

One of the most used preference structures in GDM is
the preference relation. In preference relations, we find two
kinds of interpretation regarding preference assessments: it
can be additive reciprocal and multiplicative reciprocal. In
this contribution, we have applied the additive preference
relation and its definition is the following one:

Definition 1 (Bezdek et al. 1978; Chiclana et al. 2009;
Nurmi 1981) An additive reciprocal fuzzy preference rela-
tion R on a finite set of alternatives X is a fuzzy relation in
X × X with membership function μR : X × X → [0, 1],
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μR
(
xi , x j

) = ri j , verifying

ri j + r ji = 1 ∀i, j ∈ {1, . . . , n} .

When cardinality of X is small, the reciprocal fuzzy pref-
erence relation may be conveniently denoted by the matrix
R = (

ri j
)
and the following interpretation is also usually

assumed:

– ri j = 1 indicates the maximum degree of preference for
xi over x j .

– ri j ∈ ]0.5, 1[ indicates a definite preference for xi over
x j .

– ri j = 0.5 indicates indifference between xi and x j .
– ri j ∈ ]0, 0.5[ indicates a definite preference for x j over

xi .

Another important aspect related to GDM is opinion
aggregation to compute a global opinion over a set of alter-
natives. Many operators have been proposed to carry out this
computation highlighting the family of OWA operators.

In this section, the OWA (Yager 1988), IOWA (Yager and
Filev 1998) and I-IOWA operators are introduced (Chiclana
et al. 2007).

Definition 2 AnOWAoperator of dimension n is a mapping
φ : Rn → R, which has an associated set of weights W =
(w1, . . . , wn)

T , such that wi ∈ [0, 1], ∑n
i=1 wi = 1,

φ(a) = φ(p1, . . . , pn) =
n∑

i=1

wi pσ(i) (1)

and σ : {1, . . . , n} −→ {1, · · · , n} is a permutation function
such that pσ(i) ≥ pσ(i+1), ∀i = 1, . . . , n − 1.

In order to obtain the associated weighting vector, we use
the method proposed by Yager (1983, 1988) to give seman-
tic or meaning to weights by means of quantifier guided
aggregations. To implement the concept of fuzzy majority
in the aggregation phase, we use a fuzzy linguistic quanti-
fier (Zadeh 1983), which indicates the proportion of satisfied
criteria “necessary for good solution” (Yager 1996) (see the
Appendix 1 for further details). In case of a regular increas-
ing monotone (RIM) quantifier Q, the weights are computed
using the following expression (Yager 1988):

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
, i = 1, . . . , n.

Mitchell and Estrakh (1997) described a modified OWA
operator in which the input arguments are not re-arranged
according to their values but rather using a function of the
arguments. Inspired by this work, Yager and Filev introduced

in (Yager and Filev 1998) a more general type of OWA oper-
ator, which they named the Induced OWA (IOWA) operator:

Definition 3 An IOWAoperator of dimensionn is amapping
�W : (R×R)n −→ R,whichhas an associated set ofweights
W = (w1, . . . , wn), so that wi ∈ [0, 1], ∑n

i=1 wi = 1,

�W (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi pσ(i),

and σ : {1, . . . , n} −→ {1, . . . , n} is a permutation function
such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n − 1.

In the above definition the reordering of the set of values
to aggregate, {p1, . . . , pn}, is induced by the reordering of
the set of values {u1, . . . , un} associated with them, which
is based upon their magnitude. Yager and Filev called the
vector of values (u1, . . . , un), the order inducing vector and
{p1, . . . , pn}, the values of the argument variable (Yager and
Filev 1998, 1999; Yager 2003). Thus, the main difference
between the OWA operator and the IOWA operator is the
reordering step of the argument variable. In the case of OWA
operator this reordering is based upon the magnitude of the
values to be aggregated, while in the case of IOWA operator
an order-inducing vector is used as the criterion to induce
that reordering.

In many cases, each expert ek ∈ E is assigned an
importance degree uk to him/her, which without loss of gen-
erality can be assumed to belong to the unit interval, i.e.
ui ∈ [0, 1] ∀i, and that there is some i such that ui = 1.
This can always be assured by taking the normalised impor-
tancedegrees that resultwhendividing themby themaximum
importance degree. Thus, importance degree can be inter-
preted as a fuzzy set membership function, μI : E → [0, 1],
in such a way that μI (ek) = uk ∈ [0, 1] denotes the impor-
tance degree of the opinion provided by the expert ek . In the
area of quantifier-guided aggregations,Yager (1996) presents
a procedure to evaluate the overall satisfaction of Q important
criteria (experts) by an alternative x . In this procedure, once
the satisfaction values to be aggregated have been ordered,
the weighting vector associated with an OWA operator using
a linguistic quantifier Q is calculated following the expres-
sion

wk = Q

(
S(k)

S(n)

)
− Q

(
S(k − 1)

S(n)

)
(2)

being S(k) = ∑k
l=1 uσ(l), and σ the permutation used to

produce the ordering of the values to be aggregated. This
approach for the inclusion of importance degrees associates
a zeroweightwith those expertswith zero importance degree.
This procedure was extended by Yager to the case of induced
aggregation (Yager 2003) and later by Chiclana et al. (2007)
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to introduce the Importance IOWA (I-IOWA) operator. In
this case, each component in the aggregation consists of a
tuple (uk, pk) where pk is the argument value to aggregate
and uk is the importance weight value associated with pk
and also the order-inducing value. This is summarised in the
following definition:

Definition 4 Let E = {e1, . . . , em} be a set of experts and
U = (u1, . . . , um) ∈ [0, 1]n the vector of their associated
importance degrees. An I-IOWA operator of dimension n,
�I

W , is an IOWA operator whose order-inducing vector is
the vector of importance degrees and following associated
set of weights W = (w1, · · · , wn):

�I
W (〈u1, p1〉, . . . , 〈un, pn〉) =

n∑

i=1

wi pσ(i),

with

wk = Q

(
S(k)

S(n)

)
− Q

(
S(k − 1)

S(n)

)
, (3)

where S(k) = ∑k
l=1 uσ(l), and σ is the permutation such

that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n − 1.

With the I-IOWA operator, we accomplish the selection
phase. To do so, some authors (Chiclana et al. 2007) have
proposed the use of a quantifier-guided choice degree of alter-
natives, a dominance degree. With this degree it is computed
the best acceptable alternative for the majority (Q).

Definition 5 The quantifier-guided dominance degree,
QGDDi , quantifies the dominance that one alternative has
over all the others and is defined as follows:

QGDDi = φQ
(
pci1, p

c
i2, . . . , p

c
in

)
.

So, for each alternative, xi , we obtain a value that quanti-
fies the dominance that this alternative has over all the others
in a fuzzy majority sense.

With this degree we can sort out the alternatives and
choose the best one(s),

Xsol =
{

xi | xi ∈ X, QGDDi = sup
j

QGDDj

}

.

An example of how to use these operators in GDM prob-
lems is shown in Appendix 2.

2.2 Consistency on preference relations

Although preference relations are one of the most used pref-
erence structures, they also have some disadvantages. First

of all, the way of providing preferences limits experts in their
global perception of the alternatives and as a consequence,
the provided preferences could be inconsistent.

In Chiclana et al. (2008) the U -Consistency Method,
useful to tackle the problem of incomplete information
in reciprocal fuzzy preference relations, is presented. This
method is based on the modelling of consistency of pref-
erences via a self-dual almost continuous uninorm operator
(Chiclana et al. 2007) and computes the missing pairwise
preference values from the known ones with the aim ofmain-
taining or maximising the expert’s global consistency. This
process is applied as well to complete preference relations
as it is our case. With this process, we can assure that the
values provided by the expert are compatible with the rest of
information and, moreover, we can replace those ones that
are not compatible with the estimated values.

In order to deal with the inconsistency, we must under-
stand that this representation assumes three fundamental and
hierarchical levels of rationality:

– Thefirst level of rationality requires indifference between
any alternative xi and itself.

– The second one requires that if an expert prefers xi to
x j , that expert should not simultaneously prefer x j to
xi . This asymmetry condition is viewed as an ’obvi-
ous’ condition/criterion of consistency for preferences.
This rationality condition is modelled by the property of
reciprocity in the pairwise comparison between any two
alternatives, which is seen by Saaty (1980) as basic in
making paired comparisons.

– Finally, the third one is associated with the transitivity in
the pairwise comparison among any three alternatives.

A preference relation verifying the third level of rational-
ity is usually called a consistency preference relation and any
property that guarantees the transitivity of the preferences
is called a consistency property. However, many properties
or conditions have been suggested in the literature of fuzzy
preference to model the third level of rationality. Among
these properties we can cite (restricted) max–min transitiv-
ity, restricted max–max transitivity, additive transitivity and
multiplicative transitivity (Chiclana et al. 2007; Dubois and
Prade 1980; Tanino 1988), and we have used Tanino’s mul-
tiplicative transitivity (Tanino 1988).

Next, we review some definitions to understand how to
improve the consistency of a relationship.

Definition 6 (Chiclana et al. 2007) LetU be a representable
uninorm operator with strong negation N (x) = 1 − x and
let R be an additive reciprocal fuzzy preference relation on
a finite set of alternatives X , μR : X × X → [0, 1], where
μR

(
xi , x j

) = ri j represents the preference degree of the
alternative xi over x j ; then the fuzzy preference relation R
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on a finite set of alternatives is consistent with respect to U
(U -Consistent) if

∀i, j, k : (
ri j , rk j

)
/∈ {(0, 1) , (1, 0)} ⇒ ri j = U

(
rik, rk j

)
.

Tanino’s multiplicative transitivity property (Tanino 1988)
under reciprocity is the restriction to the region [0, 1]×[0, 1]\
{(0, 1) , (1, 0)} of the following well-known andlike repre-
sentable uninorm (Klement et al. 1996)

U (x, y) =
{
0, (x, y) ∈ {(0, 1) , (1, 0)}

xy
xy+(1−x)(1−y) otherwise.

In order to improve the quality of the information provided by
the experts we use this transitivity. Given a fuzzy preference
relation R andU a representable uninorm (with N (X) = 1−
x), the preference value rik (i 	= k) is partially U-estimated
using an intermediate alternative x j such that

(
ri j , r jk

)
/∈

{(0, 1) , (1, 0)} as follows:

ur j
ik = U

(
ri j , r jk

)
.

The average of the partially U -estimated values obtained
using all possible intermediate alternatives can be seen as
the global consistency-based estimated value

urik =
∑

j∈R01
ik
ur j

ik

#R01
i j

,

where R01
ik = {

j 	= i, j
∣∣(ri j , r jk

)
/∈ {(0, 1) , (1, 0)}} .

With this definition, we estimate the missing values of a
relationship or as in our case to improve the consistency of
given relationship.

In our model, it is also very important to measure the
U -Consistency of a preference relation. A preference rela-
tion is completely U -Consistency if urik agrees with rik
(urik = rik).However, experts are not always fully consistent
and because of this, it is possible to calculate the difference
between the actual value rik and the estimated one urik :

εurik = |urik − rik | .

From this formula, the U -Consistency level associated with
a preference value rik is defined, and then, theU -consistency
level of the whole reciprocal fuzzy preference relation R.

Definition 7 (Chiclana et al. 2008) GivenU a representable
uninorm with N (x) = 1 − x , the U -consistency level asso-
ciated with a preference value rik is defined as

UCLik = 1 − εurik,

Definition 8 (Chiclana et al. 2008) GivenU a representable
uninorm with N (x) = 1 − x , the U -consistency level of a

fuzzy preference relation R measured in [0, 1] is given as
follows:

UCLR =
∑n

i, j=1,i 	=k UCLik

n (n − 1)
.

2.3 Social influence networks theory

Social Influence Network Theory began with French’s for-
mal theory of social power (French 1956) and it has been
developed by several authors (Friedkin and Johnsen 1990;
Friedkin et al. 1999; Harary 1959). The aim of this theory
was to model the process of influence among actors belong-
ing to the same social network. The following expression is
a recursive definition of the influence process:

y(t) = AWy(t−1) + (I − A) y(1)

for t = 2, 3, . . . , where y(1) is an N × 1 vector of actors’
initial opinions on an issue, y(t) is an N × 1 vector of actors’
opinions of time t , W = [

wi j
]
is an N × N matrix of

interpersonal influences
(
0 ≤ wi j ≤ 1,

∑N
j wi j = 1

)
, and

A = diag (a11, a22, . . . , aNN ) is an N × N diagonal matrix
of actors’ susceptibilities to interpersonal influence on the
issue (0 ≤ aii ≤ 1).

This model is defined from the following assumptions
(Friedkin et al. 1999):

1. Cognitive weighted averaging: Actors are assumed to
form their revised opinions through a weighted averag-
ing of influences on them. This influence is not only
exogenous because of the other actors’ opinions, but also
endogenous from their own initial opinion. The relative
weight of the endogenous and exogenous influences for
each actor is determined by A = [aii ], the coefficients
of susceptibility to social influence.

2. Fixed social structure: The social structure of the group
of actors, the network, is represented by the matrixW , is
assumed to be fixed during the entire process of opinion
formation.

3. Determinism: Given the direct influence matrix W and
the group members’ initial opinion y(1), the subsequent
opinion changes in the group are completely determined.

4. Continuance: The process of opinion formation in the
group continues until all changes of opinions that may
occur have played themselves out.

5. Decomposability: The opinion formation process can
be divided into time periods, defined by the times t =
1, 2, 3, . . . , that may not be of the same length in real
time.

6. Simultaneity: In each time period, simultaneous linear
equations yield an accurate prediction of all the influence
events that occur during that period.
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If W is known then A is computed as

aii = 1 − wi i .

Assuming the process reaches an equilibrium, then limt→∞
y(t) = y(∞) = k < ∞ and the original equation becomes

y(∞) = V y(1),

whereV describes the total interpersonal effects that trans-
form initial opinions into final opinions. Then V is calculated
by using the following formula:

V = (I − AW )−1 (I − A) .

3 Modelling influence in group decision making

In order to model an influence network in a GDM process,
we propose to carry out the following phases:

1. Providing information: Experts’ opinions are provided
by means of reciprocal fuzzy preference relations. How-
ever, as we said earlier, one of the disadvantages of this
structure is that experts do not always provide consistent
assessments. Thus, we need to improve the consistency
of this information by means of a U -Consistency Based
Method (Chiclana et al. 2008). This method was origi-
nally presented to estimate missing pairwise preference
values; however, this method is also used to improve the
consistency of a given relationship. Finally, we transform
the preference relation into utility vectors.

2. Modelling influence: In this phase we apply an influence
model to estimate the evolution of the experts’ opin-
ions with regards to the other experts’ opinions. Experts
are supposed to discuss their opinion among them, and
depending on the influence between them, their opinions
are modified. In order to model this, we use the model
reviewed inSect. 2.3. In thismodel, the influencebetween
experts is modelled by means of a social influence net-
work. From this model, and with the experts’ opinions,
it is possible to infer the experts’ final opinions.

3. Obtaining the solution: Once that final opinions have
been calculated, the solution is computed. To do so,
experts’ utility vectors are aggregated by means of an
I-IOWA operator. The I-IOWA is a weighted aggregation
operator in which the information is aggregated based
on the importance of the information sources. In our
proposal, this importance is obtained by computing the
consistency of the information that was initially provided
by the experts. The more consistent it is, the more impor-
tant the information is.

Fig. 1 Model’s phases

A representation of model’s phases can be seen in Fig. 1.
In the following subsections we explain thoroughly these
phases.

3.1 Providing the information

In this phase, a group of experts E = {e1, . . . , em} provide
their opinions about a set of alternatives X = {x1, . . . , xn}
by means of reciprocal preference relations. The use of these
representation provides some advantages since they allow
experts to focus exclusively on two alternatives at a time.

Then, the information provided by the experts is improved
by means of the consistency model reviewed in Sect. 2.2.
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Example 1 : Let P1 be the opinion of the expert e1:

P1 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0.5 0.4 0.6 0.9 0.7 0.8
0.6 0.5 0.7 1 0.8 0.9
0.4 0.3 0.5 0.8 0.6 0.7
0.1 0 0.2 0.5 0.3 0.4
0.3 0.2 0.4 0.7 0.5 0.6
0.2 0.1 0.3 0.6 0.4 0.5;

⎞

⎟⎟⎟
⎟⎟⎟
⎠

then the preference relation obtained after applying the U -
consistency method is

P ′
1 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0.5 0.27 0.64 0.89 0.74 0.82
0.73 0.5 0.8 0.92 0.85 0.89
0.36 0.2 0.5 0.85 0.62 0.74
0.11 0.083 0.15 0.5 0.2 0.27
0.26 0.15 0.38 0.8 0.5 0.64
0.18 0.11 0.26 0.73 0.36 0.5

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

Some of the obtained results are the following:

ur12 = ur312 + ur412 + ur512 + ur612
4

= 1.08

4
= 0.27.

ur13 = ur213 + ur413 + ur513 + ur613
4

= 2.56

4
= 0.64.

· · ·
ur65 = ur165 + ur265 + ur365 + ur465

4
= 1.44

4
= 0.36.

3.2 Modelling influence

Once experts’ opinions have been transformed, wemodel the
influence between experts. Experts arewilling to discuss their
decisionswith each other. Because of these interactions, their
opinions are influenced by other experts’ opinions and they
also influence the other ones. To apply themodel summarised
in Sect. 2.3 we accomplish the following steps:

1. Transform the preference relationships into utility vec-
tors.

2. Apply the influence model for each experts’ opinion.

3.2.1 Transform the preference relations into utility vectors

In order to carry out the next step, information must be trans-
formed into utility vectors first. To do so, we propose to use
a quantifier-guided choice degree of alternatives, a domi-
nance degree, to compute the best acceptable alternative for
the majority (Q). The quantifier-guided dominance degree
QGDDi was reviewed in Sect. 2.1.

At the end of this step we have m utility vectors, each one
with the evaluation of the expert i of the n alternatives:

Ui =
⎛

⎝
ui1
· · ·
uin

⎞

⎠ , i = 1, . . . ,m.

3.2.2 Apply the influence model for each experts’ opinion

In this step our aim is to model how the experts’ opinions
evolve by the interaction of each other. Experts may differ in
some of the opinions and it is expected that they talk to each
other to clarify, defend and modify their views.

As seen in Sect. 2.3 we need to know the experts’ ini-
tial opinions and the matrix W . The influence model is
applied on one alternative; however, in group decision mak-
ing, experts provide their opinions about a set of alternatives
X = {x1, . . . , xn}. Therefore, we have to decompose it in n
problems, each one for each alternative.

First of all, we need to compute the matrix V as we
explained in Sect. 2.3:

V = (I − AW )−1 (I − A) ,

and then, we apply the influence model for each alternative:

y(∞)
xi = V y(1)

xi , i = 1, . . . , n.

Wemust realise the representation of the information used
by the influence model is not the same as the representation
used by the experts to provide their opinions. However, this
information is easily transformed since y(1)

x1 is the initial opin-

ion of all the experts regarding the alternative x1, y
(1)
x2 is the

initial opinion of all the experts regarding the alternative x2
and so on. Therefore, after transforming this information, we
obtain

y(1)
xi =

⎛

⎝
u1i
· · ·
umi

⎞

⎠ , i = 1, . . . , n.

Once we have applied the influence model, we obtain the
experts’ final opinions:

y(∞)
xi =

⎛

⎜
⎝

y(∞)
1i· · ·
y(∞)
mi

⎞

⎟
⎠ , i = 1, . . . , n,

and we easily use this information to obtain the final vectors
U (∞)
1 , · · · ,U (∞)

m :

U (∞)
i =

⎛

⎜
⎝

y(∞)
i1· · ·
y(∞)
in

⎞

⎟
⎠ , i = 1, . . . ,m,
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Fig. 2 Graph representation of matrixW

All these operations are described in depth in the following
example.

Example 2 : Let E = {e1, e2, e3} be the group of experts
and let X = {x1, x2, x3} be the group of alternatives. Experts
express their assessment by means of preference relations
which have been transformed into utility vectors:

U1 =
⎛

⎝
0.3
0.4
0.1

⎞

⎠ , · · · ,U2 =
⎛

⎝
0.1
0.2
0.4

⎞

⎠ , · · · ,U3 =
⎛

⎝
0.6
0.2
0.3

⎞

⎠ .

In order to apply the influence model, the model is applied
to each alternative. In this example, we work with alternative
x1. First of all, y

(1)
x1 is obtained from the information provided

by the experts:

y(1)
x1 =

⎛

⎝
0.3
0.1
0.6

⎞

⎠

where 1 is the initial period and 0.3, 0.1 and 0.6 are the
e1’s initial assessment, e2’s initial assessment and e3’s initial
assessment about alternative x1, respectively.

Next we define thematrix that represents the interpersonal
influence of the group of experts (see Fig. 2):

W =
⎛

⎝
0.2 0.2 0.6
0.3 0.3 0.4
0 0.2 0.8

⎞

⎠ .

The main diagonal of the matrix W , that is, wi i , repre-
sents the experts’ susceptibility to interpersonal influence.
For instance, if an expert has wi i = 1 that means that this
person is not subjected to any interpersonal influence. For
example, w12 = 0.2 indicates the direct relative influence of
the expert 2 on expert 1 is 0.2.

Now we apply the model. First of all, we calculate V and
we obtain:

V =
⎛

⎝
0.25 0.09 0.66
0.07 0.41 0.52
0.00 0.02 0.98

⎞

⎠ .

Fig. 3 Evolution of the alternative x1

Matrix V represents the network influence on every
experts. It is very important to realise that V and W are two
different matrices and represent different aspect of interper-
sonal influence among experts.W represents the distribution
of the direct relative interpersonal influence among experts.
However, V takes into account all the flows of interpersonal
influence, both direct and indirect. For instance, v12 = 0.09
what indicates that the 9 per cent of expert 1’s final opinion
is determined by expert 2.

Now, if we apply the influence model

y(∞)
x1 = V y(1)

x1

and we obtain the following solution for the alternative x1:

y(∞)
x1 =

⎛

⎝
0.48
0.37
0.59

⎞

⎠ .

Looking at Fig. 3 we can study the evolution of alternative
x1. So, expert e1 starts with an assessment of 0.3 about the
alternative x1, expert e2 starts with 0.1, and e3 with 0.6. The
final experts’ opinions are 0.48, 0.37 and 0.59, respectively.
As canbe seen, themost influential expert is e3 whose opinion
scarcely changes, and on the other hand, experts e1 and e2
are greatly affected by the opinion of e3 that is the reason
why their opinions change largely from 0.3 and 0.1 to 0.48
and 0.37, respectively.

3.3 Obtaining the solution

The aim of this final phase is to obtain the solution of the
GDM problem, i.e., a global utility vector that provides us
with an ordering vector of alternatives from the best one to
the worst one.

To obtain the solution, the utility vectors obtained in the
previous phase are aggregated by means of an I-IOWA oper-
ator. This operator requires a vector of importance degrees.
In this model, it seems logical to use the experts’ consistency
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Table 1 Experts’ initial opinions

P1 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.40 0.60 0.90 0.70 0.80
0.60 0.50 0.70 1.00 0.80 0.90
0.40 0.30 0.50 0.80 0.60 0.70
0.10 0.00 0.20 0.50 0.30 0.40
0.30 0.20 0.40 0.70 0.50 0.60
0.20 0.10 0.30 0.60 0.40 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P2 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.70 0.80 0.60 1.00 0.90
0.30 0.50 0.60 0.40 0.80 0.70
0.20 0.40 0.50 0.30 0.70 0.60
0.40 0.60 0.70 0.50 0.90 0.80
0.00 0.20 0.30 0.10 0.50 0.40
0.10 0.30 0.40 0.20 0.60 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P3 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.69 0.12 0.20 0.36 0.90
0.31 0.50 0.06 0.10 0.20 0.80
0.88 0.94 0.50 0.64 0.80 0.98
0.80 0.90 0.36 0.50 0.69 0.97
0.64 0.80 0.20 0.31 0.50 0.94
0.10 0.20 0.02 0.03 0.06 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P4 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.10 0.36 0.69 0.16 0.26
0.90 0.50 0.84 0.95 0.62 0.76
0.64 0.16 0.50 0.80 0.25 0.39
0.31 0.05 0.20 0.50 0.08 0.14
0.84 0.38 0.75 0.92 0.50 0.66
0.74 0.24 0.61 0.86 0.34 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P5 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.34 0.25 0.82 0.75 0.87
0.66 0.50 0.25 0.18 0.82 0.91
0.75 0.75 0.50 0.94 0.91 1.00
0.18 0.82 0.06 0.50 0.34 0.75
0.25 0.18 0.09 0.66 0.50 0.82
0.13 0.09 0.00 0.25 0.18 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P6 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.13 0.18 0.34 0.75 0.09
0.87 0.50 0.66 0.82 0.91 0.25
0.82 0.34 0.50 0.75 0.87 0.82
0.66 0.18 0.25 0.50 0.75 0.91
0.25 0.09 0.13 0.25 0.50 0.97
0.91 0.75 0.18 0.09 0.03 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P7 =

⎛

⎜
⎜⎜
⎜⎜
⎝

0.50 0.55 0.45 0.25 0.70 0.30
0.45 0.50 0.70 0.85 0.40 0.80
0.55 0.30 0.50 0.65 0.70 0.60
0.75 0.15 0.35 0.50 0.95 0.60
0.30 0.60 0.30 0.05 0.50 0.85
0.70 0.20 0.40 0.40 0.15 0.50

⎞

⎟
⎟⎟
⎟⎟
⎠

P8 =

⎛

⎜
⎜⎜
⎜⎜
⎝

0.50 0.70 0.75 0.95 0.60 0.85
0.30 0.50 0.55 0.80 0.40 0.65
0.25 0.45 0.50 0.70 0.60 0.45
0.05 0.20 0.30 0.50 0.85 0.40
0.40 0.60 0.40 0.15 0.50 0.75
0.15 0.35 0.55 0.60 0.25 0.50

⎞

⎟
⎟⎟
⎟⎟
⎠

.

degree as the order-inducing values. We assume that experts
who showmore consistency in their assessment are supposed
to be more reliable, and, therefore, they should have a greater
weight in the aggregation.

In order to compute the experts’ consistencydegree, vector
Wc, we use theU -consistency level for each experts’ prefer-
ence relation by using the formula reviewed in Sect. 2.2:

Wc = (
UCLP1, . . . ,UCLPm ,

)

where UCLPi is the U -consistency level of the preference
relation Pi that has been provided by the expert ei .

Once we have calculated this vector, we obtain the final
solution, Us , as follows:

Us = �I
W

(
U (∞)
1 , . . . ,U (∞)

m

)
=

⎛

⎝
u1s
· · ·
uns ,

⎞

⎠ ,

where the best alternative has the greater value, and the worst
one, the smaller one.

4 Example of application of the influence model in
group decision making

Let E = {e1, e2, e3, e4, e5, e6, e7.e8} be a set of eight experts
and six alternatives X = {x1, x2, x3, x4, x5, x6}. To show the
model, we carry the following phases.

Phase 1: providing the information

There are eight experts, E = {e1, e2, e3, e4, e5, e6, e7, e8},
with their respective initial preference relations (see Table 1).

Now we check the consistency and improve the quality of
the information provided (see Table 2)

Phase 2: modelling influence

Preference relations are transformed into utility vectors. To
do so, the dominance degree is computed.We use theweight-
ing vector WOW A = (0.41, 0.17, 0.13, 0.11, 0.096, 0.087)
calculated with the linguistic quantifier “most of” defined by
Q (r) = r1/2.

Finally, the utility vectors obtained from the preference
relations are the following:

U1 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0.74
0.84
0.66
0.31
0.58
0.49

⎞

⎟⎟⎟
⎟⎟⎟
⎠

U2 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0.84
0.66
0.58
0.74
0.31
0.49

⎞

⎟⎟⎟
⎟⎟⎟
⎠

U3 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0.61
0.48
0.86
0.81
0.7
0.27

⎞

⎟⎟⎟
⎟⎟⎟
⎠

U4 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0.46
0.84
0.58
0.31
0.77
0.66

⎞

⎟⎟
⎟⎟⎟⎟
⎠

U5 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0.70
0.68
0.88
0.56
0.55
0.29

⎞

⎟⎟
⎟⎟⎟⎟
⎠

U6 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0.45
0.73
0.69
0.57
0.45
0.54

⎞

⎟⎟
⎟⎟⎟⎟
⎠

U7 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0.54
0.65
0.58
0.57
0.49
0.49

⎞

⎟
⎟⎟⎟⎟⎟
⎠

U8 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0.76
0.58
0.56
0.42
0.60
0.47

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

Each expert is supposed to talk with each other. Among
them, there exists an influence network that represents the
degree by which one expert’s opinions is influenced by that
of other ones. This influence network is represented by the
matrix W and graphically described in Fig. 4):
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Table 2 Experts’ opinions more consistent

P ′
1 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.27 0.64 0.89 0.74 0.82
0.73 0.50 0.80 0.92 0.85 0.89
0.36 0.20 0.50 0.85 0.62 0.74
0.11 0.08 0.15 0.50 0.20 0.27
0.26 0.15 0.38 0.80 0.50 0.64
0.18 0.11 0.26 0.73 0.36 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P ′
2 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.80 0.85 0.73 0.92 0.89
0.20 0.50 0.62 0.36 0.85 0.74
0.15 0.38 0.50 0.26 0.80 0.64
0.27 0.64 0.74 0.50 0.89 0.82
0.08 0.15 0.20 0.11 0.50 0.27
0.11 0.26 0.36 0.18 0.73 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P ′
3 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

0.50 0.69 0.13 0.20 0.36 0.89
0.31 0.50 0.06 0.10 0.20 0.78
0.87 0.94 0.50 0.63 0.79 0.98
0.80 0.90 0.37 0.50 0.69 0.97
0.64 0.80 0.21 0.31 0.50 0.94
0.11 0.22 0.02 0.03 0.06 0.50

⎞

⎟
⎟
⎟⎟
⎟
⎠

P ′
4 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.10 0.36 0.69 0.16 0.27
0.90 0.50 0.83 0.95 0.63 0.76
0.64 0.17 0.50 0.79 0.25 0.39
0.31 0.05 0.21 0.50 0.08 0.14
0.84 0.37 0.75 0.92 0.50 0.65
0.73 0.24 0.61 0.86 0.35 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P ′
5 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.56 0.15 0.62 0.69 0.93
0.44 0.50 0.18 0.85 0.60 0.82
0.85 0.82 0.50 0.82 0.93 0.97
0.38 0.15 0.18 0.50 0.54 0.82
0.31 0.40 0.07 0.46 0.50 0.81
0.07 0.18 0.03 0.18 0.19 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P ′
6 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0.50 0.17 0.18 0.33 0.45 0.59
0.83 0.50 0.47 0.61 0.71 0.82
0.82 0.53 0.50 0.60 0.70 0.61
0.67 0.39 0.40 0.50 0.62 0.46
0.55 0.29 0.30 0.38 0.50 0.31
0.41 0.18 0.39 0.54 0.69 0.50

⎞

⎟
⎟⎟
⎟
⎟
⎠

P ′
7 =

⎛

⎜
⎜⎜
⎜⎜
⎝

0.50 0.30 0.40 0.45 0.51 0.66
0.70 0.50 0.53 0.45 0.73 0.68
0.60 0.47 0.50 0.40 0.54 0.66
0.55 0.55 0.60 0.50 0.44 0.60
0.49 0.27 0.46 0.56 0.50 0.37
0.34 0.32 0.34 0.40 0.63 0.50

⎞

⎟
⎟⎟
⎟⎟
⎠

P ′
8 =

⎛

⎜
⎜⎜
⎜⎜
⎝

0.50 0.75 0.75 0.72 0.77 0.82
0.25 0.50 0.55 0.62 0.59 0.65
0.25 0.45 0.50 0.60 0.46 0.67
0.28 0.38 0.40 0.50 0.20 0.44
0.23 0.41 0.54 0.80 0.50 0.50
0.18 0.35 0.33 0.56 0.50 0.50

⎞

⎟
⎟⎟
⎟⎟
⎠

.

W =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

0.2 0.1 0.25 0 0 0.15 0.3 0
0.1 0 0.18 0.05 0.34 0.24 0 0.09
0 0 0.5 0.5 0 0 0 0
0 0.1 0.23 0.34 0.14 0.09 0.1 0
0.2 0.08 0 0.021 0.05 0 0.049 0.6
0 0 0 0 0 1 0 0
0.2 0.09 0.05 0.32 0.04 0 0 0.3
0 0.07 0.27 0 0.5 0.04 0 0.12

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

After applying the influence model, the utility vectors
obtained are the following:

U ′
1 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0.60
0.69
0.72
0.53
0.61
0.45

⎞

⎟
⎟⎟⎟⎟⎟
⎠

U ′
2 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0.56
0.65
0.73
0.58
0.60
0.45

⎞

⎟
⎟⎟⎟⎟⎟
⎠

U ′
3 =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0.58
0.56
0.80
0.70
0.70
0.35

⎞

⎟
⎟⎟⎟⎟⎟
⎠

U ′
4 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.52
0.72
0.67
0.48
0.69
0.53

⎞

⎟⎟⎟⎟⎟⎟
⎠

U ′
5 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.60
0.64
0.73
0.57
0.62
0.42

⎞

⎟⎟⎟⎟⎟⎟
⎠

U ′
6 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.45
0.73
0.69
0.57
0.45
0.54

⎞

⎟⎟⎟⎟⎟⎟
⎠

U ′
7 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0.57
0.67
0.71
0.55
0.64
0.46

⎞

⎟⎟⎟⎟
⎟⎟
⎠

U ′
8 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0.61
0.62
0.72
0.58
0.63
0.42

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

Phase 3: exploitation

In the final phase we aggregate the utility vectors obtained in
the previous step bymeans of an I-IOWAoperator. In order to

Fig. 4 MatrixW of interpersonal influences

accomplish this phase, we need to compute vector Wc. This
vector is computed from the experts’ consistency degree and
it is calculated as we explained in Sect. 2.2:

Wc = (0.94, 0.94, 0.99, 1, 0.86, 0.75, 0.76, 0.85) .

This vector is used as a weighting vector to compute the
solution.

The global opinion obtained after the aggregation is

Us =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0.53
0.68
0.71
0.57
0.57
0.48

⎞

⎟⎟⎟
⎟⎟⎟
⎠

From this vector, the order of the alternatives, from the best
one to worst one is

{x3, x2, x4, x5, x1, x6} .
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5 Conclusion

In this proposal we have presented a novel approach tomodel
the experts’ interaction in a group decision making problem.

GDM classical models do not take into account the influ-
ence concept among experts to carry out the decisionmaking.
However, in real group decision making problems, the influ-
encemayplay akey role to accomplish this task. For example,
popular people in Social Networks are known to be able to
establish trends or styles.

The new model takes into account the relationship among
experts to create a social network. This social network allows
us to represent the experts’ social influence network. More-
over, because of the use of thismethodology,we can infer and
study the evolution of the experts’ opinions aswell as predict-
ing the solution of the group decisionmaking problem. In the
future, we will study a better representation for the experts’
social network to make easier its use. Besides, considering
that Social Networks have a very relevant role in many areas
of the modern society, this proposal could be very useful to
address real problems in which it is required to predict the
final result of a group decisionmaking problem from the peo-
ple’s initial opinions without carrying out the GDM process.
On the other hand, we also want to study as to how to model
the influence in linguistic contexts (Massanet et al. 2014;Wu
et al. 2015) and in heterogeneous decision making frame-
works (Morente-Molinera et al. 2016; Pérez et al. 2014).
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Appendix 1: Fuzzy quantifiers and their use to
model fuzzy majority

Fuzzy majority is a soft majority concept expressed by a
fuzzy quantifier. This fuzzy quantifier is manipulated by
means of a fuzzy logic-based calculus of linguistically quan-
tified propositions. Hence, the use of fuzzy-majority-guided
aggregation operators allows us to incorporate the concept
of majority into the computation of the solution.

Quantifiers are used to represent the amount of items satis-
fying a given predicate. Classic logic defines two quantifiers,
there exists and for all, however, this can be seen as an impor-

tant drawback because human discourse is much richer and
more diverse. In order to provide a more flexible knowledge
representation tool, Zadeh introduced the concept of fuzzy
quantifiers (Zadeh 1983).

Zadeh suggested that the semantics of a fuzzy quantifier
can be captured using fuzzy subsets for its representation.
Moreover, he differentiated between two types of fuzzy quan-
tifiers: absolute and relative ones. In this model, we have
focused on relative quantifiers, such as most, at least half,
etc., since they can symbolise any quantifier of natural lan-
guage. These quantifiers can be represented by fuzzy subsets
of the unit interval [0, 1]. For any r ∈ [0, 1], Q (r) indicates
the degree in which the proportion r is compatible with the
meaning of the quantifier it represents.

A relative quantifier Q : [0, 1] → [0, 1] satisfies

Q (0) = 0 ∃r ∈ [0, 1] such that Q (r) = 1

Yager (1996) identified two categories of relative quantifiers:
regular increasing monotone (RIM) quantifiers and regular
decreasing monotone (RDM) quantifiers. The first category
is characterised by quantifiers such as all, most, many, at least
α; and the second one by at most one, few, at most α, being
the former one, the category used in this proposal.

A RIM quantifier satisfies

∀a, b i f a > b then Q (a) ≥ Q (b) .

Yager (1996) considers the parameterised family of RIM
quantifiers

Q (r) = rα, α ≥ 0

When this family of RIM quantifiers is used with OWA and
IOWA operators, it is important to realise that α < 1 to
associate high weighting values with high consistent ones.
In particular, in this paper, we use the RIM function Q (r) =
r1/2.

Appendix 2: Example of group decision making

Let E = {e1, e2, e3, e4} be the group of four experts and
X = {x1, x2, x3, x4} be the set of four alternatives. This
group of experts, E , express their preferences about the set
of alternatives, X , by means of fuzzy preference relations,

{P1, P2, P3, P4}, Pk =
[
pki j

]
, pki j ∈ [0, 1], which are addi-

tive reciprocal.
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Consider the following preferences over the set of alter-
natives X :

P1 =

⎛

⎜
⎜
⎝

0.5 0.3 0.7 0.1
0.7 0.5 0.6 0.6
0.3 0.4 0.5 0.2
0.9 0.4 0.8 0.5

⎞

⎟
⎟
⎠ P2 =

⎛

⎜
⎜
⎝

0.5 0.4 0.6 0.2
0.6 0.5 0.7 0.4
0.4 0.3 0.5 0.1
0.8 0.6 0.9 0.5

⎞

⎟
⎟
⎠

P3 =

⎛

⎜⎜
⎝

0.5 0.5 0.7 0
0.5 0.5 0.8 0.4
0.3 0.2 0.5 0.2
1 0.6 0.8 0.5

⎞

⎟⎟
⎠ P4 =

⎛

⎜⎜
⎝

0.5 0.4 0.7 0.8
0.6 0.5 0.4 0.3
0.3 0.6 0.5 0.1
0.2 0.7 0.9 0.5

⎞

⎟⎟
⎠ ,

and their respective expert’s importance I = {0.75, 1, 0.5,
0.25}.

We use the fuzzy linguistic quantifier ’most of’ defined by
Q (r) = r1/2 (Yager 1996), with its corresponding weight-
ing vectorW = (0.5, 0.21, 0.16, 0.13). By using the I-IOWA
operator, the following collective preference relation is com-
puted:

Pc =

⎛

⎜⎜
⎝

0.5 0.4 0.65 0.23
0.6 0.5 0.65 0.43
0.35 0.35 0.5 0.14
0.77 0.57 0.86 0.5

⎞

⎟⎟
⎠ .

Now, if we use the quantifier-guided dominance degree,
QGDDi with the weighting vector WQGDD = (0.5, 0.21,
0.16, 0.13), the following utility vector is obtained:

Uc =

⎛

⎜
⎜
⎝

0.52
0.59
0.4
0.75

⎞

⎟
⎟
⎠ ,

and, therefore, the final solution is

(x4, x2, x1, x3) ,

i.e. x4 is the preferred alternative, x2 is the second one, etc.
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