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Abstract In this paper we deal with the problem of mining for approximate depen-
dencies (AD) in relational databases. We introduce a definition of AD based on the
concept of association rule, by means of suitable definitions of the concepts of item and
transaction. This definition allow us to measure both the accuracy and support of an
AD. We provide an interpretation of the new measures based on the complexity of the
theory (set of rules) that describes the dependence, and we employ this interpretation
to compare the new measures with existing ones. A methodology to adapt existing
association rule mining algorithms to the task of discovering ADs is introduced. The
adapted algorithms obtain the set of ADs that hold in a relation with accuracy and sup-
port greater than user-defined thresholds. The experiments we have performed show
that our approach performs reasonably well over large databases with real-world data.

Keywords Approximate dependencies · Association rules · Data mining ·
Relational databases

1 Introduction

Functional dependencies (FD) are integrity constrains based on real world restrictions,
that are used in the design process of a relational database. Data in a relational database
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314 D. Sánchez et al.

are stored in a set of tables, each one consisting of a fixed scheme (set of attributes).
An instance of a given scheme is a set of tuples (rows), where each tuple pertains to
the cartesian product of the domain of the attributes in the scheme, verifying certain
integrity constraints. Given a relational scheme RE = {At1, . . . , Atm} and V,W ⊂ RE
verifying V ∩W = ∅, the FD “V determines W”, V → W , holds in RE if and only
if for every instance r of RE

∀t, s ∈ r if t[V ] = s[V ] then t[W ] = s[W ] (1)

The meaning of such FD is that given a value for V in a tuple, we can predict the value
for W in the same tuple. In this sense, a FD can be represented by a theory (set of
rules) describing the associations between values of V and values of W .

There has been a lot of interest in mining for FD in relational databases (Bitton
et al. 1989, Mannila and Räihä 1992, Savnik and Flach 1993, Mannila and Räihä 1994,
Bell 1995, 1997, Gunopulos et al. 1997, Flach and Savnik 1999). This is a difficult
task since one single exception breaks the dependence. However, if the number of
exceptions is not very high, such “FD with exceptions” are showing us interesting
regularities that hold in the data. Moreover, usual problems such as the presence of
noisy data can hide a FD by introducing false exceptions. Hence, relaxing the rule (1)
that defines a FD and finding such relaxed FDs has been recognized as an interesting
goal (Bosc et al. 1997).

The concept of FD has been relaxed in several ways and for different purposes.
An important class of relaxed FD are fuzzy functional dependencies (FFD). A FFD
replaces some of the elements of the definition of FD (in the rule 1) by their fuzzy
counterparts. For example, one kind of FFD replaces the equality of values of attributes
by a degree of resemblance given by a fuzzy resemblance relation [see (Bosc et al.
1997) for a detailed study]. However, some definitions of FFD are more restrictive
than FDs, in the sense that a relation satisfying a FFD also satisfies a FD between the
same attributes, and most of the times they are oriented to database design. On the
contrary, we are interested in FD as predictive and previously unknown models that
hold (with few exceptions) in the real world and provide some information about it.

Approximate dependencies (AD) (also called “partial determinations” and “partial
functional dependencies” in the literature) are smoothed FDs, in the sense that some
exceptions to the rule (1) are allowed. What is relaxed here is the universal quantifier
that appears in the rule (1). This kind of regularities are less restrictive than FDs (i.e.
a relation satisfying a FD also satisfies an AD), and hence they are better suited for
our purposes.

Approximate dependencies are very useful. First, as the result of a data mining
process, they give us information about dependencies between attributes, a first global
view of what’s going on in our database. From this point of view they can be useful as
a summary, since an approximate dependence summarizes the information of the set
of rules that form its associated theory. These two possibilities have been employed
for example in Calero et al. (2003), Berzal et al. (2003) and Calero et al. (2004b,c).
ADs can be also employed for data fusion, since they tell us about possible relations
between attributes, and data compression, since when an AD V → W holds, storing a
table with columns V and W is equivalent to store V and the theory of the AD, plus the
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exceptions. The information provided by ADs and its theory has been also employed as
a data mining alternative to the classic statistical correspondence analysis in Sánchez
et al. (2003) and Calero et al. (2004a), in particular in order to obtain measures of
strength of certain relations, such as similarity and refinement, between partitions and
combinations of partitions of the same set of objects.

The discussion about partial dependencies goes back to Lukasiewicz (1970). Since
then, many papers about AD mining have been published (Pawlak 1991, Ziarko 1991,
Piatetsky-Shapiro 1992, Kivinen and Mannila 1995, Pfahringer and Kramer 1995,
Kramer and Pfahringer 1996, Huhtala et al. 1998, 1999, Lopes et al. 2002). The main
problem addressed in these papers is the definition of measures for assessing ADs.
Many different proposals are available. However, most of them consider accuracy
measures only.

This is a problem since, starting from different perspectives, some authors have
pointed out that accurate ADs can be misleading, trivial and/or uninteresting. As an
example, if there are no pair of tuples in a table with the same value of a set of
attributes V, the dependence V → W trivially holds for any set of attributes W with
total accuracy. We shall call these dependencies trivial dependencies from now on.

A first reference to this problem appears in Pfahringer and Kramer (1995). In
this paper an AD (called partial determination) is seen as a theory that can be used to
describe one-to-one associations between values of the antecedent and the consequent.
The objective is to find dependencies such that the corresponding theory is not too
complex. The complexity is measured as the amount of bits needed to encode both the
theory and the exceptions. Hence, complexity is related to the number of exceptions,
the number of rules in the theory, and the size of the antecedent and consequent of
each rule. In Pfahringer and Kramer (1995) and Kramer and Pfahringer (1996) it is
shown that the complexity of the theory for a given AD can be equal to the complexity
of the original set of data, even for totally accurate dependencies. This is the case of
trivial dependencies, for instance. In this case, the discovered dependencies are not
useful for data compression, for instance.

The same problem is discussed in Piatetsky-Shapiro (1992), where a close relation
between the cardinality K of the domain of a certain V and the quality of a dependence
of the form V → W is pointed out. Following (Piatetsky-Shapiro 1992), random
permutations of the values of W in the tuples of a table r should break any dependence
V → W , because the associations among values of V and W are lost. But if K is close
to n = |r| the accuracy of the dependence is almost the same for any permutation, and
hence the dependence could be unreal. In other words, there is no evidence supporting
the dependence in the data, so it is not a reliable result of a data mining process. Again
the worst case arise if V → W is a trivial dependence, because the accuracy is 1 for
any permutation we could perform on the values of W .

In this paper we introduce a new definition of ADs as association rules (Agrawal
et al. 1993) with the semantics of Eq. 1. This kind of association rules are different from
the usual ones in relational tables; instead of considering items as pairs (attribute,value)
and transactions as tuples, we consider items as attributes and transactions as pairs of
tuples, in accordance with Eq. 1. This definition has several advantages. First, as we
shall show, the support is a valid measure of the degree of triviality of a dependence.
This alternative to the proposals in Piatetsky-Shapiro (1992), Pfahringer and Kramer
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(1995) and Kramer and Pfahringer (1996) has the advantage that it can be used in order
to prune the search during the mining process, discarding in advance trivial dependen-
cies. In particular, and this is another advantage of the proposal, any association rule
mining algorithm can be adapted for mining non-trivial ADs. In addition, the accuracy
of an AD can be measured by using any accuracy measure for the corresponding ARs.
Finally, using fuzzy extensions of association rules (Delgado et al. 2003, Dubois et al.
2006) it is possible to look for ADs when we have imprecision associated to the data
in what we call fuzzy approximate dependencies (Berzal et al. 2005).

The paper is organized as follows. In the next section we introduce our new defini-
tion of AD, measures and properties, and we show its suitability to solve the problem
of mining non-trivial accurate dependencies. In Sect. 3 we compare our new approach
to some existing approaches. Section 4 shows how to adapt any AR mining algo-
rithm for mining ADs. An empirical evaluation of the approach is provided in Sect. 5.
Finally, Sect. 6 contains our conclusions and future work.

2 A new definition of approximate dependence

In the rest of the paper, we shall use the following notation. We shall note an AD in an
instance r of a relational scheme RE as V → W , where V,W ⊂ RE with V ∩W = ∅.
Also let dom(V ) = {v1, . . . , vK } and dom(W) = {w1, . . . , wM} be the values of V

and W appearing in r , respectively. Finally, let n = |r|, and nvi
= |{t ∈ r|t[V ] = vi}|,

and nwj
= |{t ∈ r|t[W ] = wj }|, and nviwj

= |{t ∈ r|t[V ] = vi and t[W ] = wj }|.

2.1 Approximate dependencies as association rules

From (1) a FD “V → W” is a rule that relates the presence of pairs of tuples with the
same value of V to the presence of pairs of tuples with the same value of W , with total
accuracy. This idea has been used for example in Lopes et al. (2002). On the other
hand, ARs relate the presence of items in a transaction. Hence, we can consider a FD
as an AR by introducing the following interpretations of the abstract concepts of item,
itemset and transaction: let RE = {At1, . . . , Atm} be a relational scheme and let r be
an instance of RE such that |r| = n.

Definition 2.1 An item is an object associated with an attribute of RE. For every
attribute Atk ∈ RE we note itAtk the associated item.

Let us remark that the item itAtk associated to the attribute Atk is an abstract object
that is independent of the instances of RE and the domain of Atk . Its meaning and
utility will be explained after Definition 2.3.

Definition 2.2 Let V ⊆ RE. Then we introduce the itemset IV to be

IV = {itAtk |Atk ∈ V }
A particular case is the set of all the items associated with RE,

IRE = {itAt1 , . . . , itAtm}
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Definition 2.3 We introduce the set of transactions Tr to be the following: for each
pair of tuples <t, s> ∈ r × r there is a transaction ts ∈ Tr verifying

itAtk ∈ ts⇔ t[Atk] = s[Atk]

Every transaction in Tr corresponds to a pair of tuples in r . The presence of an item
itAtk in a transaction ts means that the tuples t and s have the same value of Atk .

On this basis we characterize an AD as an AR as follows:

Definition 2.4 Let V,W ⊂ RE such that V ∩W = ∅. An approximate dependence
V → W in the relation r is an association rule IV ⇒ IW in Tr .

This way, an association rule itAtk ⇒ itAtj in Tr has exactly the same meaning as
the functional dependence Atk → Atj in r . Using this transformation, we can look for
approximate dependencies in a table r by looking for the corresponding association
rules in Tr . Despite the fact that |Tr | = |r × r| = n2, it is possible to obtain ADs
following our approach with complexity O(n) with respect to the number of tuples,
as we shall show in Sect. 4.

As it is well known, the support of an itemset IV , S(IV ), is the percentage of
transactions containing the itemset. The support of a rule IV ⇒ IW , S(IV ⇒ IW ), is
the support of the itemset formed by the union of the itemsets in the antecedent and
consequent, and defines the percentage of data where the rule holds. Confidence is the
classical accuracy measure for ARs, defined as

C(IV ⇒ IW ) = S(IV ⇒ IW )

S(IV )
= S(IV W )

S(IV )
(2)

In order to assess the ADs, we can use the measures of accuracy and support of the
corresponding ARs, in the following way:

Definition 2.5 The support and confidence of an AD V → W are the support and
confidence of the corresponding AR IV ⇒ IW , i.e.,

S(V → W) = S(IV ⇒ IW ) (3)

C(V → W) = C(IV ⇒ IW ) (4)

In the same way, S(V ) = S(IV ) is the support of attribute V . An important property
of this characterization is the following:

Proposition 2.1 The dependenceV → W is functional if and only if C(IV ⇒ IW )=1.

Proof C(IV ⇒ IW ) = 1 if and only if every pair of tuples that agree in V also agree
in W , and that holds if and only if V → W is a FD. 
�

Let us remark that confidence is not the only accuracy measure for ARs existing
in the literature. There are several alternative proposals that try to solve some of the
inconveniences of confidence. We shall come back to this point in Sect. 2.3.
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Table 1 Some data about three
students

ID Year Course Lastname

1 1991 3 Smith

2 1991 4 Smith

3 1991 4 Smith

Table 2 The set Tr3 of
transactions for r3

Pair itID itYear itCourse itLastname

〈1, 1〉 1 1 1 1

〈1, 2〉 0 1 0 1

〈1, 3〉 0 1 0 1

〈2, 1〉 0 1 0 1

〈2, 2〉 1 1 1 1

〈2, 3〉 0 1 1 1

〈3, 1〉 0 1 0 1

〈3, 2〉 0 1 1 1

〈3, 3〉 1 1 1 1

Table 3 Some association rules in Tr3 corresponding to approximate dependencies in r3

AR Confidence Support AD

{itID} ⇒ {itYear} 1 1/3 ID→ Year

{itYear} ⇒ {itCourse} 5/9 5/9 Year → Course

{itYear , itCourse} ⇒ {itID} 3/5 1/3 Year, Course→ ID

To illustrate our new definition of AD, let r3 be the relation in Table 1, and let
RE = {ID, Year, Course, Lastname}. Then

IRE = {itID, itYear, itCourse, itLastname}

Table 2 shows the set of transactions Tr3 . Each row is the description of a transaction
(associated with a pair of tuples), and each column is an item. The value 1 (resp. 0) in
a cell means that the item is (resp. is not) in the transaction.

Table 3 contains some ARs that hold in Tr3 . They define ADs that hold in r3. The
confidence and support of the ARs in Table 3 measure the accuracy and support of the
corresponding ADs.

One of the main advantages of our approach is that the support is a valid measure
of triviality of an AD. Hence, looking for ADs with support above a high enough
threshold, using any of the algorithms for mining AR existing in the literature, allow
us to obtain non-trivial dependencies with the advantage that the support allows us
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to prune the search, as in the case of ARs. We explain this point in detail in the next
subsection.

2.2 Support of ADs and non-triviality

As detailed in the introduction, our goal is to avoid accurate but uninteresting ADs,
in any of the (equivalent) senses of triviality, complexity of the underlying theory, or
invariance to permutations of values in the consequent. These are different views of
the same problem.

• An AD is trivial in a table when there are neither exceptions nor data where it
holds. In this case, the dependence holds because there are no exceptions, but it
is not supported by the data, meaning that we cannot guarantee that the AD is
showing us a valid dependence that hold in the real world. The extreme case is that
of a dependence V → W such that no pair of tuples has the same value in V . In
general, a certain amount of data supporting the dependence is necessary in order
to be confident about it.

• This problem is described in Pfahringer and Kramer (1995) from the point of view
of the complexity of the theory underlying the dependence. The complexity is
measured as the amount of bits needed to encode both the theory and the excep-
tions. The dependence is uninteresting if the number of bits needed to encode the
projection on VW of the table is less or similar to the number of bits needed to
encode the theory of the dependence V → W , the values of V , and the exceptions.
In other words, the dependence is interesting if it allows us to encode the same
information in much less space. In Pfahringer and Kramer (1995) and Kramer and
Pfahringer (1996) it is shown that the complexity of the theory for a given AD
can be equal to the complexity of the original set of data, even for totally accurate
dependencies. This is the case with trivial dependencies, for instance.
The complexity of an AD is related to the number of exceptions, the number of
rules in the theory, and the size of the projection on V of the table. For a very
accurate dependence V → W , the number of exceptions is assumed to be very
low, and the size of the projection on V of the table is fixed, so the complexity
depends basically on the number of rules, i.e., the number of different values of
VW in the table. The goodness of the dependence depends on the ratio with respect
to the number of bits needed to encode the projection on VW of the table. In other
words, for a fixed set of rules, as the size of the table increases (by adding tuples
corresponding to any rule in the theory), the AD is better. Hence, the quality of the
AD is better as the number of different values of VW decreases and/or the number
of tuples increases.

• Another point of view is introduced in Piatetsky-Shapiro (1992), where a close
relation between the ratio K/n in a table r (K = |dom(V )|, n = |r|) and the
quality of a dependence of the form V → W is pointed out. Following Piatetsky-
Shapiro (1992), random permutations of the values of W in the tuples of a table
r should break any dependence V → W , because the associations among values
of V and W are lost. But if K/n is close to 1, the accuracy of the dependence is
almost the same for any permutation, and hence the dependence could be unreal.
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In other words, there is no evidence in data supporting the dependence, so it is not
a reliable result of a data mining process. Again the worst case arise if V → W

is a trivial dependence, because the accuracy is 1 for any permutation we could
perform on the values of W .

The conclusion of these three points of view is the same: as the number of different
values of V appearing in a table r approaches n = |r| (consequently, the number of
different values of VW in the table approaches n as well), the quality of the dependence
decreases, despite its accuracy, yielding uninteresting dependencies.

This problem can be solved by considering the support of V and V → W . The
support of V in a relation r can be calculated as

S(V ) = 1

n2

K∑

i=1

n2
vi

(5)

It is easy to see that S(V ) increases as K decreases and/or n increases since∑K
i=1 nvi

= n. In the same way, the support of an AD is related to both the num-
ber of different values of VW appearing in r and the number of tuples that agree with
each value as follows:

S(V → W) = 1

n2

K∑

i=1

M∑

j=1

n2
viwj

(6)

Clearly, the support will decrease if we replace some value of VW in r with a new
value not being in dom(V ) × dom(W). Finally, let us remark that the support of an
attribute or dependence ranges from 0 (when n = 0) to 1, and its minimum value for a
non-empty relation is 1/n. This is also the value for a completely trivial dependence.

We can conclude that the support is a valid measure of triviality for ADs, since it
behaves in the same way. Hence, the usual procedure for mining ARs with support
above minimum threshold allows us to discard the corresponding trivial (to some
extent) ADs as those rules with support below the threshold. This is one of the main
advantages of our approach; at the same time it is based on the well-known theory
of ARs, is simpler than the approach in Pfahringer and Kramer (1995), it allows
us to employ existing algorithms and, contrary to Piatetsky-Shapiro (1992), it does
not combine triviality and accuracy in a single measure; confidence or another accu-
racy measure for ARs is employed as well. Finally, by using AR mining algorithms,
we are able to prune the search avoiding to explore a large amount of uninteresting
dependencies by using any of the heuristics existing in the literature.

2.3 An alternative accuracy measure

Despite it is the most employed, confidence is not a suitable accuracy measure for
association rules, as pointed out by different authors (Brin et al. 1997, Silverstein
et al. 1998, Berzal et al. 2002). For instance, Piatetsky-Shapiro (1991) suggested that
a suitable accuracy measure ACC for ADs should verify the following properties:
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1. ACC = 0 if S(V → W) = S(V )S(W)n2

2. ACC monotonically increases with S(V → W) when other parameters remain the
same.

3. ACC monotonically decreases with S(V ) (or S(W)) when other parameters remain
the same.

However, confidence does not verify all these properties (Berzal et al. 2002). Among
other problems, confidence is not able to detect neither statistical independence nor
negative dependence between sets of items (Silverstein et al. 1998, Berzal et al. 2002).

This is a major drawback specially when there are items with very high sup-
port in our database, since these items are a potential source of trivial dependen-
cies. For example, let us suppose a database with 16 attributes, one of them being
an attribute A with support 0.999. Then, the confidence of any AD of the form
V → A is in the interval [1− (10−3/S(V )), 1]. As an example, if S(V ) = 5× 10−3

then C(V → A) ∈ [0.8, 1]. This way we can obtain up to 215 trivial, misleading,
dependencies. From the point of view in Piatetsky-Shapiro (1992), if the support of
the attribute in the right part is very high, it is more probable that random permutations
of its values introduce very few modifications in the dependence.

Different alternative measures have been proposed in order to solve the problems
of confidence. Most of them introduce S(W) in the expression, comparing the a priori
probability that two tuples agree in W to the conditional probability in those cases
where the tuples also agree in V (they are the same when both facts are statisti-
cally independent), or equivalently comparing the number of occurrences of a joint
event with what would have been expected under a null hypothesis of independence.
This is the case of measures like the weighted relative accuracy, also called novelty"
(Lavrac et al. 1999), defined as WRAcc(V → W) = S(V )(C(V → W) − S(W)),
the lift, also called interest (Silverstein et al. 1998), defined as Lift(V → W) =
S(VW)/S(V )S(W), or the conviction, that can be written as Conv(V → W) =
(S(V ) − S(V )S(W))/(S(V ) − S(VW)) (Brin et al. 1997), among others. Let us
remark that, to the extent that they are useful to measure the accuracy of ARs, any of
these measures could be in principle employed in order to measure the accuracy of ADs.

In Berzal et al. (2002) we show that certainty factor (Shortliffe and Buchanan 1975),
a rule uncertainty measure coming from the expert systems field and developed for
the MYCIN system, is an alternative accuracy measure for ARs with good properties.

Definition 2.6 The certainty factor of IV ⇒ IW is

CF(IV ⇒ IW ) =

⎧
⎪⎨

⎪⎩

C(IV ⇒ IW )− S(IW )

1− S(IW )
C(IV ⇒ IW )>S(IW )

C(IV ⇒ IW )− S(IW )

S(IW )
C(IV ⇒ IW ) ≤ S(IW )

(7)

assuming by agreement that if S(IW ) = 1 then CF(IV ⇒ IW ) = 1 and if S(IW ) = 0
then CF(IV ⇒ IW ) = −1.

As for the rest of measures we employ the alternative notation CF(V → W) =
CF(IV ⇒ IW ).
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The certainty factor is interpreted as a measure of variation of the probability that
the consequent is in a transaction when we consider only those transactions where the
antecedent is. More specifically, it measures the decrease of the probability that the
consequent is not in a transaction, given that the antecedent is. From a probabilistic
point of view, and in the context of ADs, the absolute value of the positive (resp.
negative) certainty factor measures the percentage of reduction of the probability that
two tuples do not agree (resp. agree) in W when we know that they agree in V .

When the certainty factor is 0 then the antecedent and consequent of the rule are
statistically independent. This property, that was proved for ARs in Berzal et al. (2002)
holds for ADs as well, as the following proposition shows:

Proposition 2.2 If V and W are statistically independent, then CF(V → W) = 0.

Proof V and W are statistically independent iff

nviwj

n
= nvi

n

nwj

n
∀<vi,wj> ∈ dom(V )× dom(W)

Hence

C(V → W) = S(IV ⇒ IW )

S(IV )
=

∑K
p=1

∑M
q=1

(
nviwj

n

)2

1
n2

∑K
i=1 n2

vi

=
∑K

p=1
∑M

q=1
n2

vp

n2

n2
wq

n2

1
n2

∑K
i=1 n2

vi

=
1
n2

∑K
p=1 n2

vp

∑M
q=1

n2
wq

n2

1
n2

∑K
i=1 n2

vi

=
M∑

q=1

n2
wq

n2 = S(W)

and hence, CF(V → W) = 0. 
�
A negative certainty factor means that the statistical dependence is negative (i.e. the

presence of the antecedent is related to the absence of the consequent in the same tran-
saction). Also, certainty factors verify the three properties stated in Piatetsky-Shapiro
(1991). An additional property is CF(IV ⇒ IW ) ≤ C(IV ⇒ IW ).

In addition, we can point out some relationships to other measures in the literature
that are shown in Berzal et al. (2002):

• Let CF(V → W)>0 and S(V )>0 and S(W)<1. Then

CF(V → W) = 1− 1

Conv(V → W)
(8)

• Let CF(V → W)<0 and S(W)>0. Then

CF(V → W) = Lift(V → W)− 1 (9)
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The proofs of these properties, together with a more detailed description of the
properties of certainty factors can be found in Berzal et al. (2002). An advantage of
certainty factors with respect to conviction and lift is that the possible values are boun-
ded in [−1, 1] and represent (in absolute value) percentages, so it is easier to interpret
them. With respect to the weighted relative accuracy, the factor (C(V → W)−S(W))

measures the absolute variation of probability, as the enumerator of the certainty factor.
The factor S(V ) is introduced in order to trade off this variation with the generality of
the rule as measured by S(V ). However, in the context of AR mining, these two factors
are considered separately, by using a minimum support threshold in order to discard
rules with low generality. Hence, it is not necessary to weight the accuracy measure
with the support. The advantages of considering separately accuracy and support when
mining for ADs were discussed in Sect. 2.2.

The following is another important property of certainty factors with respect to
ADs:

Proposition 2.3 The approximate dependence V → W is functional if and only if
CF(IV ⇒ IW ) = 1.

Proof For any AR I1 ⇒ I2 in a set of transactions T , C(I1 ⇒ I2) = 1 if and
only if CF(I1 ⇒ I2) = 1 (Berzal et al. 2002). Hence, V → W is a FD if and
only if C(IV ⇒ IW ) = 1 (Proposition 2.1), and C(IV ⇒ IW ) = 1 if and only if
CF(IV ⇒ IW ) = 1. 
�

We call strong approximate dependencies those dependencies with certainty factor
and support greater than two user-defined thresholds minCF and minSupp respecti-
vely. We assume that we are interested in finding rules with positive certainty factor,
because ADs are positive associations.

2.4 An interpretation of support and accuracy based on the theory of an AD

The measures associated with ADs must have a clear interpretation, because before the
mining process we must choose the thresholds minCF and minSupp, and when the ADs
have been obtained we need to understand how good they are. If we look at the ADV →
W as an AR IV ⇒ IW in Tr , the interpretations of support and certainty factor are clear.
However, we are looking for ADs in r and we would like to interpret the measures in r .

In this subsection we provide an interpretation of the support and accuracy of an
AD based on the support and accuracy of the ARs that form the theory of the AD. The
ARs that form the theory of an AD are defined in r and relate the presence of values of
attributes in tuples, i.e. items are pairs (attribute, value) (that we note [attribute=value])
and transactions are tuples. First, we formalize the concept of theory of an AD.

Definition 2.7 The theory that describes an AD “V → W” is the following set of ARs

Th[V→W ] =
{
Ruij|∃t ∈ r such that t[V ] = vi and t[W ] = wj

}

where Ruij is the association rule [V = vi] ⇒ [W = wj ]. We shall note sij, cij and
cfij the support, confidence and certainty factor of Ruij, respectively.

Let us remark that the ARs that form the theory of an AD are defined on r in the
classical way, i.e., they relate the presence of items of the form (attribute,value) in
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transactions corresponding to tuples. They are therefore different from ARs on the set
of transactions Tr that define our ADs. However, as we shall show in this section, the
measures of the former are related to those of the latter, and this relationship is very
useful in order to understand the support and certainty factor of an AD.

2.4.1 Support

The following propositions relate the support of an AD to the support of the rules of
its theory:

Proposition 2.4 The support of an AD “V → W” can be obtained from the support
of the ARs of its theory as follows:

S(V → W) = 1

n2

∑

Ruij∈Th[V→W ]
n2

viwj
=

∑

Ruij∈Th[V→W ]
s2

ij (10)

Proof If Ruij �∈ Th[V→W ] then nviwj
= 0. Hence,

S(V → W) = 1

n2

K∑

i=1

M∑

j=1

n2
viwj
= 1

n2

∑

Ruij∈Th[V→W ]
n2

viwj

By definition, sij = nviwj
/n, so

S(V → W) = 1

n2

∑

Ruij∈Th[V→W ]
n2

viwj
=

∑

Ruij∈Th[V→W ]
s2

ij 
�

Proposition 2.5 If every AR in Th[V→W ] has the same support s0, then the following
holds:

1. |Th[V→W ]| = 1/s0
2. S(V → W) = s0

Proof
1. Trivial since

∑
Ruij∈Th[V→W ] sij = 1

2. As a consequence of 1.

S(V → W) =
∑

Ruij∈Th[V→W ]
s2

ij =
1

s0
s2

0 = s0 
�

Following Proposition 2.5, an AD with support s0 is as trivial as an AD described
by a theory consisting of 1/s0 rules, each one with support s0. Since 1/s0 is not always
an integer, we can establish bounds for the complexity of s0. Specifically, if 1/s0 is not
an integer, let a be an integer such that a < 1/s0 < a + 1. Then, the AD is less (resp.
more) complex than an AD described by a + 1 (resp. a) rules with support 1/(a + 1)

(resp. 1/a). The number of rules and its support can give us an idea of the complexity
of the original AD.
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2.4.2 Confidence

We consider confidence in this subsection because the certainty factor is based on it,
though only support and certainty factor are to be used in finding ADs.

Lemma 2.1 Let f : R→ R. Then

K∑

i=1

f (nvi
) =

∑

Ruij∈Th[V→W ]
cijf (nvi

) (11)

Proof For each i ∈ {1, . . . , K},
∑

j∈{1,...,M}|Ruij∈Th[V→W ]
cij =

∑

j∈{1,...,M}|Ruij∈Th[V→W ]

nviwj

nvi

= 1

In addition, ∀i ∈ {1, . . . , K}∃j ∈ {1, . . . ,M} such that Ruij ∈ Th[V→W ]. Hence

K∑

i=1

f (nvi
) =

K∑

i=1

⎛

⎝
∑

j∈{1,...,M}|Ruij∈Th[V→W ]
cijf (nvi

)

⎞

⎠

=
∑

Ruij∈Th[V→W ]
cijf (nvi

) 
�

Proposition 2.6 The confidence of an AD “V → W” can be obtained from the sup-
port and confidence of the ARs of its theory as follows:

1

C(V → W)
=

∑

Ruij∈Th[V→W ]

((
s2

ij∑
Rupq∈Th[V→W ] s

2
pq

)
1

cij

)
(12)

Proof

C(V → W) = S(IV ⇒ IW )

S(IV )
=

∑
Rupq∈Th[V→W ] s

2
pq

1
n2

∑K
i=1 n2

vi

=
∑

Rupq∈Th[V→W ] s
2
pq

1
n2

∑
Ruij∈Th[V→W ] cijn2

vi

(by Lemma 2.1 being f (x) = x2), and hence

1

C(V → W)
=

1
n2

∑
Ruij∈Th[V→W ] cijn

2
vi∑

Rupq∈Th[V→W ] s
2
pq

=
∑

Ruij∈Th[V→W ] cij

(
sij
cij

)2

∑
Rupq∈Th[V→W ] s

2
pq
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(
because cij = sij(

nvi
/n

) and hence
(
nvi

/n
)2 =

(
sij
cij

)2
)

=
∑

Ruij∈Th[V→W ]

((
s2

ij∑
Rupq∈Th[V→W ] s

2
pq

)
1

cij

)

�

Corollary 2.1 The inverse of the confidence of an AD “V → W” is a weighted sum
of the inverse of the confidences of each AR of the theory Th[V→W ], where the weight
is the relative contribution of the rule to the support of the AD, i.e.

1

C(V → W)
=

∑

Ruij∈Th[V→W ]

((
s2

ij

S(V → W)

)
1

cij

)

Proof By Propositions 2.6 and 2.4. 
�
On the basis of these results, the interpretation of confidence is the following:

Proposition 2.7 If every AR in the theory of an AD “V → W” has confidence c0,
then the confidence of the AD is c0.

Proof

1

C(V → W)
=

∑

Ruij∈Th[V→W ]

((
s2

ij∑
Rupq∈Th[V→W ] s

2
pq

)
1

cij

)

= 1

c0

∑

Ruij∈Th[V→W ]

(
s2

ij∑
Rupq∈Th[V→W ] s

2
pq

)
= 1

c0

Hence, C(V → W) = c0. 
�

2.4.3 Certainty factor

Finally, the following proposition provides a similar interpretation for the certainty
factor of an AD.

Proposition 2.8 If every AR in the theory of an AD “V → W” has confidence c0,
and certainty factor cf0, then the following holds:

1. Either c0 = 1 or every item [W = wj ] has support s1 = 1/M in r .
2. The certainty factor of the AD is cf0.

Proof Let S([W = wj ]) be the support of the item [W = wj ]. We shall show both 1
and 2.

1. Let c0<1. Then either

cfij = cf0 =
c0 − S([W = wj ])
1− S([W = wj ]) ∀Ruij ∈ Th[V→W ]
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if cf0 > 0, or

cfij = cf0 =
c0 − S([W = wj ])

S([W = wj ]) ∀Ruij ∈ Th[V→W ]

if cf0 ≤ 0. As both expressions for cfij are strictly monotonic, S([W = wj ]) =
s1 ∈ [0, 1] ∀j ∈ {1, . . . ,M}. On the other hand, since

∑M
j=1 S([W = wj ]) = 1,

then s1 = 1/M .
2. We shall consider two cases:
• Let c0 = 1. Then cf0 = 1 (Berzal et al. 2002). On the other hand, C(V →

W) = c0 = 1 (Proposition 2.7), and hence

CF(V → W) = 1− S(W)

1− S(W)
= 1 = cf0

• Let 0<c0<1. Then

cf0 =
c0 − s1

1− s1

On the other hand

S(W) =
M∑

j=1

n2
wj
= M

1

M2 = 1/M = s1

Hence

CF(V → W) = C(V → W)− S(W)

1− S(W)
= c0 − s1

1− s1
= cf0

The proof for the case −1<c0 ≤ 0 is similar, but using the expression for
negative certainty factors. 
�

The following result integrates the interpretation of support, confidence and cer-
tainty factor:

Proposition 2.9 If every AR in the theory of an AD “V → W” has support s0,
confidence c0, and certainty factor cf0, then the following holds:

1. Every item [V = vi] has support s2 = 1/K in r .
2. cf0 ≥ 0.

Proof
1. For every AR in Th[V→W ], the confidence is cij = sij/S([V = vi]). Since cij = c0

and sij = s0 for every rule, S([V = vi]) takes the same value for every vi ∈
dom(V ). We name that value s2. As

∑K
i=1 S([V = vi]) = 1 it is obvious that

s2 = 1/K .
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2. If every AR has the same support s0, the number of ARs is 1/s0 (Proposition 2.5).
Obviously, 1/s0 ≤ K ·M , so s0 ≥ 1

K·M and therefore

c0 = s0

s2
= s0

1/K
≥ 1

M
= s1

Hence, cf0 ≥ 0. 
�

2.4.4 Conclusions

On the basis of the results in this subsection, the theory of an AD with support s0,
confidence c0 and certainty factor cf0 ≥ 0 is as complex as a theory formed by 1/s0
ARs, each one with support s0, confidence c0 and certainty factor cf0. Such a theory
would hold in a relation whose size were a multiple of 1/s0, K and M . Though it is
usual that 1/s0 is not an integer, we can use the nearest lower and higher integer values
as an approximation, as we pointed out in our interpretation of support.

For example, if an AD “V → W” has support s0 = 0.17 then 1/s0 ≈ 5.18, and we
shall use the integer interval [5,6]. In such situation we say that the complexity of the
AD is between the complexity of an AD described by 5 ARs, each one with support 1/5,
and the complexity of an AD described by 6 ARs, each one with support 1/6. The confi-
dence and certainty factor of the ARs will be c0 and cf0, respectively, in both models.

If cf0<0 we can still use Proposition 2.8, but by Proposition 2.9 the rules in the
theory cannot have the same support. However, as we pointed out at the end of the
previous section, we are only interested in ADs with positive certainty factor.

The interpretation can help us to understand the significance of the values of support
and certainty factor of an AD in terms of the quality of the theory of the AD. In the
same way, it can make easier the choice of the thresholds minSupp and minCF.

3 Related work and comparison with our approach

In this section we compare our measures with other proposals available in the litera-
ture. In some cases, the comparison is based on an interpretation of the measures in
terms of the theory of the AD.

3.1 Exceptions

Approximate dependencies are fuzzy dependencies with exceptions. The existing defi-
nitions of AD differ in the concept of exception, and the measure(s) of accomplishment
of the AD (usually, based on the number of exceptions). The main approaches for the
concept of exception are the following:

• Exceptions as pairs of tuples. This approach claims that an exception to a FD is
an exception to the rule (1), i.e., a pair of tuples t, s ∈ r verifying t[V ] = s[V ]
and t[W ] �= s[W ].
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• Exceptions as individual tuples. A set re ⊆ r is a set of exceptions of V → W

if the dependence holds in r\re. In general, the set re of exceptions is not unique.
Two possible definitions of re are the following:
– (Bra and Paredaens 1983) The set of exceptions is

re =
{
t ∈ r|∃t ′ ∈ r, t[V ] = t ′[V ] and t[W ] �= t ′[W ]} (13)

As we shall see later, this definition is related to the (previously existing)
concept of boundary of rough sets (Pawlak 1982).

– The minimal approach, formalized in Cubero et al. (1998), yet a measure
according to it was defined previously in Kivinen and Mannila (1995). The
set of exceptions re is any set verifying the following properties:
1. V → W is a FD in r\re
2. ∀t ∈ re, V → W is not a FD in (r\re) ∪ {t}
3. � ∃r ′e ⊂ r verifying 1 and 2 such that |r ′e|<|re|

In our new approach (Sect. 2) we have considered exceptions as pairs of tuples
that verify the antecedent but not the consequent in (1). There are two arguments that
justify this approach.

1. The concept of exception as pairs of tuples leads to a unique set of exceptions for
a given relation. For instance, let us consider the toy relation r of Table 4. If we
consider exceptions as individual tuples we have five different sets of exceptions
ri
e with i ∈ {1, 2, 3, 4, 5}. Following the approach based on the boundary of rough

sets (equivalently, De Bra and Paredaens), the set of exceptions is r1
e = r . Follo-

wing the minimal approach the possible sets of exceptions are r2
e , r3

e , r4
e , and r5

e ,
shown in Table 5 (A-D).
Obviously, in real-world tables, the number of possible sets of exceptions is usually
much larger. On the contrary, the set of exceptions as pairs of tuples, that we call

Table 4 Toy relation r
Tuple V W

1 v1 w1

2 v1 w2

3 v2 w2

4 v2 w3

Table 5 Possible sets of exceptions following the minimal approach

(A) r2
e (B) r3

e (C) r4
e (D) r5

e

V W V W V W V W

v1 w1 v1 w1 v1 w2 v1 w2

v2 w2 v2 w3 v2 w2 v2 w3
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E, is unique for a given relation. Exceptions based on pairs of tuples are those
pairs of tuples such that t[V ] = s[V ] and t[W ] �= s[W ]. For instance, in the case
of the relation r , E = {<1, 2>,<3, 4>}.

2. The measures of accuracy based on individual tuples are the percentage of tuples
that are not exceptions. However this is the percentage of tuples where the de-
pendence holds, i.e., the support of the dependence. This fact is pointed out for
example in Pfahringer and Kramer (1995). However, if we consider exceptions as
pairs of tuples, accuracy and support are different in general. This is more intui-
tive and, as we have discussed in Sect. 2.2, very useful as a way to avoid trivial
dependencies.

3.2 Proposals based on exceptions as individual tuples

Some accuracy measures based on exceptions as individual tuples are

• (Ziarko 1991). This measure is based on the theory of rough sets introduced in
Pawlak (1982). Let IND′(U) with U ⊆ RE be the set of equivalence classes
induced in r by the equivalence relation IND(U), meaning “to agree in attribute
U”, provided that if U is a set of attributes, the tuples must agree in every atomic
attribute that pertains to U. Hence

(t, s) ∈ IND(U)⇔ t[U ] = s[U ]

IND′(U) = {[t]IND(U)|t ∈ r}

The accuracy of V → W is

k(V,W) = |POS(V ,W)|
|r| (14)

where

POS(V ,W) =
⋃
{IND(V ,�)|� ∈ IND′(W)}

with

IND(V ,�) =
⋃
{� ∈ IND′(V )|� ⊆ �}

If k(V,W) = 1 then V → W is a FD.
• Measure g2 (Kivinen and Mannila 1995).

g2(V → W, r) = |{t : t ∈ r, ∃s ∈ r: t[V ] = s[V ], t[W ] �= s[W ]}|
|r| (15)

This is an error measure. It takes value 0 if the dependence is functional, and a
value close to 1 if the dependence clearly does not hold. This measure considers
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exceptions in the sense of Bra and Paredaens (1983), see (Cubero et al. 1998). This
is also related to the concept of inconsistency for rough sets (Pawlak 1982).

• Measure g3 (Kivinen and Mannila 1995).

g3(V → W, r) = min{|re|: re ⊆ r and V → W holds in r\re}
|r| (16)

Another error measure, taking values between 0 (FD) and 1. It is based on the
minimal approach to exceptions.

Some other measures (Schlimmer 1993, Shen 1991) are referenced and briefly
commented in Pfahringer and Kramer (1995).

3.2.1 Comparison

The following proposition provides an interpretation of Ziarko’s measure on the basis
of the rules in Th[V→W ]:
Proposition 3.1 Ziarko’s measure k(V,W) (14) can be expressed in the following way

k(V,W) =
∑

Ruij∈Th[V→W ]|cfij=1

sij (17)

Proof Each equivalence class in IND′(V ) (resp. IND′(W)) is associated with a value
vi ∈ dom(V ) (resp. wj ∈ dom(W)). Let us note CL(X, x) the equivalence class
associated with the value x of attribute X. By definition, k(V,W) = |POS(V ,W)|/n,

POS(V ,W) being the union of the equivalence classes in IND′(V ) that are contained
in an equivalence class pertaining to IND′(W). For all vi ∈ dom(V ), if the tuples in
CL(V , vi) are in POS(V ,W) then there is a value wj ∈ dom(W) such that the tuples
are in CL(W,wj ). Hence the rule Ruij has confidence 1, and |CL(V , vi)| = nvi

=
nviwj

. Therefore, each rule with confidence 1 contributes with nviwj
to POS(V ,W),

and with nviwj
/n = sij to k(V,W). As cij = 1 iff cfij = 1, the contributions come

from rules whose certainty factor is 1. 
�

The following proposition was shown in Cubero et al. (1998). The proof is based
on the concept of exception by De Bra and Paredaens, which is on the basis of g2.

Proposition 3.2 The measure g2 (15) can be expressed in the following way:

g2(V → W, r) = 1− k(V,W)

The measure g3 can be interpreted on the basis of Th[V→W ] as well, as the following
proposition shows:

Proposition 3.3 The measure g3 (16) can be expressed in the following way

g3(V → W, r) = 1−
K∑

i=1

max{j | Ruij∈Th[V→W ]}{sij} (18)

123



332 D. Sánchez et al.

Proof

g3(V → W, r) = min{|re|: re ⊆ r and V → W holds in r\re}
|r|

= |r| −max {|roe| : roe ⊆ r and V → W holds in roe}
|r|

If “V → W” is a FD, there is no pair of ARs in the theory associated with V → W

with the same antecedent (in that case, at least two tuples agree in V and don’t agree
in W , and the dependence is not functional). Moreover, every tuple in r supports
only one AR of the theory (assuming, as it is usually the case, that r verifies the first
normal form), so we can obtain a partition of the tuples based on the AR that each
tuple supports. Hence, if we want to choose the greatest set of tuples where a given
dependence “V → W” is a FD, it is sufficient to choose for every vi ∈ dom(V ) the
tuples supporting the rule Ruij with higher support. Let RuiJ be such rule. The size
of the set of tuples that supports RuiJ is |r|siJ . Therefore

max {|roe| : roe ⊆ r and V → W holds in roe}

= |r|
K∑

i=1

max{j | Ruij∈Th[V→W ]}{sij}

Hence

g3(V → W, r) = |r| − |r|
∑K

i=1 max{j |Ruij∈Th[V→W ]}{sij}
|r|

= 1−
K∑

i=1

max{j |Ruij∈Th[V→W ]}{sij} 
�

With these results we can point out the following conclusions:

• A clear difference between the measures gi i ∈ {2, 3} and the rest is that gi are
error measures, while the rest are accuracy measures. The values 1 − gi can be
seen as accuracy measures.

• By Proposition 3.2, g2 measures the distance from the AD to a FD, and k(V,W)

can be seen as the corresponding accuracy. In this sense, k is based on the concept
of exception by De Bra and Paredaens.

• As S(W) is not considered, k = 1− g2 does not verify the three properties stated
in Piatetsky-Shapiro (1991). Neither do 1− g3. Indeed, these measures don’t see
ADs as rules.

• The formula (17) tell us that both g2 and k are rather strict, because all the tuples
supporting an AR are considered as exceptions if only one single tuple breaks the
AR. Hence, one single noisy tuple can reduce significantly the accuracy of the
dependence, even from 1 to 0 in the case of k(V,W). For instance, k(V,W) = 1
for a FD taking the same value for V in all tuples of r , but k(V,W) becomes 0 if
we introduce a new value for V in a tuple.
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• The measure g3 is less strict than g2 (indeed 1− g3 ≥ 1− g2), because it consi-
ders other tuples than those supporting rules with cij = 1, see formula (18). It is
less sensible to the incorporation of noisy tuples, in the sense that changes in the
accuracy are smoother. Also measures based on pairs of tuples, including ours, are
less sensible to erroneous tuples than other measures.

3.3 Proposals based on exceptions as pairs of tuples

Some measures are the following:

• Measure g1 (Kivinen and Mannila 1995)

g1(V → W, r) = |{(t, s): t, s ∈ r, t[V ] = s[V ], t[W ] �= s[W ]}|
|r|2 (19)

In fact, this is not an accuracy measure, but an error measure. A value 0 indi-
cates that the dependence is functional, and a value close to 1 indicates that the
dependence clearly does not hold.

• Measures pdep, τ and µ (Piatetsky-Shapiro 1992). Let

pdep(W) =
M∑

j=1

|{t ∈ r: t[W ] = wj }|2
|r|2 (20)

Then

pdep(V ,W) = 1

|r|
K∑

i=1

M∑

j=1

|{t ∈ r: t[V ] = vi, t[W ] = wj }|2
|{t ∈ r: t[V ] = vi}| (21)

τ (V,W) = pdep(V ,W)− pdep(W)

1− pdep(W)
(22)

µ(V,W) = 1− 1− pdep(V ,W)

1− pdep(W)

|r| − 1

|r| −K
(23)

Measures pdep and τ take value 1 if the dependence is functional, and close to 0 if
the dependence clearly does not hold. As we shall discuss later, measure µ could
be interpreted as a combination of accuracy and support of an AD.

Another measure based on this approach can be found in Russell (1989). It is similar
to pdep (Piatetsky-Shapiro 1991). It is also referenced and briefly commented in
Pfahringer and Kramer (1995).

123



334 D. Sánchez et al.

3.3.1 Comparison

Some propositions will help us to compare our proposal with the aforementioned
approaches.

Proposition 3.4 The measure g1 (19) can be expressed in the following way

g1(V → W, r) = S(IV )− S(IV ⇒ IW ) (24)

Proof

g1(V → W, r) =
∣∣{(t, s) ∈ r2 : t[V ] = s[V ], t[W ] �= s[W ]}∣∣

|r|2

= |{(t, s) ∈ r2 : t[V ] = s[V ]}| − |{(t, s) ∈ r2 : t[V ] = s[V ], t[W ] = s[W ]}|
|r|2

= S(IV )− S(IV ⇒ IW ) 
�

Corollary 3.1

g1(V → W, r) = S(V ) (1− C(V → W)) (25)

Proof From Proposition 3.4 and the definition of confidence (2). 
�

We can point out that

• g1 is based on pairs of tuples. As we showed in previous sections, the accuracy of an
AD increases as S(V → W) gets closer to S(V ), and reaches its maximum when
S(V → W) = S(V ). In this sense, g1 measures the distance from the AD to a FD
(Proposition 3.4). Also g1 is shown to be related to confidence by formula (25).

• As S(W) is not considered, 1 − g1 does not verify the three properties stated in
Piatetsky-Shapiro (1991). Again, this measure does not see ADs as rules.

In the following, we focus on the relation among our measures and those proposed
in Piatetsky-Shapiro (1992).

Proposition 3.5 pdep(V ) = S(V )

Proof Trivial regarding Eqs. 5 and 20. 
�

The following proposition shows a nice expression for pdep(V ,W) based on
Th[V→W ]:

Proposition 3.6 The measure pdep(V ,W) (21) can be expressed in the following way

pdep(V ,W) =
∑

Ruij∈Th[V→W ]
sijcij (26)
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Proof

pdep(V ,W) = 1

|r|
K∑

i=1

M∑

j=1

|{t ∈ r: t[V ] = vi, t[W ] = wj }|2
|{t ∈ r: t[V ] = vi}|

= 1

n

K∑

i=1

M∑

j=1

n2
viwj

nvi

=
K∑

i=1

M∑

j=1

nviwj

n

nviwj

nvi

=
K∑

i=1

M∑

j=1

sijcij

=
∑

Ruij∈Th[V→W ]
sijcij 
�

An interesting relation between the measures we are discussing is shown in the
following proposition:

Proposition 3.7 If every AR in the theory of an AD “V → W” has confidence c0,
and certainty factor cf0 ≥ 0, then the following holds:

1. pdep(V ,W) = C(V → W) = c0.
2. τ (V,W) = CF(V → W) = cf0.

Proof
1. By Proposition 3.6, pdep(V ,W) is a weighted sum of the confidences cij, where

the weight for every cij is sij. Since the addition of the support of all rules is 1,
if every rule in the theory has confidence c0 then pdep(V ,W) = c0. Also, by
Proposition 2.7 C(V → W) = c0.

2. If cf0 = 1 then V → W is a FD and τ (V,W) = 1. Let us suppose 0 ≤
cf0<1. By Proposition 2.8, CF(V → W) = cf0 and S(W) = s1. By Propo-
sition 3.5, pdep(W) = S(W). We have just shown that under the assumptions
above, pdep(V ,W) = c0. Since cf0 ≥ 0

τ (V,W) = pdep(V ,W)− pdep(W)

1− pdep(W)
= c0 − s1

1− s1
= cf0 
�

Our conclusions about the relation between these measures are:

• The measures pdep(V ,W) and C(V → W) are not always the same, though
conceptually they are both the conditional probability that two tuples agree in W ,
given that they agree in V . In particular, pdep(V ,W) ≥ S(W) (Piatetsky-Shapiro
1992), while C(V → W) can be lesser than S(W). The reason is that the proba-
bility is estimated in different ways. For instance, let r be that of Table 6. Then
pdep(V ,W) = 7/10 = 0.7 and C(V → W) = 11/17 ≈ 0.647. However, we
have shown (Proposition 3.7) that the equality pdep(V ,W) = C(V → W) holds at
least when all the ARs in the theory of V → W have the same support, confidence
and certainty factor.

• As a consequence, the measures τ (V,W) and CF(V → W) are not always the
same, though pdep(W) = S(W). Obviously, if pdep(V ,W) = C(V → W) then
τ (V,W) = C(V → W).

123



336 D. Sánchez et al.

Table 6 A table r where
pdep(V , W) �= C(V → W)

V W

v1 w1

v1 w2

v1 w1

v1 w1

v2 w1

• In our opinion, µ merges in one single measure the accuracy of the AD and its
reliability, the latter being related to the value K , and hence to the support of
both the antecedent and the AD (if we modify a tuple by introducing a new
value of V , and K becomes K + 1, then the support decreases). If K = 1 then
µ(V,W) = τ (V,W), otherwise µ(V,W) ≤ τ (V,W) (Piatetsky-Shapiro 1992).
The only case in which µ cannot discard an AD with very low support is when the
AD is in fact a FD. In that case, pdep(V ,W) = τ (V,W) = µ(V,W) = 1.
Contrary to µ, our approach is to separate accuracy and support. We think that the
use of two measures instead of only one is better for several reasons. From the
theoretical point of view, it gives us more information about the AD. In practice,
support allow us for a more efficient mining of data, since it can be used (as in the
case of ARs) for bounding the search.

As a final comment, an important difference between k, g2 and g3 (based on indivi-
dual tuples) and the rest of measures (based on pairs of tuples) is the amount of infor-
mation they deal with. The expressions (17) and (18) show that only tuples supporting
ARs that verify certain conditions are considered by k, g2 and g3. Hence, if we change
a discarded tuple in a way that does not affect the set of ARs that verify the conditions,
the accuracy of the dependence does not change. For instance, introducing a new value
not in dom(V ) neither in dom(W) in a discarded tuple does not change the accuracy.

On the contrary, measures based on pairs of tuples take into account every tuple in
r , and the changes described above would change the accuracy in many cases (though
smoothly, as we discussed before). This claim is easy to show by the definition of CF
(Definition 2.6), and the expressions for g1 (24) and pdep (26) (also τ and µ, as based
on pdep, consider every tuple).

4 Our methodology to discover approximate dependencies

By Definition 2.4 we can obtain AD mining algorithms by adapting efficient algo-
rithms for association rule mining. However, the direct application of these algorithms
to look for rules in Tr has some drawbacks related to efficiency, because the number of
transactions is the square of the number of tuples. Our goal here is to solve those pro-
blems and to provide a way to obtain efficient algorithms for AD mining by adapting
AR mining algorithms. Let us remark that, as we shall show, the proposed metho-
dology can be applied to adapt any AR mining algorithm, provided that to deal with
several transactions at a time is not an inconvenience.
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4.1 Direct application of AR mining algorithms

To mine for strong dependencies V → W in r is equivalent to search for strong
association rules IV ⇒ IW in Tr by using one of the many existing algorithms. Most
of them explore the lattice of itemsets with respect to set inclusion in a first step,
searching for itemsets with enough support, i.e. itemsets whose support is above a
threshold minSupp given as input. In a second step, and starting from these so-called
frequent itemsets, the strong rules are obtained.

The first part of the algorithm is the most computationally expensive, and its com-
plexity is comprised (in the worst case) at least of a linear factor in the number of
transactions (because we need to explore the set of transactions to calculate the sup-
port of an itemset), another linear factor in the number of levels of the lattice (usually
equal to the number of items), and an exponential factor in the number of items, that
corresponds to the number of possible itemsets. Many algorithms available in the
literature try to improve efficiency in different ways.

The complexity of a levelwise algorithm like APRIORI when employed for mining
ADs on Tr has two main factors:

• A factor 2mm, m being the number of items (attributes) and
• a factor n2 since |Tr | = n2.

The first factor cannot be improved in the worst case, but the second one can be redu-
ced to n, so that the final complexity is the same that the complexity of an AR mining
algorithm (though obviously, both perform different tasks!). We explain this in the
next section.

4.2 Efficient calculation of support

It is possible to calculate the support of an itemset IV in Tr by exploring only once
the set of n tuples in r instead of exploring the corresponding set of n2 transactions.
This solution is based on the following result:

Proposition 4.1 The support of an itemset IV is

S(IV ) = 1

n2

K∑

i=1

nvi∑

p=1

(2p − 1) (27)

Proof From (5) and given that for each number x ∈ N, with x>0

x2 =
x∑

p=1

(2p − 1) 
�

Algorithm 1 employs this result to obtain S(IV ) in Tr in time O(n). The reduction
in complexity from n2 to n is achieved since each time a tuple ti is scanned we are im-
plicitly scanning 2i−1 transactions in Tr , corresponding to every pair of tuples of the
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Algorithm 1 Algorithm to obtain the support of an itemset IV

1. S(IV )← 0
2. For each i ∈ {1, . . . , K}

(a) N(V, vi )← 0
3. For each t ∈ r

(a) N(V, t[V ])← N(V, t[V ])+ 1
(b) S(IV )← S(IV )+ 2N(V, t[V ])− 1

4. Exit: S(IV )/n2 is the support of the itemset IV .

form tj ti or ti tj with j ≤ i. Among these we know that only those with tj [V ] = ti[V ]
contribute to the support of IV .

Since the number of tuples tj with j ≤ i such that tj [V ] = ti[V ] is stored in
N(V, ti[V ]) and updated in step 3a, we know that the number of transactions tj ti or
ti tj supporting IV is 2N(V, ti[V ])−1, hence S(IV ) is updated accordingly in step 3b.

4.3 Adapting existing algorithms

In principle, algorithms to obtain frequent itemsets with items of the form <At, a>

in r can be adapted to obtain frequent itemsets IV in Tr as follows:

1. Add a variable SV for each itemset IV .
2. Calculate SV at the same time that the support of <V, v>∀v ∈ dom(V ) as in

Algorithm 1 (we note here <V, v> the itemset {<Atk, akl>|Atk ∈ V, akl ∈
dom(Atk)}).

3. Eliminate the variables N(V, v) once S(IV ) is obtained.

The rest of the process depends on the algorithm of our choice. Notice that

• The support of items of the form <At, a> in r is calculated only as a way to obtain
the support of IAt in Tr . The corresponding variables are eliminated once S(IAt )

has been obtained.
• While calculating the support of an itemset IV , the support of every value of V

(i.e., every combination of values of attributes in V appearing in r) is calculated,
despite all their subsets were frequent or not.

• For those algorithms using candidate generation, the property “every subset of a
frequent itemset must be a frequent itemset” holds also for itemsets of the form IV .
Obviously, candidate generation considers itemsets of the form IV with V ⊆ ER

only.

Once the frequent itemsets of the form IV are found, strong dependencies can be
obtained in the usual way. It is easy to obtain the certainty factor from the confidence
of the rule and the support of the consequent.

The adaptation is possible in principle when to consider several transactions of Tr

at a time (as we do) is not an inconvenience for the heuristics and techniques employed
by the algorithm.

In order to test the viability of this approach we have adapted algorithm Apriori. In
the next section we discuss about the complexity of the modified algorithms and, in
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particular, we show that our adapted version of Apriori performs reasonably well on
real databases. Adaptation of more efficient algorithms is left to future research.

4.4 Complexity

From now on we shall call items of the form <At, a> AR-items. In the same way
items of the form itAt will be called AD-items. Following this idea we shall talk of
AR-itemset, AD-itemset, AR-algorithm and AD-algorithm. In the previous section
we showed how to adapt an AR-algorithm to obtain an AD-algorithm. The question
is, how do the modifications affect to the complexity and performance of the ori-
ginal algorithm? Of course, the answer to this question may vary depending on the
specific features of each AR-algorithm, but what is sure is that the number of tuples
and itemsets are the main factors affecting complexity. Taking into account only that
information, our conclusions are the following:

• Complexity in the worst case (i.e. every AR-itemset is frequent and hence every
AD-itemset is frequent) is the same for ARs and ADs, since in both cases the
algorithms will calculate the support of every AR-itemset.

• Both AR and AD-algorithms have a factor that is linear in the number of tuples.
• The rest of the complexity depends on the number of itemsets considered, but

there isn’t a fixed relation between the number of AR-itemsets to be calculated
and stored for both algorithms. In particular, it depends on the minimum support
considered. This is illustrated in Example 1.

Example 1 Suppose we apply an AR-algorithm and the corresponding adaptation for
AD on Table 7 with minsupp = 0.3. In a first step, the AR-algorithm will calculate
the support of every AR-item and will find that only the items <At1, a>, <At2, f >

and <At3, k> are frequent (support is 1/3>0.3). It is easy to see that any combination
of these items is also frequent in Table 7, so in the whole process the AR-algorithm
will calculate and store the support of 19 itemsets (15 in the first step and 4 more
corresponding to the 2-items and 3-items that can be obtained from the three frequent
items). The AD-algorithm will calculate the support of 15 items in the first step as
well, in order to obtain the support of itAt1, itAt2 and itAt3 , but they are not frequent
(support is 2/9<0.3), so the algorithm will stop.

Table 7 A toy relation with
three attributes

At1 At2 At3

a f k

a f k

b g l

c h m

d i n

e j o
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Now, suppose we apply both algorithms again with minsupp= 0.2. The AR-
algorithm will do the same work that in the previous case, but the AD-algorithm
will find in the first step that every item is frequent. In fact, it is easy to see that every
AD-itemset in Table 7 is frequent when minsupp= 0.2, so the support of all the AR-
itemsets will be calculated in order to obtain the support of every AD-itemset. The
final amount of AR-itemsets calculated will be 35 (though only the support of 15 of
them will be maintained in memory in every step, since once the global support of an
AD-itemset is obtained, the memory employed for the variables that store the support
of the corresponding AR-itemsets is set free). 
�

Hence, the performance of the AD-algorithm with respect to the corresponding
AR-algorithm depends on the database since it is related to the number of itemsets
and the minimum support considered. This conclusion is confirmed by some of the
experiments in the next section.

5 Empirical evaluation

In previous sections we have motivated the use of support in order to determine how
trivial an AD is, and we have proposed certainty factor as accuracy measure for ADs.
Furthermore, we have shown the theoretical properties of this approach.

In this section we evaluate the proposal from an empirical point of view, with three
objectives in mind:

• To show that the approach performs well in real-life applications, i.e., it is pos-
sible to implement algorithms for mining non-trivial ADs that expend a reasonable
amount of time and space (Sect. 5.1).

• To show that a significant number of trivial dependencies are pruned by using a
minimum support threshold, and hence the contribution of the approach to the task
of finding non-trivial dependencies is significant (Sect. 5.2). In the same section,
another objective is to show that certainty factors are useful in order to discard a
large amount of misleading dependencies that are not detected by confidence.

• To show that the non-trivial ADs obtained are useful in practice, i.e., in real-life
applications (Sect. 5.3).

5.1 Implementation and performance

We have adapted the algorithm Apriori to discover ADs, following the ideas in
Sect. 4.3. The language employed was JAVA, and the experiments were performed
with a PC Pentium IV 2.0 Ghz under Windows XP. Let us remark that the objective
of this implementation was not to obtain the fastest algorithm, but to show that it is
possible to implement algorithms for mining non-trivial ADs that expend a reasonable
amount of time and space.

For our experiments, we have employed different databases implemented in
ORACLE 9i and accessed through the JDBC interface. We have not used interme-
diate files to store the database.
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Table 8 Average performance of our adaptation of Apriori to find ADs in ten executions

Database Attributes Tuples Values Time (s) Mem (Kb)

Ahalone 9 4177 675.22 3.3 1617

Hepatitis 20 155 18.3 40.19 13682

Mushroom 23 8124 5.17 2496 128577

Adult 15 32561 1476.4 2315.9 94801

Breastwis 10 699 9.2 20.9 11089

Breastwis × 64 10 44736 9.2 616.3 11089

Breastwis × 128 10 89472 9.2 1246 11089

Chess 7 28056 8.29 13.2 254

Letter 17 20000 16.59 72.1 3774

The databases were obtained from the UCI Machine Learning Repository.1 The
databases “Breastwis x64” and “Breastwis x 128” were obtained from “Breastwis”
(Winsconsin-breast-cancer database) by concatenation of copies of the database as
detailed in Huhtala et al. (1998). Table 8 shows the name, number of attributes and
tuples, and average number of values per attribute for each database.

In order to evaluate the performance both in time and space of our algorithm we
have performed ten executions on each database using minsupp = 0.05 and looking
for itemsets with at most five items. Average time and space are shown in Table 8.
The maximum time expended was around 42 min for the database Mushroom; the
maximum memory employed was around 126 Mb for the same database.

As a way to assess to what extent this performance is reasonable, we have verified
that the time employed is in average similar (sometimes better and sometimes worst) to
the time employed by the Apriori algorithm for mining ordinary association rules (not
those defining ADs in our approach) on the same databases, using an implementation
with the same language and database management system, and running on the same
PC. This is in accordance with our conclusions in Sect. 4.4 about complexity. In all
the cases, mining for ADs needed more memory that mining for ARs, but the amount
of memory employed was affordable for an ordinary PC (less than 128 MB in all our
experiments).

These results support the claim that our adaptation to ADs performs reasonably
well in the sense that the memory needed is affordable and the time expended is com-
parable to that employed in other mining tasks with similar theoretical complexity
and under similar conditions (database size, implementation language, PC employed,
etc. . .) such as mining for ARs in a table. Let us remark that this comparison makes
no other sense since, obviously, mining ordinary ARs and mining ADs in the same
table are completely different and non-comparable tasks.

1 http://www.ics.uci.edu/mlearn/MLRepository.html.
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5.2 Detecting misleading ADs

Trivial dependencies are dependencies with very high accuracy and very low support.
In real databases it is easy to find many trivial dependencies generated by sets of
attributes with very low joint support, as we explained in Sect. 2.2. At the same time,
taking into account the support but using confidence lead us to obtain misleading ADs
that correspond to independence or negative dependence, as we explained in Sect. 2.3.

The first problem can be solved by mining for ADs with support above a minimum
threshold. The second one can be solved by using an accuracy measure incorporating
the support of the consequent, as certainty factor. We deal with these problems in the
next sections. In both of them we have employed the databases in Table 8.

5.2.1 Effectiveness of support

Any dependence containing a key of a relation in the left part is totally accurate. For
a single key with a attributes in a table with a + b+ 1 attributes, we can obtain in the
order of 2b trivial dependencies. For example, in the database mushroom (23 attri-
butes), for every key with 2 attributes we can obtain in the order of 220 trivial (unin-
teresting for our purposes) dependencies. Even if we restrict the number of attributes
to be at most 4 in the antecedent, the number of potential trivial ADs is huge.

In practice it is usual to find several attributes with very low support, close to the
support of keys (the minimum possible), that generate many trivial, in the sense of
accurate but uninteresting, rules. For example, as shown in Sánchez (1999), the AD
BirthDate → Sex in a database about surgical operations in the University Hospital
of Granada has a rather high accuracy, as can be seen in Table 9, but it is clearly
counterintuitive. We can see that most of the existing measures (except perhaps µ,
that takes into account the support, and CF) consider that this AD is rather accurate.
However, the support of the AD is≈ 1.8E−4. That support is equivalent to the support
of an AD whose theory contained ≈ 5484 ARs with the same support. This theory is
too complex and hence the rule is unimportant, as intuitively expected.

In order to show the effectiveness of support in detecting trivial ADs, we have mea-
sured in every database the percentage of non-trivial dependencies for different values
of minimum support (i.e., for different degrees of triviality). Only dependencies with
a maximum of four attributes in the left and one on the right were considered. The
accuracy was assessed using different minimum thresholds for certainty factor.

The results are shown in Tables 10–12. The column for minsupp = 0 indicates
the number of dependencies obtained without taking into account the support. The
tables show the number and percentage of trivial dependencies eliminated for min-
supp = 0.05, minsupp = 0.1 and minsupp = 0.25. For databases Abalone and Letter there

Table 9 Accuracy for BirthDate→ Sex in surgical operations

Measure k g1 g2 g3 pdep τ µ C CF

Value ≈ 0.78 7.2E−5 0.22 0.08 0.89 0.78 0.44 0.72 0.43
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Table 10 Effectiveness of support in detecting trivial dependencies (percentage of detection) for different
minimum support thresholds, minCF = 0.4

Database 0 0.05 % 0.1 % 0.25 %

Abalone 1264 0 100 0 100 0 100

Hepatitis 23168 3953 83 2903 87.5 264 98.8

Mushroom 89906 40772 55 11031 87 422 99

Adult 6937 335 95 156 97.8 0 100

Breastwis 3151 1275 60 773 75.5 51 98.4

Chess 0 0 – 0 – 0 –

Letter 10321 0 100 0 100 0 100

Table 11 Effectiveness of support in detecting trivial dependencies (percentage of detection) for different
minimum support thresholds, minCF = 0.7

Database 0 0.05 % 0.1 % 0.25 %

Abalone 1164 0 100 0 100 0 100

Hepatitis 7844 688 92.3 417 94.7 47 99.4

Mushroom 45179 20878 54 5632 87.5 287 99.3

Adult 5404 191 96.5 89 98.4 0 100

Breastwis 1654 587 64.5 335 80 25 98.4

Chess 0 0 – 0 – 0 –

Letter 141 0 100 0 100 0 100

Table 12 Effectiveness of support in detecting trivial dependencies (percentage of detection) for different
minimum support thresholds, minCF = 0.9

Database 0 0.05 % 0.1 % 0.25 %

Abalone 1021 0 100 0 100 0 100

Hepatitis 3126 17 95.5 2 99.9 1 99.9

Mushroom 21681 11132 49 3343 85 239 98.9

Adult 3193 130 96 46 98.5 0 100

Breastwis 534 164 70 91 83 7 98.6

Chess 0 0 – 0 – 0 –

Letter 0 0 – 0 – 0 –

is a maximum percentage of reduction since the support of dependencies is very low.
Database Chess does not contain any dependence with certainty factor above 0.4 (the
lower minCF value considered). In the rest of the cases, the reduction is very impor-
tant, with a minimum of 49%, showing that support allows us to detect and eliminate
a very large amount of misleading dependencies.
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5.2.2 Certainty factor versus confidence

As we explained in Sect. 2.3, confidence is not able to detect neither statistical inde-
pendence nor negative dependence between V and W in a dependence V → W . This
is very important since that means that the dependence does not hold.

An example of such ADs, shown in Sánchez (1999), is Sex→ Transport, relating
the sex of a patient to the mean of transport employed for arriving at the urgency
service of the University Hospital of Granada. The confidence of that dependence
is 0.97, when indeed Sex and Transport are intuitively independent, as the certainty
factor (10−3) confirms.

We have measured the percentage of reduction in the number of accurate ADs
when using certainty factor instead of confidence. We made the experiments for all
the databases using different values of support. Again, only dependencies with a maxi-
mum of four attributes in the left and one in the right were considered. The results in
Tables 13 and 14 show that using certainty factors we obtain an important reduction
of the number of dependencies obtained. The dependencies discarded correspond to
negative dependencies and independencies. By the theoretical properties of certainty
factor, all the strong dependencies using certainty factor as accuracy measure are also
strong following confidence.

5.3 Some application experiences

Our approach to approximate dependencies, and a fuzzy extension of it (Berzal et al.
2005) have been applied in several practical situations. In Sánchez et al. (2003), a data
mining alternative to the classical correspondence analysis in statistics was introduced
on the basis of our new definition of AD. This tool was employed to analyze correspon-
dences between user and scientific knowledge in an agricultural environment, in parti-
cular to compare the perception of soils by farmers and pedologist, with the objective
of improving performance of farms. Data was obtained by polling farmers cultivating

Table 13 Effectiveness of certainty factor against confidence: number of strong dependencies obtained by
each measure and percentage of dependencies discarded by certainty factor for different minimum accuracy
thresholds, minsupp = 0.01

Database 0.25 0.5 0.75

Conf CF % Conf CF % Conf CF %

Abalone 2 0 100 0 0 – 0 0 –

Hepatitis 34174 16924 50.5 32110 7772 75.8 14909 1982 86.7

Mushroom 200666 119971 40 133829 72222 46.1 83320 38844 53.4

Adult 6806 1512 87.8 5517 856 84.5 3377 476 86

Breastwis 2285 2023 11.5 2026 1873 7.6 1410 740 47.6

Chess 22 0 100 0 0 – 0 0 –

Letter 148 54 63.5 12 5 58.3 0 0 –
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Table 14 Effectiveness of certainty factor against confidence: number of strong dependencies obtained by
each measure and percentage of dependencies discarded by certainty factor for different minimum accuracy
thresholds, minsupp = 0.05

Database 0.25 0.5 0.75

Conf CF % Conf CF % Conf CF %

Abalone 0 0 – 0 0 – 0 0 –

Hepatitis 16859 7102 58 16015 2477 84.5 6535 373 94.3

Mushroom 84608 52509 58 65991 33786 49 43707 18416 57.9

Adult 2558 527 79.4 2219 276 87.6 1374 155 88.8

Breastwis 1457 1308 10.3 1311 1208 7.9 913 488 46.6

Chess 2 0 100 0 0 – 0 0 –

Letter 8 0 100 0 0 – 0 0 –

olives in the southeast of Spain, in the context of a European project supported by the
FEDER programme, and the obtained dependencies were analyzed by pedologist.
However, the proposed correspondence analysis can be employed in many other
problems.

In Calero et al. (2003, 2004b,c) we have introduced a methodology that employ
fuzzy approximate dependencies to perform a high-level analysis of data. After that,
the corresponding set of association rules can be employed to analyze the dependen-
cies obtained, or they can be employed to look for associations between values of
attributes that are not related by a strong approximate dependence. The methodology
was applied to the analysis of soil properties, specifically color as an aggregation of
other soil properties. Soil experts found some interesting dependencies relating soil
properties as clay percentage, organic carbon percentage, useful water and dry chroma
among others.

A different application can be found in Berzal et al. (2003), where we employed
our approach to discover approximate dependencies in the STULONG database in
the context of the Discovery Challenge of the ECML/PKDD 2003 conference. STU-
LONG provides information about a twenty years lasting longitudinal study of the risk
factors of the atherosclerosis in a population of 1417 middle aged men, performed in
the Faculty of Medicine of the Charles University, and the Charles University Hos-
pital of Prague. A large analysis was performed and many interesting dependencies
were obtained involving attributes about social factors, like education, and physical
activities, smoking, alcohol consumption, blood pressure, cholesterol levels and body
mass index.

6 Conclusions and future research

We have introduced a new definition of approximate dependence in a table r as an
association rule in a set of transactions Tr . The set Tr is obtained from r so that
association rules in Tr have the semantics of functional dependencies in r . Support
and accuracy are employed to assess the dependencies, and those with values of these
measures over user-defined thresholds are called strong approximate dependencies.
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We have shown the advantages of the new approach. First, we have shown that
support is a valid measure of the degree to which a dependence is trivial (i.e., it has
high accuracy but is not supported by the data). The importance of avoiding trivial
dependencies was discussed from different points of view in Piatetsky-Shapiro (1992),
Pfahringer and Kramer (1995) and Kramer and Pfahringer (1996). Additionally, sup-
port can be employed to bound a levelwise search for dependencies as in the case of
association rules. In this sense, we have proposed a way to adapt any association rule
mining algorithm for mining non-trivial dependencies, and we have applied it to the
Apriori algorithm.

We have proposed certainty factor as the accuracy measure for approximate
dependencies, and we have shown its suitability by means of its properties, a theo-
retical comparison with other proposals, and our experiments. In particular, we have
shown that certainty factor performs better than confidence. As a way to interpret in
r the support and certainty factor obtained from the set of transactions Tr , we have
formulated these measures in terms of the support and accuracy of the rules that form
the theory of the dependence, i.e., the set of rules relating values of the attributes in
the antecedent and consequent of the dependence.

Finally, we have shown that it is possible to develop algorithms for mining depen-
dencies that expend a reasonable amount of space and time, and we have illustrated
the utility of the new definition of approximate dependence by means of references
to applications in real-world problems. In some of these references, the new defini-
tion of approximate dependence was employed to define a data mining counterpart
of the classical statistical correspondence analysis, and to define fuzzy approximate
dependencies as an extension to deal with different types of imprecision in data.

As future work we plan to adapt algorithms other than Apriori in order to obtain
more efficient algorithms, and to keep applying the new approach to other real-world
problems.
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