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Abstract

The evaluation of quantified sentences is used to solve several problems.
Most of the methods proposed in the literature are not satisfactory because
they do not verify some intuitive properties. In this paper we propose an
extension of both possibilistic and probabilistic methods, based on the Sugeno
and the Choquet fuzzy integrals respectively, for the evaluation of type II
sentences, the most general kind of sentences. These methods verify good
properties, and they are shown to be better than existing ones. Some of the
properties of the methods allow us to design an efficient algorithm with linear
complexity to perform the evaluation under reasonable assumptions.
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1 Introduction

Quantified sentences are assertions about the number or percentage of objects that
verify a certain property. They can be applied in many fields such as flexible
database querying and expert systems among others (see [7] for a brief review).
These sentences are classified into two classes, called type I sentences and type II
sentences respectively. A type I sentence is a sentence that take the form ”Q of X
are A”, where X = {z1,...,x,} is a finite set, () is a linguistic quantifier and A is
a fuzzy property defined over X. One example of such sentences is "Most of the
students are young”. In this case, X is a finite set of students, the property A is
7young” and @ is the quantifier "Most”. A type II sentence can be described in
general as 7@ of D are A”, where D is also a fuzzy property over X. One example
is the sentence "Most of the young people are tall”. Obviously, type I sentences
are a special case of type Il sentences where D = X.

The evaluation of quantified sentences tries to obtain an accomplishment degree
in the real interval [0, 1] for the sentence. In [3] we propose a set of intuitive prop-
erties that any evaluation method should verify. According to those properties,
we show that some existing evaluation methods are not suitable in some cases. A
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fuzzy quantifier defines a fuzzy quantity (absolute quantifier) or a fuzzy percent-
age (relative quantifier). Absolute quantifiers are defined as fuzzy sets over the
nonnegative integers, while relative quantifiers are fuzzy sets over the real interval
[0,1]. A quantifier Q) is said to be coherent if it is non-decreasing and Q(0) = 0
and Q(1) = 1. The case of the evaluation with non-coherent quantifiers is very
significant for both type I and type II sentences. The only method that works with
non-coherent quantifiers is Zadeh’s method, but this method has the drawback
that it is very strict when evaluating crisp quantifiers such as ”exists” and ”all”.
These problems are suflicient to justify the search for new methods with better
properties. Nevertheless, there are other properties that are not verified by some
of the existing methods.

In our opinion, methods based on the Sugeno and the Choquet fuzzy integrals
are rather good, although they work with coherent quantifiers only. The latter is
equivalent to the method of Yager based on the OWA operator [8]. They can be
interpreted as a possibilistic and a probabilistic approach respectively. In [4] the
relation among them is studied, but none of them is preferred. One of our objectives
is to generalize these methods so that they could be used with coherent quantifiers.
Another objective is to generalize these methods to evaluate type II sentences, and
to study the relation among them in this case to find some criteria, if possible, that
could help us to choose one of the methods. Finally, we are concerned with the
design of efficient algorithms to perform the evaluation.

2 Type I sentences

2.1 Previous methods

An early method to evaluate type I sentences was introduced by Zadeh for relative
quantifiers [10] to be
p (A)>

ZQ(A) =Q (T|

where P(A) is the power of the fuzzy set A, defined as
P(A) =" A(;)
i=1

This method is strict for crisp quantifiers, in the sense defined in [6]. Basically, this
means that the evaluation is crisp for crisp quantifiers. One example is the case of
the quantifiers ”exists” and ”all”, that can be defined as

1 >0 1 z=1
3(”3){0 z=0 v("’3){0 z <1

Then, the evaluation of the sentences is

ZH(A):{(l) i ZV(A):{O ALX



A Survey of Methods to Evaluate Quantified Sentences 151

Other existing methods to evaluate type I sentences are based on the Sugeno and
the Choquet integrals, see [1]. They are not strict methods, but both of them are
restricted by definition to the case of monotonic increasing quantifiers. The Sugeno
integral based method is characterized by

So(A) = max min(Q(i/n),b;))

1<i<n

where b; is the i-th greater value of A(z;), ¢ € {1,...,n}. The evaluation according
to the Choquet integral based method is

Co(A) =Y bi x (Qi/n) — Q((i — 1)/n))
i=1

Example 2.1 shows that S¢ is not a suitable method when we are dealing with
non-coherent quantifiers. Example 2.2 shows that Cg has the same problem.

Example 2.1 Let X = {z1,29,23} and A = {1/z1 + 1/z2} and let Q(0) = 0.5,
Q(1/3) =1, Q(2/3) = 0.5 and Q(1) = 0. The quantifier Q@ can be interpreted as
Zapprozimately 1/3”. Then the evaluation of 7Q of X are A” by means of Sugeno’s
fuzzy integral is

So(A) = max{min(1, 1), min(0.5,1), min(0,0)} =1

But A is crisp, |A| = 2 and | X| = 3, so the expected result of the evaluation is
Q(2/3) =0.5.

Example 2.2 Let X and Q) be as in example 2.1, and let A = {1/x1}. Then
|A| =1, so the expected result is Q(1/3) = 1. Instead, Co(A) = 0.5.

2.2 Our methods

In [4] we introduced an extension of the method Cg, called GD, to be

GDg(A) = Z (bi — bit1) x Q(i/n)
i=0

(2

In the same paper we show that if @ is coherent, then GDg(A) = Cg(A). This
extension can be used with non-monotonic quantifiers and it has good properties.

The results obtained for the examples 2.1 and 2.2 by using G D are the expected
results (since A is crisp, the evaluation must be Q(|A|/|X]). In general, it is shown
in [6] that if A is crisp then GDg(A) = Q(JA|/|X]). Moreover, the evaluation
method is not strict, i.e., given a quantifier Q we can find a fuzzy set A such that
GDg(A) €]0,1[. This property holds even if () is crisp.

In [5] we introduced an extension called ZS of the Sugeno integral based

method, to be
. 4|
ZSq(A) =
So(4) aéﬂj\/&}a) min (a,Q ( X
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where
M(A)={ae[0,1]| Iz, € X : A(z;) = a} U {1}

We show in [5] that if @ is coherent, then ZSg(A) = Sg(A). We also show that
this method yields the expected result when A is crisp. Also, the method is not
strict.

3 Type II sentences

3.1 Previous methods

Zadeh’s method was introduced in [10] to be

Zoa/D) - (255 )

This is also an strict method in the case that @ is crisp. For example, in the case
of the quantifiers ”exists” and ”all” the evaluations are

1 DCA
0 otherwise

za/m) = {

and
0 AND=0

Z3(A/D) = { 1 otherwise

Yager introduced another method in [9] to be
YQ(A/D) = Zwici
i=1

where ¢; is the i-th largest value of membership to the fuzzy set D' U A, where D’
is the standard complement of D

w; = Q(Sz) — Q(Sz_l) i€ {1, .. .,n}

S; = ézz:ei and d:zn:ek
j=1 k=1

er being the i-th smallest value of membership to D, and Sy = 0.

This method has several drawbacks, mainly because it is defined only for co-
herent quantifiers. The following examples show two additional cases of its misbe-
havior.

Example 3.1 Let us consider A = {1/x1 4+ 0/z2} and let D = {0/z1 + 0.1/x2}.
Also let Q@ = 3. Then AN D = (§, so clearly the percentage of objects of D that
pertain to A is 0, and hence the evaluation of the sentence Q) of D are A” should
be 3(0) =0 (see [6]), but Yager’s method yields Y3(A/D) = 0.9 instead.
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Example 3.2 Let us consider A = {1/21,0.9/z2} and D = {1/21,0.5/x2}. Also
let Q(x) = z. Clearly D C A and D is normalized, so the percentage of objects
of D that pertain to A is 1, and hence the evaluation should be Q(1) =1 (see [6]
again). But instead of the expected result, Yager’s method yields Yo(A/D) = 0.93.
The same problem arises if Q =V. The expected result is V(1) = 1, but the method
yields Yy (A/D) = 0.9.

3.2 Our methods

The previous evaluation methods for type II sentences are less satisfactory than
the existing methods for type I sentences. We have generalized our methods GD
and ZS to the case of type II sentences, in order to obtain methods with better
properties.

First we introduced in [5] the method ZS for type II sentences to be

ZS80(A/D) = max min (a,Q<M)>

a€EM(A/D) | Dy |

where M(A/D) = M(AnN D) U M(D). We assume D is a normal fuzzy set.
Otherwise, we normalize D in the usual way and we apply the same normalization
factor to the fuzzy set AN D (so, at least conceptually, we are not changing the
relative cardinality of D with respect to A).

This method verifies several good properties, as we showed in [6].

e If A and D are crisp, then the expected result is obtained, i.e.

AmD)
DI

Z50(A/D) = Q (

o If D C Athen ZSg(A/D) = Q(1).

o If AND = () then ZSg(A/D) = Q(0). Because of this, the method ZS obtain
the expected values for the examples 3.1 and 3.2.

e The method yields intuitively good results when dealing with non-coherent
quantifiers.

e The method is not strict.

e Its computational complexity is O(nlogn), and the evaluation is faster and
easier than the evaluation of Yg, because Yager’s method needs to obtain the
values S; and w; previously.

Obviously, when D = X a type II sentence becomes a type I sentence. We
showed in [5] that ZSg(A/X) = ZS¢(A) in that case.

We have also obtained a generalization of the probabilistic method G D to type
IT sentences. In [6] we introduced GDg(A/D) to be

GDo(A/D) = 3 <a¢a¢+1>xc2(

a;EM(A/D)

(AN D)o
o)
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where we write M(A/D) = {a;} with 1 = a1 < ag < -+ < m < Qmy1 = 0. This
method verifies the same properties as method Z S, and hence it yields the expected
results for the examples 3.1 and 3.2. Also if D = X then GDg(A/X) = GDg(A).
Its computational complexity is O(nlogn).

We have generalized the methods Sg and Cg to the case of any quantifier,
either coherent or not, and to the case of type II sentences. In [2], Bosc and Lietard
compare both methods and they conclude that the maximum difference between
the results is 0.25. We have also shown that in the case of coherent quantifiers,
these methods verify the properties we require of any good method. So both Sg
and Cg are acceptable. Nevertheless, there are more deep differences between
their generalizations, GDg and ZSg, at least in the case of type II sentences. The
following example illustrates our claim.

Example 3.3 Let us consider A = {1/x1+0.01/z2} and D = {1/x1 + 0.99/22}.
Let Q = V. It is obvious that xo is very close to be in D, but it is very far from
being in A, so intuitively the percentage of elements of D that pertain to A should
not be 1. We obtain a value coherent with that intuition from method GD, since
GDy(A/D) = 0.02. But with ZS we obtain ZSy(A/D) = 1. As we can see, the
difference in the case of type II sentences can be very high. In fact, we can make
this difference as close to 1 as desired by decreasing A(xa) and increasing D(x2)
without reaching 0 and 1 respectively.

Example 3.3 motivates us to prefer GD to ZS. We think that ZS generates a
counterintuitive evaluation in this example because the functions ”max” and ”min”
ignore most of the information contained in A and D, while method G D takes into
account all the information (i.e. the information given by all the a-cuts of both A
and D). This case arises in the case of Sg and Cg as well, but the consequences
are smoothed because the information about the referential X is fully used by both
methods.

4 Algorithm

Our objective is to design an efficient algorithm to perform the evaluation by using
GD. The complexity of GD is O(nlogn), because we must arrange M(A/D). But
the following result allow us to design an O(n) algorithm:

Proposition 4.1 Let M+ (A/D) = M(A/D)U {a} such that o ¢ M(A/D). It is
always possible to write MY (A/D) = {83} with1 =1 > B2 > -+ > B > Bimi1 >
Bm+2 =0 and m = |M(A/D)|. Then

6DoA/D) = Y (i) x (2l

B:eMT*(A/D)

7
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Proof. Since for any oo ¢ M(A/D), oy, € M(A/D) exists such that a;, > o >
Qig+1, and Ao(i0 = A, and Dg,, = Da. Then

)-of529

> (B Bi) xQ (KA;&) =

B:EM+(A/D) 1

(AN D)a,,
o(“5

aio

and

(AN D)a,,
D

=GDq(A/D) - <(aio — Qig41) X @ (

(AN D)a,,
+ | (o, — ) X Q T

)+
>>+<m%ﬁnxQ(&i%?ﬂ>)

aio

aio

D (AN D)a,
=G Q(A/Z))* (Olio 7041‘0-5-1) X Q ‘—.0 +
(AN D)a,

Hence, we can evaluate GD by using any set of a-cuts containing M(A/D).
The results from the following proposition avoid normalizing D and A N D when
D is not normalized.

Proposition 4.2 Let nf(D) = maxg,ex D(z;). Let
M(A/D). = (M(D)UM(AN D)) - {a € M(D) | |Da| = 0}

assuming that we have not applied any normalization factor to D yet. Then

1 e (40 D0)
R

Proof. When we normalize D and A N D before calculating M(A/D), we are in
fact normalizing the values in M(A/D),. Then it is easy to show that, after the
normalization,

o

nf(D)

M(A/D) = { lo e M(A/D)*}

Also

AnDy (AN
Q( ' Da, >_Q Dif

nf(D)
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since the relative cardinality between A and D does not change when we normalize
both AN D and D. Hence

1 Z (Oéi - Oéi+1) x Q <M

nf(D) a;EM(A/D). |Dai‘
— Qi 4l (AN D)g, ) _
OéiEJWE(;/D)* <nf(D) ’I”Lf(D)) . Q < |Da@-|

_ Z ( o Oéz‘+1>XQ ‘(AHD)%‘ _

a;eM(A/D). ‘ana(im ‘
=Y (e xQ (%) ~ GDo(A/D)
a;eM(A/D) [ Do

In practice, algorithms that deal with fuzzy sets usually assume the number of
distinct membership degrees to be finite. This is a reasonable assumption that will
improve the time expended in the evaluation. However, it is needed that the set of
values provided a suitable level set in order to obtain a good representation of any
fuzzy set by means of its alpha-cuts. In designing our algorithms, we have used a
fixed number k of equidistant values as the possible membership degrees to A and
D. The possible values will be

1 2 n—1

ol
and k should ensure that the set {F, | &« € W} is a good representation of any
fuzzy set F' defined over X. We define a pair of vectors Vp and Vanp of size k.
Vb(4) and Vanp(i) store the cardinality of the sets {z; € X | D(x;) = i¢/k} and
{z; € X | (AN D)(z;) = i/k} respectively. These vectors can be calculated in
time O(n). Then, GDg(A/D) is calculated in O(k) = O(1) from the vectors by
means of algorithm 1. This last step takes advantage of proposition 4.1 because
M(A/D) C W, and hence

1 [(AN D),, )
G A = i — Qg —_—
Do(A/D) nf(D) aigW{%nf(D)] (00 = i) < @ ( | Dy,

Since a; = % then a; — ;41 = 1/k Vi € {1,...,k} and hence

. (AN D)
GDo(A/D) = 1= > (D)]Q< Do )

a; EWN]0,nf

In summary, the complexity of the evaluation is O(n).
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Algorithm 1 Algorithm to obtain GDg(A/D) from Vp and Vanp

1. j«k
GD «+ 0
nf(D)* « k
acump < 0
acumanp < 0

2. {Calculate nf(D)* =nf(D) x k
%Vhile (nf(D)*(‘ >)O) and((I/)D?nng)*) =0)

(a) nf(D)* < nf(D)" -1
3. If (nf(D)* = 0) then return(”Error”); End
4. While j >0

(a) acumanp < acumanp + Vanp(J)
(b) acump < acump + Vp(j)

(c) If (j < mf(D))
i. GD<—GD+Q(m)

acump
(d) jej—1

5. {Normalization }
GD + iy

6. return(GD); End

5 Conclusions

We have briefly reviewed some previously existing evaluation methods for type I
and type Il sentences. We have discussed on these methods from the point of view of
some intuitive properties that we think that any method should verify. We show by
means of some examples that some of the existing methods are not suitable in some
cases. An example is the case of sentences with non-coherent quantifiers. Zadeh’s
method is the only existing method that can deal with such kind of quantifiers,
but it has been shown to be very strict for the evaluation of both type I and type
IT sentences. We have developed generalizations of two good existing methods,
based on Sugeno’s and Choquet’s fuzzy integrals. These generalizations have better
properties than previous ones. Our experiments, from which we have selected 3.3
to illustrate our claim, showed that the method G'D should be preferred in general
because it takes into account all the information involved and (to our experiments),
the results are always coherent with our intuition. Finally, we have designed an
efficient algorithm that runs in O(n) time, to evaluate GD.
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