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Abstract

In this paper we propose a definition of gradual dependence as a fuzzy
association rule. Gradual dependencies represent tendencies in the variation
of the degree of fulfilment of properties in a set of objects. We define the
degree of variation of a certain imprecise property for a pair of objects as
the difference between their membership degrees to the fuzzy set defining
the property. When considering a transaction for every pair of objects and
considering items representing positive and negative variations for each prop-
erty of interest, fuzzy association rules become gradual dependencies and the
accuracy and support of the former can be employed to assess the corre-
sponding dependencies. We study the new semantics and properties of the
resulting fuzzy gradual dependence, and we propose a way to adapt exist-
ing fuzzy association rule mining algorithms for the new task of mining such
dependencies.

Keywords: Gradual dependencies; gradual rules; approximate dependen-
cies; association rules.

1 Introduction

Gradual dependencies represent tendencies in the variation of the degree of fulfil-
ment of properties in a set of objects. Mining for gradual dependencies is interesting
since they are one of the expressions that humans employ usually to describe their
knowledge in a certain field.

The first approach to the definition and assessment of gradual dependencies
was proposed in [13]. In this work, the evaluation and representation of gradual
dependencies is based on linear regression analysis. The starting point of this
approach is the idea of contingency diagram. Given two attributes X and Y, fuzzy
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sets A and B defined on X and Y, respectively, and a database D containing pairs
of values (z,y) € X XY, a contingency diagram is a two-dimensional plot of points
(A(z), B(y)) such that A(z) > 0. A gradual dependence, represented as a tendency
rule A —' B, means that “ ... an increase in A(z) comes along with an increase in
B(y)”. The validity of the rule is assessed on the basis of the regression coefficients
[, B] of the line that approximates the points in the contingency diagram (« being
the slope of the line) and the quality of the regression as given by the R? coefficient.

In practice, the variations in the membership degree considered in gradual de-
pendencies can be of two types: the more and the less, meaning that the mem-
bership degree of the first object to the considered fuzzy set is greater or lower
than the membership of the second one, respectively. Hence we can consider
four types of gradual dependencies: the more X is A, the more Y is B (ex-
pressed as (>, X, A) — (>,Y,B)), the more X is A, the less Y is B (expressed
as (>, X,A) — (<,Y, B)), and so on.

In order to illustrate this, consider for instance a database containing data about
weight and speed of a set of trucks, and consider the restrictions high related to
weight and slow related to speed, represented by means of suitable fuzzy sets on
the domains of the attributes. Examples of gradual dependencies are the higher
the weight, the lower the speed, meaning that as the weight of a truck increases, its
speed tends to decrease, and the higher the weight, the higher the speed, meaning
the opposite tendency.

An alternative, crisp approach to the definition of gradual dependence was
introduced in [6]. In this approach a gradual dependence is a rule of the form
(%1, X, A) — (x2,Y, B), with *y,% € {<,>}. The dependence holds in D iff
Y(z,y), (x',y") € D, A(x) %1 A(z') implies B(y) %2 B(y’). The discovery of such
dependencies is based on mining for association rules in a suitable set of transac-
tions obtained from the database. For that purpose we define items of the form
[>, X, A] and [<, X, A], expressing the two possible tendencies of attribute X with
respect to the restriction A, and one transaction associated to every pair of objects.
An item of the form [<, X, A] (resp. [<, X, A]) is in the transaction associated to
the pair of objects (0,0") (with values z and z’ of X respectively) iff A(z) < A(z)
(resp. A(z) > A(z’)). This way, a gradual dependence (¥, X, A) — (%2,Y, B) in
a database D corresponds to an association rule of the form [y, X, A] = [*2,Y, B|
in the corresponding set of transactions (one for each pair of objects in D). For
example, the higher the weight, the lower the speed can be expressed by the as-
sociation rule [>, Weight, High] = [>, Speed, Low]. Support and accuracy of the
rule are employed in order to measure the importance and accuracy of the gradual
dependence.

The latter has the advantage that algorithms to discover gradual rules can be
obtained by a simple modification of any (crisp) association rule discovery algo-
rithm. However, the semantics of both approaches are different since in [13] the
relation between the magnitude of variation in both variables is taken into account,
whilst in [6] only the fulfilment of the variation is considered.

In order to illustrate the difference, let us come back to our first example. Let us
suppose we have three trucks whose fulfilment of the restrictions high weight, slow
speed, and big size is shown in table 1. Let us assess the two gradual dependencies
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Truck | High weight | Slow speed | Big size
t1 0.2 0.2 0.2
ta 0.5 0.25 0.6
t3 0.8 0.3 1

Table 1: Membership degrees of high weight, slow speed, and big size for three
trucks
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Figure 1: Contingency diagrams for the gradual dependencies the higher the weight,
the lower the speed and the higher the weight, the bigger the size from the data in
table 1

the higher the weight, the lower the speed and the higher the weight, the bigger the
size using the approaches in [13] and [6]. Using [6], both dependencies hold with
total accuracy since every time a truck is heavier than another, it is slower and
bigger. For this approach, both dependencies hold to the same degree. However,
if we look at the contingency diagrams for both dependencies (figure 1), it can
be seen that the slope of the regression line for the dependence the higher the
weight, the lower the speed (the parameters of the regression line are approximately
[0.167,0.167]) is smaller than for the dependence the higher the weight, the bigger
the size (approximately [1.3, —0.67]). In both cases, clearly, the regression line fits
perfectly the points in the contingency diagrams, so the quality of the regression
is R?> = 1. Hence the second dependence is stronger than the first one.

In this paper we propose an extension to the approach in [6] that incorporates
the magnitude of variation in the degree of fulfilment of the restrictions in both
variables, with the objective of detecting the strength of the dependence in cases like
the example above. The new approach is based on the concept of fuzzy association
rule, and it is related to previous work about the discovery of fuzzy approximate
dependencies [4]. We also explore the relationship to the approach in [13], both
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from a theoretical and an experimental point of view.

The paper is organized as follows: in section 2 we briefly recall a previous
approach to gradual dependencies and we extend it by considering membership
variation and fuzzy association rules. In section 3 we introduce the particular case
of fuzzy gradual dependencies generated by the approach to fuzzy association rules
in [9]. Section 4 is devoted to mining issues and to show some experiments. Finally,
section 5 contains our conclusions and future research.

2 Gradual dependencies with variation strength

In this section we extend our definition of gradual dependence [6] in order to incor-
porate variation strength in the assessment. First we briefly recall the definition in
[6]. Then we define the concept of variation, and use it to extend the definition in
[6] by using fuzzy association rules.

2.1 Our previous approach

In [6], a gradual dependence is defined as follows: let X and Y be two attributes, A
and B fuzzy sets defined on the domains of X and Y, respectively, and a database
D containing pairs of values (x,y) € X x Y. Let %1,%3 € {<,>}. A gradual
dependence of the form (1, X, A) — (x2,Y, B) holds in D iff V(x,y), (',y’) € D,
A(z) %1 A(z') implies B(y) *2 B(y').

This way, a gradual dependence is seen as a rule on a dataset consisting of
pairs of objects of the original database. Hence, we use association rules in order
to assess gradual dependencies in a database. As it is well known, given a set
I of items and a bag T of transactions with ¢t C I V¢ € T, an association rule
is an expression of the form Iy = I, with I1,Io C I, 1 NI, = @ [1]. This
rule is said to hold in 7' iff every transaction that contains I; contains also I.
The usual measures are support and confidence, the former being the number or
percentage of transactions containing I1 U I, and the latter being the percentage
of transactions containing Iy that contain I>. Many other measures have been
proposed, see for example [7, 20, 5, 12]. In this paper we shall employ Shortliffe
and Buchanan’s certainty factors, as proposed in [5]. Let supp(I;) be the support of
the itemset I; and let supp(l; = I2) = supp(I1 UI2) be the support of the rule. Let
conf(ly = Is) = supp(l1 = I2)/supp(l1) be the confidence. The certainty factor
of the rule, CF(I; = I5), is defined in equation 1.

conf(?_ii;;?f:)pp(b) conf(I = Iz) > supp(I)

CF(I; = I) = (1)

conf(hz;;zl—;)upp(h) conf(Iy = Iz) < supp(I)

The certainty factor yields a value in [—1, 1] and measures how our belief that I5
is in a transaction changes when we are told that I; is in that transaction. Positive
values indicate our belief increases, negative values mean our belief decreases, and
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0 means no change. Certainty factors have better properties than confidence, and
help to solve some of its inconveniences. In particular, it helps to reduce the number
of rules obtained by eliminating those rules that correspond in fact to statistical
independence or negative dependence (up to 80 % in some of our experiments).
This is shown, among other properties of certainty factors as accuracy measures for
association rules, in [5]. Finally, let us remark that the calculation of the certainty
factor in the final step of any association rule mining algorithm is straightforward
and does not modify the time complexity of the algorithm, since support of the
consequent and support and confidence of the rule are all available in this step.

We employ association rules in order to mine for gradual dependencies as fol-
lows: let GIP? = {[>, X, A],[<,X,A],[>,Y,B],[<,Y,B]} be a set of items and
GTP be a set of transactions containing items from GIP. GTP is obtained from
D as follows: V o = (x,%),0’ = (2/,y") € D there is one transaction gt,, € GTP
such that [+, X, A] € gtoo iff A(x)* A(x’) and [*,Y, B] € gtoo iff B(y)* B(y'), with
* € {<,>}. Let us remark that GT™ is a crisp set of transactions. Then, the grad-
ual dependence (x1, X, A) — (*2,Y, B) holds in D iff the (crisp) association rule
[¥1, X, A] = [*2,Y, B] holds in GT'P. The support and confidence of the associa-
tion rule [x1, X, A] = [*2,Y, B] can be employed to assess the gradual dependence
(x1, X, A) — (x2,Y, B). We usually employ support and certainty factor.

Let us remark that with this approach, the support of an item of the form
[, X, A] is

[{gtoor € GTP | A(z) x A(2')}|
|GTP|
and hence the support of a dependence (x1, X, A) — (9,Y, B), that we denote

supp((x1, X, A) — (%2,Y, B)), is the support of the itemset {[x1, X, A], [*2,Y, B]},
defined as in equation 3.

supp([, X, A]) = (2)

[{gtoor € GTP | A(z) %1 A(z') A B(y) *2 B(y') }|
|GTP]

Supp((*laXa A) (*Q’Y B)
(3)

Some important and intuitive properties of this approach are the following: let
¢ be an operator in {>, <} such that ¢(>) =< and ¢(<) =>. Then

Supp({[*lelvAl]v IR [*kvXk7Ak]}) = Supp({[c(*1)7leA1]v ) [C(*k)7kaAk]})

(in particular supp([*, X, 4]) = supp([c(*), X, 4])). As a consequence,
supp((*1, X, A) — (¥2,Y, B)) = supp((c(+1), X, A) (¢(*2),Y, B)), and the same
happens with confidence and certainty factor.

2.2 Membership variation

In the previous approach, only the fact that the membership degree is greater (or
lesser) is taken into account. This way, the membership of the item [, X, A] in
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a transaction gt,, € GTP corresponding to a pair o = (x,y),0 = (2/,y') € D is
defined as in equation 4.

1 A(z) = A(z")

gtoor ([¥, X, A]) = { 0 otherwise @

With this definition, A(z) = 0 and A(z’) = 0.1 yield the same result than
A(z) =0 and A(z’) = 1. However, as we saw in the introduction, this can lead to
obtain the same accuracy for dependencies that are intuitively different.

In order to avoid this problem, we propose to replace equation 4 by another
expression that provides a degree in [0,1]. We call this a variation degree. This
way, gtoo ([*, X, A]) € ]0,1].

There are different possibilities to obtain the degree gt,o ([*, X, A]). In this
paper we propose to employ that of equation 5:

gtoo’([*va A]) = ’U*(A(.%'),A(.%'/)) (5)

where | |
a—>bl axb
ve(a,b) = { 0 otherwise (6)

o = (0.1,y"), and 0" = (1,4”). Then,
= »gtO/O”([<7X7A]) = 0.9, gto/o([<7XaA])

As an example, let 0o = (0,y),
gtoo/([<»X»A]) :0-1agtoo”([<vaA]) 1
= Gtoro([<, X, A]) = ghory (<, X, A]) = 0.

The following proposition holds:

Proposition 2.1 Egquation 5 verifies
1. gtoor ([*, X, A]) € [0,1]

2. Suppouse A(zx)*A(x') and A(x)xA(x"). Then|A(x) — A(z")] > |A(x) — A(z"))
implies gtoo ([, X, A]) > gtoor ([, X, A])

3. gtoo ([*, X, A]) = gtoro([c(*), X, Al)

Proof: Trivial. O
We consider that the properties in proposition 2.1 must be verified by the
variation degree, despite the way it is calculated.

2.3 A new approach to gradual dependencies

Taking variation degrees into account, we propose a new definition of gradual de-
pendence as a modification of our definition in [6], as follows:

Definition 2.1 Let X and Y be two attributes, A and B fuzzy sets defined on
the domains of X and Y, respectively, and a database D containing pairs of val-
ues (x,y) € X xY. Let x1,%2 € {<,>}. A gradual dependence of the form
(1, X, A) — (x2,Y, B) holds in D iff Vo,0o' € D with o = (x,y) and o’ = (z',y'),
vy, (A(2), A(2')) implies vy, (B(y), B(y')).
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where v, is that of equation 6. Let us remark that the implication that appears
in this definition is a fuzzy implication. This has two main consequences: first, there
are in fact different definitions of gradual dependence, depending on the implication
considered. Second, a gradual dependence holds to a certain degree. Hence, we are
working in fact with fuzzy gradual dependencies.

Now, we can extend our interpretation of gradual dependencies as association
rules in [6] in order to consider the variation degree of items. A natural way to
extend our first approach is to consider fuzzy association rules. There are many
different approaches to the definition and assessment of fuzzy association rules. In
general, the different extensions take as starting point, in one way or another, a
generalization of transactions to fuzzy transactions as fuzzy subsets of items. The
main difference between the different existing approaches is the way they assess
the rules (see among others [15, 9, 21, 11]).

Using fuzzy association rules is natural in our case since each item has a mem-
bership degree to each transaction, so we have in fact a set of fuzzy transactions,
i.e., fuzzy subsets of items. However, let us remark that since there is no a single
definition of fuzzy gradual dependence, the approach employed for mining the fuzzy
rules will define, in practice, a particular type of fuzzy gradual dependence.

Let GI? = {[>, X, A],[<, X, A],[>,Y, B],[<,Y, B]} be a set of items and GT?
be a set of fuzzy transactions containing items from GIP. GTP is obtained from D
as follows: ¥ 0 = (z,y),0 = (2',y') € D there is one fuzzy transaction gt,, € GT?
such that gtoo ([*, X, A]) = vi(A(x), A(2')) and gtos ([*, Y, B]) = v.(B(y), B(y')),
with * € {<, >}.

Since a fuzzy association rule defines a special kind of fuzzy implication between
the degrees of antecedent and consequent, we can conclude the following:

Proposition 2.2 A fuzzy association rule [x1, X, A] = [#2,Y, B] in GTP defines
a fuzzy gradual dependence (%1, X, A) — (x2,Y, B) in D.

i.e., fuzzy association rules in GTP define some particular types of fuzzy gradual
dependencies in D.

Following proposition 2.2, the support and confidence (or other accuracy mea-
sures) of the fuzzy association rule [x1, X, A] = [*2,Y, B] can be employed to assess
a particular type of fuzzy gradual dependence (1, X, A) — (x9,Y, B).

3 A particular definition of fuzzy gradual depen-
dence

As we have seen, there are many possible ways to define fuzzy gradual dependencies,
in particular starting from an specific approach to fuzzy association rules. In this
paper we shall employ the approach to fuzzy association rules introduced in [9] to
obtain a particular definition of fuzzy gradual dependence.
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3.1 Our approach to fuzzy association rules

In [9], fuzzy association rules are defined and assessed as follows: let I = {i1,...,im}
be a set of items and 1" be a set of fuzzy transactions, where each fuzzy transaction
is a fuzzy subset of I. For every fuzzy transaction 7 € T we note 7(iz,) the member-
ship degree of i) in 7. For an itemset Iy we note 7(ly) = miny, ¢z, 7(ix) the degree
to which Iy is in a transaction 7. A fuzzy association rule is an implication of the
form I; = I such that I1,Io C I and I; NI, = (. Notice that this is the same
definition of a crisp association rule since, from the structural point of view, there
is no difference. The difference is that for fuzzy rules the starting point is a set
of fuzzy transactions, and the problem is how to assess the support and accuracy.
Strictly speaking, what we call fuzzy association rules are association rules assessed
on fuzzy transactions.

We call representation of the item iz, noted I';,, to the (fuzzy) set of transactions
where 75 appears, defined as in equation 7. This representation can be extended
to itemsets as in equation 8.

Ly (7) = 7(ik) (7)
Ly (7) = min Ty, (7) = min 7(ix) = 7(Io) (8)

In order to measure the interest and accuracy of a fuzzy association rule, we
employ a semantic approach based on the evaluation of quantified sentences, using
the fuzzy quantifier Qs (x) = x, as follows:

e The support of an itemset /o is the evaluation of the quantified sentence ()
of T are I'y,.

e The support of the fuzzy association rule Iy = I in T~, Supp(ly = 1), is
the evaluation of the quantified sentence Qs of 1" are I'r,ur, = Q) of T" are
(Fh N FIz )

e The confidence of the fuzzy association rule Iy = I inj”, Conf(l = I5), is
the evaluation of the quantified sentence @ of I'y, are I'f,.

e The certainty factor is obtained from support and confidence using equation
1.

We evaluate a quantified sentence of the form @ of F' are G by means of method
GD, defined in [10] as

GDo(G/F)= ) (ai—aiH)Q(%)

a, EA(G/F)

where A(G/F) = A(GNF)UA(F), A(F) being the level set of F, and A(G/F) =

{a1,...,p} with a; > 41 for every i € {1,...,p — 1}, and considering a1 = 0.

The set F' is assumed to be normalized. If not, F' is normalized and the same
normalization factor is applied to G N F.

9)
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It is possible to employ different fuzzy quantifiers, provided they verify certain
properties [9]. We employ the quantifier Qs since the resulting approach is a
generalization of the ordinary association rule assessment framework in the crisp
case (i.e., if the set of transactions is crisp, the measures described above yield the
ordinary measures for support, confidence, and certainty factor). This is true only
for Qps. Other important properties defining the semantics of this proposal are
those of equations 10 and 11.

Conf(ly = I) = 1iff #(I)) <7(I,) V7 €T (10)

3.2 Fuzzy gradual dependence

Following the approach in the previous section, and using the quantifier Qs (z) = z,
a fuzzy gradual dependence (%1, X, A) — (x2,Y, B) in D is a fuzzy association rule
[%1,X,A] = [#2,Y,B] in GTP that holds with support and confidence given by
equations 12 and 13, where f[*h x,4] is a fuzzy subset of transactions such that
Ty x.41(gtoor) = gtoor ([¥1, X, A]) (similar for T, y.p)) and the a; correspond to
the union of the level sets of the fuzzy sets involved, arranged in decreasing order
(in equation 13, f[*l, x,4] must be normalized, otherwise we should normalize it first
and apply the same factor to the intersection f‘[*h x,4] N f‘[*%yy B]). The certainty
factor is obtained as in equation 1.

supp([*1, X, A] = [*2,Y, B]) =

‘ (f‘[*lvfo] N f‘[*%YvB])a‘ ‘
= Z (O[Z‘ — Oli—i-l) |G’T£ (12)

Oli,eA((f\[*LX./\]ﬂf\[*zK /;])/éT'D)

conf([x1,X, Al = [*2,Y, B]) =

‘ (f‘[*hX,A] N f[*g,xB]) o ‘

= Z (a; — aiy1)

(13)
aieA(f[*l,X,A]/f[*Q,Y,B]) ‘ (F[*l,X,A]>a‘

The following properties from the approach in [6] keep holding:

Proposition 3.1 Let ¢ be an operator in {>, <} such that ¢(>) =< and ¢(<) =>.
Then, supp([*, X, A]) = supp([c(x), X, A]).

Proof: By proposition 2.1, gt,o([*, X, A]) = gtoro(lc(x), X, A]) for every pair o =
(x,y), o' = («',y’). Hence,

A (f[*,xA]/GTD) =A (f[c(*)7X,A]/éTD>
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and Vo

(F[%X,A]> @ ‘ = (F[C(*)aX7A]> @ ‘
so supp([*, X, A]) = supp([c(x), X, A4]). O
Proposition 3.2 The generalization to itemsets hold as well, so it holds that
supp({[*1, Xla Al]a ceey [*ka Xka Ak]}) = supp({[c(*l), le Al]a ey [c(*k)v Xk» Ak]})
Proof: Same as proposition 3.1. O

Corollary 3.1 It follows that:
Supp([*lv Xv A] = [*27 Yv B]) = Supp([c(*l)v Xv A] = [C(*2)7 Yv B])?
CO’I’Lf([*l, Xv A] = [*27 Yv B]) = CO’I’Lf([C(*l), Xv A] = [C(*Q)v Y» B])’
CF([*1,X,A] = [*2,Y, B]) = CF([e(*1), X, A] = [e(*2),Y, B]) .

This last corollary implies that in order to assess all the possible gradual de-
pendencies involving only items of the form [x1, X, A] and [*2,Y, B] it is enough to
measure support and accuracy for [<, X, A] = [<,Y, B] and [<, X, A] = [>,Y, B].

The following propositions allow us to provide an interpretation of the semantics
of our fuzzy gradual dependence and some relation to the approach in [13]:

Proposition 3.3 conf([x1,X,A] = [x,Y,B]) = 1 iff v, (A(x),A(z")) <
Vs, (B(y), B(y')) Yo,0' € D

Proof:  vs, (A(z), A(2")) < v (B(y), B(y')) Vo,0' € D iff gtoo([x1,X,A]) <
Gtoo ([*2,Y, B]) Ygt,o GTP. By equation 10, this is true iff conf([*1, X, A] =
42,7, B]) = 1. O
Proposition 3.4 CF([+1,X,A] = [+,Y,B]) = 1 iff v (A(x),A(x")) <
s, (B(y), B(y')) Vo,0" € D

Proof: Immediate by proposition 3.3 and equation 11. 0

Proposition 3.5 If CF([x1, X, A] = [*2,Y, B]) = 1 then A —! Bla, 3] holds with
la| > 1.

Proof: Let us consider first the dependence [<, X, A] = [<,Y, B]. If CF([<, X, A] =
[<,Y, B]) = 1 then by proposition 3.4, v (A(zx), A(z")) < v<(B(y), B(y")) Vo,0' €
D. As a consequence, A(x) < A(x’) implies A(z') — A(z) < B(y') — B(y), i.e.,
(B(y") — B(y))/(A(z") — A(z)) > 1. Therefore, the slope of all the lines linking
pairs of points in the contingency diagram is greater or equal than 1 (no points with
membership 0 are considered in the diagram). Hence, the slope of the regression
line for all the points is greater or equal than 1.

The proof is similar for the rule [<, X, A] = [>,Y, B], but yielding (B(y') —
B(y))/(A(z") — A(z)) < —1 and hence a slope for the regression line less or equal
than -1. Hence, we have covered all the possibilities and |a| > 1. O
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Rule supp | conf | CF [[ « [¢] R?
(>, Weight, High) — (>, Speed, Low) || 0.33 | 0,1 | 0,06 || 0.167 | 0.167 | 1
(>, Weight, High) — (>, Size, Big) 0.2 1 1 1.3 -0.67 |1

Table 2: Assessment of the gradual dependencies of the example in the introduction
using our new approach and that in [13] (values are approximate)

It is easy to show that the reciprocal of proposition 3.5 holds when R? = 1, but
cannot be guaranteed otherwise.

In order to illustrate these results, let us come back to the example in the
introduction. The assessment of the rules (approximate values) is shown in table
2. As expected, the new approach takes into account the variation membership
and, instead of yielding two dependencies with confidence and certainty factor
equal to one, only in the second case this happens. In fact, the first one has a
very low accuracy. Let us remark also that for the second dependence, confidence
and certainty factor are one and, at the same time, the slope of the corresponding
regression line is greater than 1 (as expected since R? = 1).

4 Mining gradual dependencies

4.1 Algorithm

In general, the problem we face is that of mining gradual dependencies as associ-
ation rules in a database D containing a description of a set of objects in terms
of a set of attributes {Xi,...,X,,}. For each attribute X; we have a set of n;
fuzzy restrictions defined by fuzzy sets { A1, ..., Ain, }. We consider a set of items
GIP = {[x,X;, Aj;]} with x € {<,>}, i € {1,...,m}, and j € {1,...,n;}. We
shall also consider a bag of fuzzy transactions GTP containing items of GI?, and
obtained from D as explained in previous sections. Finally, we impose an usual
restriction on the rules: no pair of items appearing in the left or right part of a
rule can share the same attribute.

A first approach to solve the problem of mining gradual dependencies would
be simply to build the set GTP of transactions and to apply any of the existing
algorithms for mining fuzzy association rules. As it is well known, most of the
existing algorithms work in two steps: the first one (the most computationally
expensive) is to discover the frequent itemsets, i.e., those with support above a
minimum user-defined threshold. In the second one, and starting from the frequent
itemsets, those rules with enough accuracy are obtained.

The complexity of the second step is not modified as it depends on the number
of frequent itemsets, and is not affected by the calculation of the certainty factor.
However, the main inconvenience of this approach in our problem is the complexity
of discovering the frequent itemsets with respect to the number of objects: while
finding frequent itemsets in D has a complexity O(n) in the number of objects
(multiplied by another factors related to number of items and other, depending on
the algorithm), finding frequent itemsets in GT'P has a complexity O(n?).
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This problem can be solved to a certain extent by considering a fixed number k
of equidistributed levels (degrees) in the definition of the fuzzy sets. In [6] we pro-
posed a solution for the approach presented in that paper (using crisp association
rules). With that solution, the complexity of finding the support of itemsets of
size p is n + kP. The extent to which this solution is good depends on the relation
between n? and kP.

We have developed algorithms based on similar principles for the discovery of
fuzzy association rules [9] and fuzzy approximate dependencies [4]. Taking ideas
from all these algorithms, we propose algorithm 1 in order to obtain the support of
itemsets for mining fuzzy gradual dependencies. Its complexity is O(n+ pk{p+2)).
Again, this solution is good to the extent that pkP*™2 < n?2.

4.2 Experimental results

The following section is devoted to the description of the data sources employed in
our experimentation as well as the discussion of results.

4.2.1 Soil database

We applied our techniques on a database containing soil information from the
South and Southeast of the Iberian Peninsula under Mediterranean climate: Sierra
Nevada, Sierra of Gddor and Southeast (involving part of the provinces of Murcia
and Almeria). Data was extracted from two Ph.D. Thesis and five cartographic
sheets from LUCDEME, scale 1:100000 ([16], [8], [3], [17], [2], [18] and [19]). This
database includes, among others, numeric attributes describing soil features as
average temperature, raining and altitude, PH, and percentages of clay, sand, and
chemical components in soil. The underlying numeric domain was fuzzified into a
set of linguistic labels, { High, Medium, Low}, according to expert criteria.

Both crisp and fuzzy gradual dependencies were computed. Table 3 shows
some of the most interesting rules involving only one attribute as antecedent and
as consequent, according to a certainty factor threshold (CF > 0.60), fixed by the
experts. For each rule, support (in %) and CF are shown, in both cases, crisp and
fuzzy. For this particular case, both crisp and fuzzy results seem to be similar,
nonetheless, support for fuzzy gradual dependencies use to be higher than in the
crisp case, allowing a higher number of rules to be extracted.

Additionally, table 4 shows those fuzzy rules with a higher certainty factor,
involving two items in the antecedent. In both tables, 3 and 4, for summarizing
reasons, operator * stands for operator > (resp. <), as well as operator C'(x) stands
for < (resp. >).

Some interesting relations can be seen in table 3. Let us pay attention, for
example, to the relation "The more the average temperature is Low, the more the
average altitude is High’ (rule #2) that holds with a CF over 0.9, and looks clearly
reasonable.

Also, a clear opposite relation between average temperature and average rainfall
can be seen in rules #1, #7 and #14, as the lower the former the higher the latter
(and viceversa).
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Algorithm 1 Algorithm for measuring the support of itemsets for mining fuzzy
gradual dependencies

LVIKxKx.xK)=0

2: 9« 1
3: while i < p do

4 V(I_Al(xz) X KJ» |_A2(331) X KJa-'-v I_Ap(xz) X KJ) ++
5: end while

6: Supp — 0

71— k

8 while i > 0 do

9 e_l)em «—0

10: j <0

11:  d+«1

12: whiled >0 do

13: J(d) ++

14: if j(d) > K then

15: jld) <0

16: d—d-1

17: elseif d = K then_>

18: elem «—elemV(j)x V(§(l)+1i,....,5(N) +1)
19: n 1

20: while n < K do

21: l—1

22: while [ < p do

23: m — (j(1) +i,..., (p) + 1)
24: h—1

25: while h > 0 do

26: m(h) + +

27: if m(h) > K then
28: m(h) < j(h) —1
29: h«h-1

30: if h =1 then
31: h«—h-1

32: end if

33: else if h = p then
34: elem «— elem + V(?) x V(m)
35: else

36: h—h-+1

37: if h =1 then
38: h—h+1

39: end if

40: end if

41: end while

42: end while

43: n—n-+1

44: end while

45: else

46: d—d+1

AT: end if

48:  end while

49:  Supp « Supp U {4 /elem}
50: 1 — 10— 1

51: end while 5
52: return GDg(Supp/GT )
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Crisp Fuzzy
Rule s(%) CF s(%) CF
[*, AvgTemp, ‘Low’] — [* AvgRainfall, ‘High’] 6.023 | 0.974 8.727 | 0.907
[*, AvgTemp, ‘Low’] — [* AvgAltitude, ‘High’] 5.796 | 0.931 8.754 | 0.904
[*, PH, ‘Low’] — [* AvgRainfall, ‘High’] 2.332 | 0.796 4.403 | 0.773

[*, AvgRainfall, ‘High’] — [*, AvgAltitude, ‘High’] | 7.860 | 0.874 9.025 | 0.765
[*, AvgAltitude, ‘Low’] — [*, AvgRainfall, ‘Low’] 7.073 | 0.748 | 18.394 | 0.754

[*, PH, ‘Tow] — [*, Avglemp, ‘Low’] 2.021 | 0.686 | 4.303 | 0.749
[*, AvgRainfall, ‘High’] — [*, AvgTemp, ‘Low’] 6.023 | 0.660 8.727 | 0.741
[, PH, ‘Tow] — [%, AvgAltitude, ‘High’] 2.199 | 0.736 | 4.118 | 0.700
[* FE, ‘High] — [% % Sand, ‘Low’] 1.602 | 0503 | 7.776 | 0.701
[*, AvgTemp, ‘High’] — [*, AvgRainfall, ‘Low’] 5.344 | 0.624 | 18.336 | 0.693

, AvgRainfall, ed. — , AvgTemp, ed. . 420 0.222 .6
* AvgRainfall, ‘Med.’ * AvgT ‘Med.”’, 1.014 | 0.4 10.22 0.683
[*, AvgAltitude, ‘Med.”] — [*, AvgTemp, ‘Med.’] 1.825 | 0.529 9.454 | 0.682
, AvgRainfall, ‘Low’] — , AvgAltitude, ‘Low . . . .
* AvgRainfall, ‘Low’ * AvgAltitude, ‘Low’ 7.073 | 0.539 | 18.394 | 0.659

[*, AvgRainfall, ‘Low’] — [*, AvgTemp, ‘High’] 5.344 | 0.390 | 18.336 | 0.656
[*, % Clay, ‘High’] — [*, % Sand, ‘Low’] 3.216 | 0.573 4.848 | 0.640
[*, % Sand, ‘High’] — [* % Clay, ‘Low’] 7.790 | 0.540 | 12.537 | 0.613
¥, AvgRainfall, ‘High'] — [C(*), PH, ‘High’] 6.333 | 0.629 | 7.858 | 0.601

Table 3: (Fuzzy) Gradual Dependencies from Soil databases (Fuzzy CF > 0.60)

Rule supp.(%) CF
[[*, AvgRainfall, ‘Med.’], [*, AvgTemp, ‘Low’]] — [*, AvgAltitude, ‘High'] 0.177 | 0.995
[[C(*), AvgRainfall, ‘Low’], [C(¥), Fe, ‘Low’]] — [C(*), AvgTemp, ‘High’'] 0.421 | 0.995
[[C(*), AvgTemp, ‘Low’], [*, % Clay, ‘High’]] — [C(¥), AvgRainfall, ‘High’] 0.698 | 0.994
[[*, AvgRainfall, ‘Med.’], [C(*), AvgAltitude, ‘High’]] — [*, AvgTemp, ‘Med.’] 1.487 | 0.993
[[C(*), AvgTemp, ‘Low’], [C(¥), Carbonates, ‘High’]] — [C(*), AvgRainfall, ‘High’] 0.129 | 0.993
[[*, AvgTemp, ‘Low’], [*, AvgAltitude, ‘Med.’]] — [*, AvgRainfall, ‘High’] 0.145 | 0.992

Table 4: Fuzzy Gradual Dependencies involving two itemsets in the antecedent
(soil data)

Finally, a similar opposite relation can be found between percentages of sand
and clay (rules #16 and #17), a fact that experts can explain as it is easier to find
a higher percentage of clay than of sand in wet soils, and viceversa, it is easier to
have a higher percentage of sand than of clay in dry soils.

For the rules of table 3, we have computed the regression parameters a, (3
and R? according to [13]. The results are shown in table 5. However, we cannot
compare the results from our approach with the one proposed in [13] because most
of the gradual dependencies do not have a high enough value of R? to consider [a, ]
representative (only 76 gradual dependencies have R? > 0.5). Lineal regression is
not able to fit well to the data dispersion in this situation.

Keeping in mind this fact, if we only consider the gradual dependencies when
R? > 0 (figure 2) we can appreciate that for CF values near zero, o values are near
this point. Elsewhere in the range of alpha values are more scattered, although
there is some tendency to increase along with CF when it presents values greater
than 0.5. In the case of R? the behavior is very similar (figure 3).
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Figure 2: « values and associated CF when R? > 0

Figure 3: R? values and associated CF when R? > 0
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Rule o 38 R?
[*, AvgTemp, ‘Low’] — [*, AvgRainfall, ‘High’] 0.459 | 0.623 | 0.541
[*, AvgTemp, ‘Low’] — [*, AvgAltitude, ‘High’] 0.601 0.477 | 0.736
[*, PH, ‘Low’] — [*, AvgRainfall, ‘High’] 0.732 | 0.184 | 0.879

[*, AvgRainfall, ‘High’] — [*, AvgAltitude, ‘High’] | -0.741 1.767 | -3.408
[*, AvgAltitude, ‘Low’] — [*, AvgRainfall, ‘Low’] 0.631 0.389 | 0.773

[*, PH, ‘Low’] — [*, AvgTemp, ‘Low’] 0.549 | 0.365 | 0.752
[*, AvgRainfall, ‘High’] — [*, AvgTemp, ‘Low’] -0.678 1.610 | -3.367
[*, PH, ‘Low’] — [* AvgAltitude, ‘High’] 0.602 | 0.364 | 0.739
[* FE, ‘High’] — [% % Sand, Low’] 0.469 | 0.539 | 0.606
[*, AvgTemp, ‘High’] — [*, AvgRainfall, ‘Low’] 0.495 [ 0.466 | 0.665

[*, AvgRainfall, ‘Med.’] — [*, AvgTemp, ‘Med.’] 0.446 | 0.543 | 0.483
[*, AvgAltitude, ‘Med.’] — [*, AvgTemp, ‘Med.’] 0.373 | 0.632 | 0.212
[*, AvgRainfall, ‘Low’] — [*, AvgAltitude, ‘Low’] -0.021 | 0.868 | -0.391

[*, AvgRainfall, ‘Low’] — [*, AvgTemp, ‘High’] 0.303 | 0.523 | 0.415
[*, % Clay, ‘High’] — [*, % Sand, ‘Low’] 0.710 | 0.244 | 0.758
[*, % Sand, ‘High’] — [*, % Clay, ‘Low’] 0.366 | 0.606 | 0.440
[*, AvgRainfall, ‘High’] — [C(*), PH, ‘High’| 0.562 | -0.601 | -1.833

Table 5: Regression parameters following the approach in [13] for the Gradual
Dependencies in table 3

4.2.2 STULONG database

On the other hand, we have employed as data source a medical database, avail-
able for these data mining purposes. The study (STULONG) was realized at the
2nd Department of Medicine, 1st Faculty of Medicine of Charles University and
Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M. Ascher-
mann, MD, SDr, FESC), under the supervision of Prof. F. Boudik, MD, ScD, with
collaboration of M. Tomeckovd, MD, PhD and Ass. Prof. J. Bultas, MD, PhD.
The data were transferred to electronic form by the European Center of Medical
Informatics, Statistics and Epidemiology of Charles University and Academy of
Sciences (head. Prof. RNDr. J. Zvérova, DrSc). The data resource is on the web
pages http://euromise.vse.cz/challenge2003. At present time the data analysis is
supported by the grant of the Ministry of Education CR Nr LN 00B 107.

The STULONG database includes a twenty years lasting longitudinal study of
the risk factors of the atherosclerosis in a population of 1417 middle aged men. It
consists of several data files, but we have centered on only one of them, named
Entry, which contains information obtained from entry examinations. The whole
set of attributes describes Social characteristics, Physical activity, Smoking and
Drinking habits, Physical examination, Biochemical examination, and Risk factors,
among others.

Categorical attributes were unchanged, but, as in the previous case, we fuzzified
numeric attributes, defining again a set of linguistic labels, { High, Medium, Low}.
In order to accomplish this, we discretized the numeric domains into sets of equi-
depth intervals (see [14] for further explanations on the procedure), which were later
transformed into fuzzy sets, as trapezoidal distributions, relaxing the boundaries
between them.

For this data source, we reduced the experimental results to fuzzy gradual
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dependencies only. Tables 6 and 7 shows several gradual dependencies obtained
from this dataset. For space saving purposes, we have included only those rules
with CF > 0.60. Again, we note * instead of < (resp. >) and C(*) instead of >
(resp. <).

We can observe some totally accurate (CF = 1) gradual dependencies, as be-
tween attributes Intensity of Smoking and How Long have been Smoking. In gen-
eral, most of the rules shown in the table seem to be reasonable as, for example,
those relating drinking habits with the quantity of beverage (wine, liquor).

Also, it seems to appear a direct relation between the different types of blood
pressure (I and II, and systolic and diastolic), as the variation in one attribute
is closely related to the variation, in the same direction, in the other attribute.
Anyway, a further and deeper study, involving additional techniques, should be
necessary to gain more information, as for this particular case, gradual dependen-
cies act as an exploratory technique.

Rule supp.(%) CF
, IntensOfSmoking, "Hig — [*, HowLongSmoking, 'Hig . .
* 1 OfSmoksi ’High’ *, HowLongSmoki "High’ 19.723 | 1.000
[*, BloodPressIIDiast, ‘High’] — [*, BloodPressIDiast, ‘High’] 11.156 | 0.766
[*, BloodPressISyst, ‘Low’] — [*, BloodPressIISyst, 'Low’] 17.743 | 0.718
[*, BloodPressIDiast, ‘High’] — [*, BloodPressIIDiast, ‘High’] 11.156 | 0.703
[*, BloodPressISyst, ‘High’] — [*, BloodPressIISyst, ‘High’] 13.832 | 0.702
[*, BloodPressIIDiast, ‘Low’] — [*, BloodPressIDiast, ‘Low’] 19.076 | 0.686
, BloodPressIDiast, ‘Low’] — , BloodPresslIDiast, ‘Low . .
*, BloodP 1D, ‘Low’, *, Blood P! 11D ‘Low’ 19.076 | 0.686
[*, BloodPressIISyst, ‘Low’] — [*, BloodPressISyst, 'Low’] 17.743 | 0.664
[*, BloodPressIDiast, ‘High’] — [*, BloodPressISyst, 'High’] 10.241 | 0.614

Table 6: Fuzzy Gradual Dependencies from STULONG data (CF > 0.60)

Rule supp-(%) CF
J[C(%), BloodPressISyst, ‘Low’], [O(*), BloodPresslIDiast, ‘Low’]] — [C(*), BloodPresslISyst, ‘Low’] 11.771 | 0.877

essIDiast, ‘Low’], [%, BloodPressIISyst, ‘Low']] — [%, BloodPressiTDiast, ‘Low’| 12.232 | 0.847

oss1Syst, ‘Low’], [*, BloodPressliDiast, ‘Low’]] — %, BloodPressDiast, ‘Low’] 11.195 | 0.816
I[*, BloodPressIDiast, ‘Low’], [O(*), BloodPressIISyst, ‘High’]] — [% BloodPressiIDiast, ‘Low’] 10.001 | 0.806
J[C(%), BloodPressISyst, ‘Low’], [C(*), BloodPresslDiast, ‘Low’]] — [C(*), BloodPressIISyst, ‘Low’] 11.437 | 0.800
I[¥, BloodPressIISyst, ‘High’], [O(*), BloodPresslIDiast, ‘Low’]] — [C(*), BloodPressIDiast, ‘Low’] 10.001 | 0.799
I[*, BloodPressIDiast, ‘Low’], |%, BloodPressiISyst, ‘Low’]] — [%, BloodPressISyst, ‘Low’] 11.437 | 0.778
J[C(*), BloodPressISyst, ‘Low’], [C(*), BloodPressIDiasl, ‘Low’]] — [C(*), BloodPressIIDiasl, ‘Low’] 11.105 | 0.773
I[%, BloodPressIISyst, Tow?, [%, BloodPressiDiast, Tow’]] — [*, BloodPressIDiast, Low’] 12.232 | 0.745
I[%, BloodPressIISyst, ‘Low’], [%, BloodPressiiDiast, Tow’]] — [*, BloodPressISyst, Low’] 11771 | 0.714

Table 7: Fuzzy Gradual Dependencies involving two itemsets in the antecedent
(STULONG data)

The comparison with the approach in [13] yields results similar to those obtained
for the soil database.

5 Conclusions

We have extended our definition of gradual dependence in [6] in order to incorporate
variation strength. For that purpose we have introduced the new notion of degree
of variation associated to a pair of objets. We have provided a definition of gradual
dependence on the basis of fuzzy association rules over a set of fuzzy transactions
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obtained from the original dataset by using the degree of variation. We have shown
that the new approach is better in capturing the variation strength in gradual
dependencies, and we have shown some properties that explain the semantics of
the new approach, as well as some results that relate the new approach to the
approaches in [13] and [6].

Several research avenues remain open. First, we want to investigate the seman-
tics of fuzzy gradual dependencies obtained by using other approaches to fuzzy
association rules, like the measures introduced in [11]. Second, we are working in
an algorithm able to reduce the complexity of the mining process when employing
existing algorithms for mining fuzzy association rules. Finally, we will apply our
techniques to mine for fuzzy gradual dependencies in real databases.
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