

E
s
c
u
e
la

 P
o
lit

é
c
n
ic

a
 S

u
p
e
ri
o
r

d
e
 L

in
a
re

s

Trabajo Fin de Máster

ADVANCED TELEPRESENCE

SYSTEM SUPPORTED BY

WEBRTC

Alumno: Juan Núñez Lerma

Tutor: Prof. D. José Manuel Pérez Lorenzo
 Prof. D. Raquel Viciana Abad

Depto.: Ingeniería de Telecomunicaciones

Septiembre, 2022

1

UNIVERSIDAD DE JAÉN

 ESCUELA POLITÉCNICA SUPERIOR DE

LINARES

Trabajo Fin de Máster

Curso 2021 – 2022

Advanced telepresence system

supported by WebRTC

Alumno: Núñez Lerma, Juan

Tutor: Prof. D. José Manuel Pérez Lorenzo

Prof. D. Raquel Viciana Abad

Firma del autor Firma del tutor Firma del tutor

2

TABLE OF CONTENTS
ABBREVIATIONS ... 9

1 RESUMEN ...11

2 ABSTRACT ..12

3 INTRODUCTION ..13

3.1 Background ...14

3.2 Justification ...18

3.3 Document structure ...20

4 OBJECTIVES ...21

5 STATE OF ART ...23

6 MATERIALS AND METHODS ..26

6.1 Used technologies ...27

6.1.1 System architecture ...27

6.1.2 Programming language ..27

6.1.3 Framework ...28

6.1.4 Markup language ...28

6.1.5 Database management system ..28

6.1.6 Node.js...29

6.1.7 Development environment ...29

6.1.8 Google Cloud Platform ...29

6.2 WebRTC ...29

6.2.1 API WebRTC ...30

6.3 WebRTC protocol stack ..30

6.3.1 RTP ...31

6.3.2 SDP ...32

6.3.3 ICE ...32

6.3.4 STUN ...33

6.3.5 TURN ...34

6.4 Analysis and design ..34

3

6.4.1 User identification ..35

6.4.2 Definition of requirements ..35

6.4.2.1 Functional requirements ..35

6.4.2.2 Non-Functional requirements...36

6.4.3 Use cases ..36

6.4.3.1 Supervisor management ..37

6.4.3.2 Residents management ...38

6.4.3.3 Reservations management ..39

6.4.3.4 Enter in a videocall ..40

6.5 Cloud server ..40

6.5.1 Characteristics of the chosen server ..42

7 DEVELOPMENT ..45

7.1 VideoConf web application design classes model46

7.1.1 System files ...47

7.1.2 Patient and call management system. ..47

7.1.2.1 Front-End ..47

7.1.2.2 Back-End ...52

7.1.3 Video conference system ...54

7.1.3.1 Web server ..54

7.1.3.2 Signaling server ...62

7.1.4 Node.js modules used ..68

7.1.5 Connection of the application with the database70

7.1.6 Certificates ...71

7.2 VideoConf application design ..71

7.3 Database structure ..77

7.3.1 Entities ...77

7.3.2 Relational model ..78

7.4 STUN/TURN Private server ..79

7.5 Google Cloud Deployment ..83

4

8 ANALYSIS AND DISCUSSION ..91

8.1 Traffic analysis ..91

8.1.1 Test 1. Only three participants and everyone on the same network ...91

8.1.2 Test 1. Only three participants but one requires the use of the TURN

server……………………………………………………………………………………….. 94

8.2 Network performance ..96

8.3 Load test ...98

8.4 Stress test ... 100

8.4.1 Test 1. Stress tests with only one room open 100

8.4.2 Test 2. Stress tests with three users connected per room 100

9 RESULTS AND CONCLUSIONS ... 101

10 FUTURE LINES .. 103

11 ANNEXES .. 104

11.1 Annex I. Installing Node.js ... 104

11.1.1 Node.js in windows .. 104

11.1.2 Node.js in linux ... 108

11.2 Annex II. VideoConf Web Application User Manual 109

11.2.1 Homepage ... 109

11.2.2 SignIn... 109

11.2.2.1 Reservations ... 111

11.2.2.2 Profile .. 112

11.2.2.3 Residents .. 113

11.2.2.4 SignUp .. 114

11.2.2.5 Logout ... 115

11.2.3 Room meeting .. 115

11.2.4 Let’s Get Started Button ... 116

REFERENCES ... 117

5

INDEX OF FIGURES

Figure 3-1. Asterisk scheme ...17

Figure 6-1. Diagram of the functional parts of the system26

Figure 6-2. WebRTC protocol stack ..31

Figure 6-3. RTP operation ..31

Figure 6-4. SDP operation ..32

Figure 6-5. STUN operation ..33

Figure 6-6. TURN operation ...34

Figure 6-7. Use case context diagram ..37

Figure 6-8. Google Compute Engine ..40

Figure 7-1. Screenshot of the starting application ...45

Figure 7-2. Structure of the VideoConf web application ..47

Figure 7-3. HBS partial call syntax ..48

Figure 7-4. Conditionals at HBS file ..49

Figure 7-5. Conditionals at HBS file ..50

Figure 7-6. “each” syntax at HBS file ..51

Figure 7-7. POST request to add a scheduled reservation53

Figure 7-8. GET request to join a video call ..55

Figure 7-9. “participants” variable and peer constructor ..56

Figure 7-10. “sendmessage” function ...57

Figure 7-11. Audio/video input device selection ..57

Figure 7-12. Connection handler messages ...58

Figure 7-13. Answer call function ..59

Figure 7-14. Message creation function ..59

Figure 7-15. AddName and RemoveUnusedDivs functions60

Figure 7-16. “connectToNewUser” function ..61

Figure 7-17. “invitebox” and “showParticipants” functions61

Figure 7-18. “muteUnmute” and “VideomuteUnmute” functions62

Figure 7-19. “showchat” function ..62

Figure 7-20. Video call check in the day ...64

Figure 7-21. Sending email to familiar member ..65

Figure 7-22. Session in variable “stringObjects” ...66

Figure 7-23. “mesagesend” and “tellName” functions ...67

Figure 7-24. Disconnection behavior ..68

Figure 7-25. Security service for forced disconnection ..68

Figure 7-26. VideoConf application ...72

file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457085
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457093
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457094
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457095
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457097
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457098
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457099
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457100
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457101
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457107
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457113
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457114
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457115
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457116
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457117
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457118
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457119

6

Figure 7-27. User form registration ...72

Figure 7-28. Resident form registration ...73

Figure 7-29. Residents list ..73

Figure 7-30. Profile view ...74

Figure 7-31. Schedule form reservation ..75

Figure 7-32. Videocalls list ..75

Figure 7-33. VideoCall view ..76

Figure 7-34. Entity diagram ..77

Figure 7-35. Availability of caresupport domain ..80

Figure 7-36. Information of caresupport domain ...81

Figure 7-37. “caresupport” domain pointer ..81

Figure 7-38. “turnserver.conf” file ..82

Figure 7-39. Verification of the Coturn server ...83

Figure 7-40. Google Cloud Platform homepage ..84

Figure 7-41. Choice of VM features ..85

Figure 7-42. VM firewall options ...85

Figure 7-43. Creation of the instance ..85

Figure 7-44. Edit button of the instance ..86

Figure 7-45. Static IP configuration ...86

Figure 7-46. Name static IP configuration ...86

Figure 7-47. Static IP address ..87

Figure 7-48. Firewall rules panel...87

Figure 7-49. Create firewall rule button ...87

Figure 7-50. Form to create a firewall rule ..88

Figure 7-51. Firewall tags used...89

Figure 7-52. SSH button ...89

Figure 7-53. Files and upload button in SSH screen ...89

Figure 7-54. Run in background command ...90

Figure 7-55. Nohup log ...90

Figure 8-1. HTTPS traffic ..91

Figure 8-2. Negotiating key exchange ..92

Figure 8-3. Establishing the connection ..92

Figure 8-4. STUN IP discovery ...93

Figure 8-5. Data traffic over UDP ..93

Figure 8-6. Negotiating key exchange ..94

Figure 8-7. TURN operation ...94

Figure 8-8. Data traveling through a data channel created by TURN95

file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457122
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457126
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457149
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457150
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457151
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457152
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457153
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457154
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457155
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457156

7

Figure 8-9. Bandwidth versus time throughout the video call96

Figure 8-10. LAN Network performance test ...97

Figure 8-11. WAN Network performance test ...97

Figure 8-12. Bandwidth test ..98

Figure 8-13. Load test results ...99

Figure 8-14. Load test tesults in graph.. 100

Figure 11-1. Node.js official website ... 104

Figure 11-2. Node.js installer homepage .. 105

Figure 11-3. Node.js installer terms screen .. 105

Figure 11-4. Node.js installation directory selection screen 106

Figure 11-5. Node.js installation options screen ... 106

Figure 11-6. Node.js installation screen .. 107

Figure 11-7. Node.js installation completion screen .. 107

Figure 11-8. Curl install command .. 108

Figure 11-9. Node.js download command .. 108

Figure 11-10. Node.js installation command ... 108

Figure 11-11. Node.js version check command .. 108

Figure 11-12. Screenshot of the home page ... 109

Figure 11-13. Access form .. 110

Figure 11-14. User’s profile and box meeting ... 110

Figure 11-15. Reservation box ... 111

Figure 11-16. Reservation menu .. 112

Figure 11-17. Show menu .. 112

Figure 11-18. Delete alert ... 112

Figure 11-19. Residents menu ... 113

Figure 11-20. List residents .. 113

Figure 11-21. Residents box ... 114

Figure 11-22. SignUp box ... 114

Figure 11-23. Videoconference system .. 115

Figure 11-24. Let’s get started button ... 116

file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457160
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457163
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113457185

8

INDEX OF TABLES

Table 6-1. Server basic information ..42

Table 6-2. Server machine configuration ..43

Table 6-3. Server networking ..43

Tabla 6-4. Server firewalls ..43

Tabla 6-5. Server storage ...44

Tabla 6-6. Server management ..44

Table 7-1. Reservation entity ..78

Table 7-2. Residents entity ...78

Table 7-3. Login entity ..79

file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402752
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402753
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402754
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402755
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402756
file:///C:/Users/jnunezl/Dropbox/Reme-Juan/TFM/Juan/Memoria%20Corregida.docx%23_Toc113402757

9

ABBREVIATIONS

AoIP: Audio over IP

API: Application Programming Interface

Asynchronous Transfer Mode: ATM

CBR: Constant Bit Rate

CSS: Cascading Style Sheet

DB: Database

DTSL: Datagram Transport Layer Security

GCP: Google Cloud Platform

GPL: General Public License

HTML: HyperText Markup Language

IETF: Internet Engineering Task Force

ICE: Interactive Connectivity Establishment

IDE: Integrated Development Environment

I/O: Input/Output

IP: Internet Protocol

IPTV: Internet Protocol Television

ISDN: Integrated Service Digital Network

MVC: Model – View – Controller

NAT: Network Address Translation

P2P: Peer-To-Peer

PBX: Private Branch Exchange

RTC: Real-Time Communication

RTSP: Real Time Streaming Protocol

RTP: Real Time Transport Protocol

RTCP: Real Time Control Protocol

rt-VBR: Real-Time Variable Bit Rate

SDP: Session Description Protocol

SIP: Session Initiation Protocol

SRTCP: Secure Real-Time Control Protocol

SRTP: Secure Real–Time Transport Protocol

STUN: Session Traversal Utilities for NAT

TCP: Transmission Control Protocol

TFM: Masther’s Thesis

TURN: Traversal Using Relays around NAT

UDP: User Datagram Protocol

10

VoIP: Voice over IP

VM: Virtual Machine

W3C: World Wide Web Consortium

WebRTC: Web Real-Time Communication

11

1 RESUMEN

En este Trabajo se desarrolla y analiza atendiendo a prestaciones de servicio y

red un sistema en la nube que por un lado permite la realización de videoconferencias

múltiples en un entorno sanitario para la comunicación entre pacientes, familiares y

personal sanitario, y por otro la gestión y reservas de cada una de las videollamadas a

realizar. En particular, se ha diseñado un sistema web, basado en WebRTC, el cuál es

capaz de establecer una comunicación multiusuario y ofrecer las características típicas

de una videollamada a los usuarios finales.

Se ha utilizado Javascript y Node.js como lenguajes de programación para

implementar un servicio web con una interfaz que permite la interacción entre los

usuarios y la aplicación. Dicha interfaz está formada por dos secciones:

- Una sección destinada a los usuarios finales o pacientes/familiares, en el que

pueden conectar a una videollamada que previamente ha sido dada de alta y

es validada en el sistema.

- Y otra sección destinada al especialista o médico, donde se pueden dar de

alta usuarios finales o residentes en la aplicación, al mismo tiempo que

permite la modificación y gestión de las reservas a realizar.

12

2 ABSTRACT

This thesis focuses on a cloud system that was developed for the realization of

multiple videoconferences in a healthcare environment for the communication among

patients, relatives and staff. And on the other hand, it manages and reserves each video

call in queue. Technically, a web system has been designed, based on WebRTC, which is

capable of establishing multi-user communication and offering the typical characteristics

of a video call to end users.

Javascript and Node.js were used to as programming languages to implement a

cloud web service with an interface that allows interaction between users and the

application. This interface can be parted into two sections:

- Patient’s interface intended for end users or patients/family member, in which

they can connect to a video call that was previously been registered and is

validated in the system.

- Doctor’s interface intended for the specialist or doctor, where end users or

residents can be registered in the application, at the same time that it allows

the modification and management of the reservations to be made.

13

3 INTRODUCTION

This chapter presents the background in which this work was framed and the

circumstances that have motivated its development.

Nowadays, more and more telecommunication services are needed to support

people's lives. In particular, videoconferencing services have evolved from being a tool

used almost exclusively in the business environment to gradually, with the evolution of

social networks and web-support technologies to real-time protocols, become a common

tool for users in their daily lives. After the worldwide impact of the last pandemic,

videoconferencing services are now part of the inherent services not only in large

companies but also in SMEs to allow teleworking for example, in the educational field to

allow a process of distance learning, and in the medical field. In the hospital environment,

it is not only limited to remote consultations with patients, but has also been very useful in

enabling communication between patients and their families during prolonged admissions

where isolation was the norm. In this sense, more and more robotic platforms designed to

work in these areas are incorporating telepresence as a necessary additional service.

In this sense, this work implements a cloud-based video call application and

analyses the performance and deployment capabilities of WebRTC which is the real-time

communication, protocol typically used for video calls. On the other hand, it is necessary

to analyse the demands of the support servers associated with ICE in secure

environments where it can even be deployed for security and privacy issues in the

hospital's own facilities without resorting to external servers versus its use with a

deployment in the cloud. This work has carried out a deployment taking into account the

two scenarios and analysing not only the requirements but also the performance in terms

of quality and service parameters.

As for the different analyzes that are going to be carried out, among which the

limitations of bandwidth/jitter will be included, they are motivated by two fundamental

reasons:

• In the event that no user needs to use TURN because all their NATs allow

discovering pairs of public IP addresses/accessible ports, they are those

imposed by the pairs and their respective connections and bandwidths. In

this case the server, both the web server and the signaling server intervene

little and only for communication with websockets for chat text, and user

input and output.

• In the case where your networks block direct access, the use of TURN as a

proxy will be required. In this situation, communication between these

14

peers is marked by the use of TURN. TURN can act as a bottleneck and

this idea may also not be liked in the environment where the application will

be used, since even if the flow is encrypted, it will go through the TURN

server.

In this situation, there are two scenarios:

- Scenario 1: Develop everything in equipment that is located in the hospital

or residence if it has a dedicated server or domain.

- Scenario 2: I have the servers in the same equipment but the TURN-proxy

is external, either free or paid.

In addition, the structure of the current document is described, detailing the content

of each of the chapters that comprise it.

3.1 Background

According to the RAE (Royal Spanish Academy) defines "video call" as:

"simultaneous communication through a telecommunications network between two or

more people, who can be heard and seen on the screen of an electronic device, such as a

smartphone or a computer”.

Depending on the criteria used to classify it, there are different options (depending

on the information it carries), following the study by Javier Luque [1]:

1. Video conference: data, video or audio.

2. Shared spaces: where there is only data.

3. Audio conference: where there are only audios.

Likewise, depending on the characteristics and functionalities, the following types

of videoconferences can be classified:

1. Specific videoconferences (carried out for a specific purpose).

2. Personal video conferences (or also desktop calls).

3. “Rollabout” room videoconferences (or also group calls).

Starting from this brief introduction, the origin of video calls will be summarized [2]

[3].

It is considered that the First Videoconference did not arrive until April 20, 1964 at

the Queens World's Fair in New York. Thanks to Bell Laboratories as it was marketed by

AT&T (originally AT&T Bell Telephone Laboratories), despite there being multiple

attempts of it.

When first experimented with televisions, it was clear that they could not only serve

as audio or telegraph transmitters, but that they are also capable of displaying long-

15

distance video. Not ignoring the necessary interrelated components that completes a

video are:

1. Audio transmission equipment,

2. Cable channels,

3. An image capture device (a camera) and

4. A monitor

In 1927 when the first attempt was made by AT&T Bell Telephone Laboratories,

during the Great Depression the development of communications was paralyzed. It was

already in Germany around 1930 and began to give it impetus. That was how Georg

Schubert managed to launch the first operating system, an ideal closer to what we know

as modern telephony for commercial purposes.

This first prototype was named as the Gegensehn-Fernsprechanlagen. The post

offices were filled with video call booths, but again, with the outbreak of the Second World

War in 1939, its expansion stopped and it would not be until 1950 when its development

began again.

Despite all these hurdles, AT&T continued to work on this communication system

and thanks to the first commercial implementation of Picturephone Mod I in 1959. It was

presented at the Queens World's Fair in New York on April 20, 1964.

One could name a series of problems that this new system presented, such as the

parties that wanted to communicate had to be punctual in their respective booths, in

addition to the high prices that they presented.

But all this did not stop the idea of reforming better and AT&T continued with more

improvements such as the creation of a compact communication system.

This work and the urge to improve made other companies interested in this new

way of communicating, such as the APO laboratory in the United Kingdom or the interest

also shown by the USSR (Union of the Soviet Socialist Republics), although in this case,

they did not establish a very accessible communication.

And it is here that the first video call attempt in a medical environment is known.

The USSR intended to create an invention called Medical Video Phone, whose objective

was none other than to ensure that visitors could communicate with those patients who

could not have direct contact and therefore were in isolation, all this would be carried out

carried out around the 70s. Another of the countries interested in the issue was Japan to

create a network between Tokyo and Osaka for corporate use.

In 1980, when digital telephone networks appeared, when videoconferencing

began to take off, especially when PC conferencing increased. Big labs including, again,

AT&T, Compression Labs, Mitsubishi, IBM, and PictureTel, Connectix, etc., started

16

making more powerful PCs, built-in color LCD compatible video phones, portable video

phones, they created commercial mole webcams (QuickCam).

At this time the world begins to change thanks to all these advances in

telecommunications and begins to notice the need for a development for multimedia

delivery in real time.

It begins to talk about what ISDN is, the original Saxon term is ISDN (Integrated

Service Digital Network), coined in 1972 by Japan and approved in 1984 by CCITT. Being

a network, generally evolved from an integrated digital telephone network, which provides

end-to-end digital connectivity, supporting a wide range of services, whether voice or

other, and to which users can access through devices or multi-purpose interfaces [4].

Asynchronous Transfer Mode (ATM) was then developed to meet the needs of the

Integrated Services Digital Network, Red Digital de Servicios Integrados (RDSI) in

spanish, as defined in the late 1980s and designed to integrate telecommunications

networks. It was designed for networks that must handle traditional high-performance data

traffic (for example, file transfers) and real-time, low-latency content such as voice and

video.

ATM is a set of standards of the telecommunications section of the ITU for

arrangements in “cells”; in which information from many types of services, such as voice,

video, or data, is contained in small "cells" of information the size variable. ATM networks

are connection-oriented. It was originally conceived as a fast transfer technology for voice,

video, and data over public networks [5].

Some characteristics of these networks that make them suitable for voice and

video applications are: Constant Bit Rate (CBR) and Real-Time Variable Bit Rate (rt-

VBR).

It is almost in the year 2000, with the birth of SIP/RTP when video calls take a

qualitative leap and begin to become what we know them today.

Real-time transport protocol, or RTP, is an application-level protocol used for real-

time transmission of information, such as audio and video in a video conference. It is

developed by the IETF Audio and Video Transport Working Group, first published as a

standard in 1996 [6].

In this same year, on February 22, 1996, Mark Handley and Eve Schooler

presented to the IETF a draft of the Session Invitation Protocol v1 but it is v2 that is

published as RFC 2543 in 1999.

It is complemented by the RTP (Real-time Transport Protocol), bearer of the voice

and video content exchanged by the participants in a session established by SIP. SIP

works as the standard for the initiation, modification and termination of interactive user

sessions involving multimedia elements [7].

17

At that time, Asterisk became known, which is the project of Mark Spencer, who, in

1999, when he was a computer engineering student at the University of Alabama, founded

a small company dedicated to providing technical support to Linux users [8].

Asterisk arises thanks to the SIP protocol. It is a free software program (under GPL

license) that provides functions of a telephone exchange (PBX), supporting many VoIP

protocols.

From then on, VoIP softphones began to appear, such as Linphone, Zoiper...

They are free VoIP softphone to make phone calls with VoIP.

Some features are [9]:

• They allow free communication of voice, video and instant messaging.

• It works by the SIP protocol, which makes it compatible with any SIP

server, even they have a SIP server to work with.

• Multi-platform.

• Supports IPv6.

• Support multi-call, call waiting and call transfer.

In 2003, two young university students, Jan Friis and Niklas Zenntrom, created a

proprietary software to make calls over the Internet called Skype. This software is

characterized by using a proprietary protocol that allows compression to improve voice

quality. The company began as a voice calling service over the Internet, but its services

gradually increased taking the first step towards what today would become one of the

most widely used means of communication in any situation and part of the world [10].

On June 1, 2011, Google announced the launch of WebRTC, a technology that

enables real-time communication (RTC) on the web.

In their statement, Google's Rian Linderberg and Jan Linden said: “Until now, real-

time communications have required the use of proprietary technologies commonly

acquired through plugins or by downloading clients. With WebRTC we are open-sourcing

Figure 3-1. Asterisk scheme

18

the audio and video technology engine we want from GIPS, giving developers access to

cutting-edge technology." in signal processing under the free BSD license. This will allow

developers to create audio and video chat applications through simple HTML code and

JavaScript API” [11]. WebRTC is now a W3C and IETF standard, and one of the most

important standards during the COVID-19 pandemic.

In a world in which we live frequently in communication and in which it is rare that

we do not have a mobile device within our reach, there are many cases in which we are

connected to WebRTC without being aware of them.

The increasingly advanced Smartphones, with mobile networks or Wi-Fi, as well as

the various multimedia platforms, have managed to incorporate this new form of

communication into our daily lives. The appearance of the Covid-19 has further boosted

the use of video calls. As a result of the global pandemic, they have experienced a real

boom, where the form of communication that we knew has completely changed,

increasing its use both at work, in study or in personal use.

3.2 Justification

One of the main motivations for the development of this work has been the arrival

of COVID-19. This virus emerged at the end of 2019, with a case of pneumonia, whose

origin was unknown, in the city of Wuhan (China). It was from then on, that the health

system began to count a series of pneumonias that began to have a great and easy

expansion. All this alerted the World Health Organization (WHO) where they asked the

Chinese health authorities to assess the real risk of this epidemic. What was initially

thought was not going to go beyond the counted cases, on March 11, 2020, the WHO

decreed a state of pandemic worldwide.

This situation overwhelmed all Health Systems, although this had already

happened throughout history with other epidemics. But if something has made this brutal

expansion unique, it has been through the contagion route, the respiratory route, which

caused the rapid exchange between people.

This led to drastic measures, measures such as isolation, which lasted several

months, being at the moment the most feasible way to prevent the virus from spreading.

The world was not prepared for this home isolation for so long, which led to taking

measures practically day by day, jobs and educational centers were closed, only the

minimum services remained open. But then what about all those people who couldn't go

to their jobs? What happened to all those students who couldn't go to their classes now?

Or how could they communicate more closely with family or friends, other than a simple

19

call or text message? And as far as we are concerned, how could family members

communicate with patients who were admitted to hospitals?

Here a battle is born that would go against the clock to be able to continue in the

most normal way possible. Platforms such as Messenger, Skype or Zoom would be

among the most used to be able to telework or to be able to attend virtual classes (this

last application has been one of the most used during all this time) and today, this method

of work has remained implanted in many places to facilitate the work.

In the case of hospitals, it was necessary to create platforms where patients could

communicate with health workers, without having to attend the centers and thus avoid, to

a large extent, being exposed to this virus, with the additional difficulty that, as a general

rule, patients couldn’t use their personal items, including mobile devices, during the first

days in the hospital as a restriction rule.

Technological development has not only helped on this occasion, it had already

been used in medicine for other problems, but in this project a technology will be

developed that helps in medical practice, in a small part to what is called telemedicine

(since doctors will be able to participate in video calls) but mainly it will contribute to the

development of a robot that has been built to facilitate the communication of hospital

patients with their familiar members via using network services.

The University of Jaén collaborates in a research project related to the

development of a social robot for this type of applications, and the system implemented in

this work will be used in order to establish communication at the patient's end without the

need for active interaction of the patient on it.

To mention some precursor developments of telemedicine:

- Stethoscope (1890): created by Loeth (Chicago), it was a kind of stethoscope

and a telephone, which allowed to capture the noises coming from the larynx,

starting from a transmitter and a receiver.

- Biotelemetry (1883): it was based on the monitoring of vital signs, it was used

by Marey, a French doctor.

- Einthoven (1903): the first remote transmission of an electrocardiogram, which

carried the information from the hospital to a laboratory several miles away;

work done by Willem Einthoven.

The first works considered within telemedicine were based on the transmission of

videos, images or medical data, around 1960, but it will be from the 70s when

telemedicine gains momentum thanks to the research work of NASA (since the astronauts

could not travel to be able to attend a consultation with the health professional) [12].

20

3.3 Document structure

This document consists of a series of chapters detailing the process of designing

and implementing a web application for video calls in a healthcare environment.

Specifically, the distribution of the content is as follows:

- Chapter 1. Summary. This chapter summarizes the objectives of this work (in

Spanish)

- Chapter 2. Summary. This chapter summarizes the objectives of this work

- Chapter 3. Introduction. This chapter establishes the context in which the need

to be satisfied and the solutions adopted to solve the initial problem are

framed.

- Chapter 4. Objectives. The objectives to be achieved with this Master's Thesis

will be detailed

- Chapter 5. State of art. Provide the appropriate context for the Master’s Thesis

by analyzing the environment in which it is developed.

- Chapter 6. Materials and Methods. It gathers all the information related to the

design process of the work: the technologies and techniques used, architecture

models adopted and relevant code fragments about the implementation.

- Chapter 7. Development. Implementation and design process of the web

application.

- Chapter 8. Results and Discussion. The different results obtained after the

completion of this work will be specified, as well as the execution times

obtained with the applications used.

- Chapter 9. Conclusions. This chapter presents the conclusions drawn during

the development of this work. It also describes the knowledge and skills

acquired during the process.

- Chapter 10. Future lines of work. Some future lines of work will be mentioned.

- Chapter 11. Bibliographical References. Reviews of books, online documents,

journals and websites that have been consulted during the completion of the

dissertation.

- Chapter 12. Annexes. A series of annexes have been incorporated as a

reference where some additional services implemented in the development of

this work will be explained and an introduction to the use of Node.js will be

made. In addition, a user manual for the web application will be added.

21

4 OBJECTIVES

In this Master's Thesis (TFM) the intention is to develop a system based on

WebRTC technology that allows not only to establish a video conference for multiple

users, but also to include additional functionality associated with the existence of a text

chat, the invitation of users via email, the booking of common appointments, etc. The

system must allow for the interconnection of more than one user connected from different

networks and should incorporate security mechanisms. The performance associated with

the analysis of the behavior of protocols such as the Interactive Connectivity

Establishment (ICE) and WebRTC for multimedia data distribution must therefore be

analyzed.

For this, the web application will be divided in two sections, one for the specialist or

doctor and the other for the patient/family member. The module with the most

functionalities will be the specialist, in which you can:

- Define each one of the system administrators, being able to register each one

of them in their corresponding part.

- Register residents with all their corresponding data, which will be linked to the

familiar member by email.

- Create and modify reservations to make a video call on a specific date and

time for a patient and their familiar member.

- Possibility of enter and/or participate in a video call that has been registered by

the specialist.

While in the patient section (video call interface), only the typical actions or

operations offered in a conventional video call can be carried out. This video call needs to

have been previously registered by the specialist.

For the development of this application the following objectives have been defined:

- Review of the specific bibliography that allows knowing the current situation of

the state of the art.

- Study of the characteristics and implementation possibilities of web and

signaling servers.

- Study and choice of technologies to be used.

- Study of a method that allows the creation of secure rooms and the method by

which different users have access to the information.

- Integration between the video call system and the management system.

- Design and implementation of a method for checking, validating and classifying

video calls.

22

- Analyze the possible differences between deploying on an internal server of an

organization with all the necessary resources (including TURN) or through the

use of external ICE servers (TURN/STUN).

- Analyze with typical connections in a home (case of a doctor or relative who

joins the videoconference), the maximum number of connected users

compared to one of course payment.

- Analyze the possible signaling server load when this can be used in a real

situation.

23

5 STATE OF ART

WebRTC is rapidly gaining ground and is set to revolutionize standards of

communications, for that reason it has been of great interest to carry out this Project.

The main objective will be to use WebRTC technology, along with some others, to

create a multiplatform application in which videoconferences can be held, instant

messaging between relatives and patients in a hospital.

After an exhaustive analysis, there are not many systems that provide these

services in the medical field, for that reason this project is going to focus on this field,

providing an extra resource to patients, family members and doctors in any hospital.

Obviously at this point there are platforms similar to the one that has been

proposed, not in the medical field but in general, but they have some disadvantages which

will be discussed below.

For example, we can speak of several such as:

o Google Hangouts, a Google conference call service that operates on the web.

It was the first developed by Google that has later been divided into: Google

Chat and Google Meet.

o Google Chat, previously Hangouts Chat. It includes a direct message

exchange service, group chats and advanced features such as spaces, chat

bots and a very powerful search function.

o Google Meet, previously Hangouts Meet. Includes group video calls with high-

fidelity sound, automatic subtitles, and screen sharing. Depending on the

edition of Google Workspace you have, Meet may also include advanced

features, such as the ability to host meetings with up to 500 participants, record

meetings, and broadcast live within a domain [13].

o Big BlueButton is an open-source web application for video conferencing and

eLearning or distance education. It is a program distributed under the GNU

license and has arisen from the reuse of various projects such as Asterisk, Flex

SDK, Red5, MySQL and others.

o OpenTok provides a free API that allows any web developer to introduce group

chat and video features to their websites. The platform is based on Adobe

Flash technology and allows users to conduct video sessions with chat and live

video for up to 20 participants. Allows you to perform invitations to use the

service through accounts in the social networks Twitter, Facebook or MySpace.

Regarding the area that concerns us, we can say that with the arrival of the global

COVID-19 pandemic, many hospitals tried to develop the video call service through

different means to be able to connect family members and hospitalized patients.

24

To name some of the projects that were carried out, we can cite these:

▪ SMS To Video: The Information Technology Area of the Castilla-La Mancha

Health Service (SESCAM) makes this project effective thanks to the use of

mobile devices, smartphones and tablets and specific videoconferencing

software, with the support of the health professionals themselves.

The Danish company “Incendium” offered its “SMS To Video” software to

enable this communication. Its ease of use and security in communication

makes it possible to send an SMS from a SESCAM device to any family

mobile, with a link to videoconference with patients [14].

▪ Unidos: The Son Llàtzer University Hospital launched the “United” project,

which consists of bringing isolated patients due to COVID-19 closer to their

families and professionals from different fields.

According to Javier Giménez, head of audiovisuals at Son Llàtzer, “the

project consists of providing the patient with a tablet or a telephone with an

internet connection (4G) so that they can make video calls to their family or

friends and to professionals from various fields. The system uses two different

channels depending on the purpose of the call: if it is to contact family or

friends, we use the usual means of connection, since these calls do not violate

the Data Protection Law; but if the call is addressed to a professional, it is

made through an encrypted system that meets all legal requirements.” [15]

▪ Visita virtual: It is an application designed during the pandemic that requires

tablets or smartphones where family members have to choose the hospital,

register and dial the extension of the room. It was launched in several Spanish

hospitals such as Infanta Elena de Valdemoro Hospital, Villalba General

Hospital, Rey Juan Carlos de Móstoles, La Moraleja University Hospital,

Virgen del Mar or La Zarzuela University Hospital [16].

All these projects, born against the clock after the outbreak of the pandemic,

depend for the most part on third-party infrastructure and hardware that today's hospitals

are not prepared for. In addition, as a general rule, in healthcare environments (nursing

homes, hospitals) are against using services such as Google Meet, Skype, Zoom ... as

they use third-party servers, which means that the privacy of the data is put into question

as they go through Google and can be stored in any way, therefore, they prefer (or give

them more confidence) to use an own application.

This project arises with this motivation, in order to provide a robot with its own system

that is capable of working by itself and without the need for any additional hardware by the

patient, since the robot already incorporates a screen, while the family member with a

simple smartphone can access the videocall via web browser.

25

Moreover, in the case of a strict policy in terms of security/privacy requirements, the

system could be completely deployed in the health facilities IT infrastructures, since, as

will be seen in the following sections, three private servers will be developed that will allow

the implementation of this casuistry: Signaling Server, Web Server and Support Server

(TURN/STUN).

Another aspect to be taken into account and which is of vital importance in the

development of this project is the final end of the communication. This end user can be,

as in our case, a robot, so it is necessary to take into account the specific policy to allow

new participants in the videoconference, the time slots to be able to start it, the

management of a historical record for its evaluation, etc. In other words, the interface on

this side must be adapted to the requirement of the platform in aspects such as the

audio/video interfaces to be used, the procedure to manage the start/end process of a

video call and also the control of the signaling process allowing or not the access of a user

to the video call system.

26

6 MATERIALS AND METHODS

This chapter relates the different technologies used during the development of this

TFM and the reasons that have led to its choice. Next, the deployed infrastructure, the

structure of the database (DB) and the distribution of the source code in classes, files and

functions are described. Finally, a series of tests carried out on the deployed infrastructure

are detailed.

Since this project is made up of many parts, figure 6-1 has been designed with the

objective of synthesizing in a diagram the functional parts that make up the system and to

show more clearly the behavior of each of the parts that make possible the development

of this web application.

Figure 6-1. Diagram of the functional parts of the system

As a summary of this diagram, it is possible to comment on how each of the

elements communicate and what they are used for.

27

The end users are represented by the mobile phone icon and the robot, they will

be the participants of the video call.

The STUN server is part of the support servers for the discovery of the IP (IP

Address discovery) of the endpoints, allowing a data flow between them directly, and in

the event that STUN fails, the TURN server will come into operation, which it will create

directly a tunnel and the multimedia data that is exchanged will pass through it, which will

be in charge of distributing it to the end users (RTP Media).

The web server will be directly in charge of providing the different services to users

through requests over HTTPS. The signaling server will make the video call possible and

will be in charge of controlling the entry and exit of users of a video call. This

communication where users inform the signaling server of the entry/exit of the video call,

sending messages, etc. are in charge of the communication with WebSockets. These two

servers supported by a database will be in charge of controlling web access and video

calls. Finally, the communication between the web server and the back-end using API-

REST.

6.1 Used technologies

Below, the main technologies and applications used during the implementation of

the infrastructure are presented: architecture patterns, programming languages,

frameworks, development environment, etc.

6.1.1 System architecture

The application has been designed following the Model – View – Controller (MVC)

architecture pattern. This pattern was introduced by Trygve Reenskaug in Smalltalk-76 in

the 1970s (1979) [17] and can be used in multiple frameworks. Its main virtue is the

separation of the business logic from the user interface, which facilitates independent

development of both parties and provides great flexibility to the developer.

6.1.2 Programming language

In this project we will use JavaScript as programming language.

JavaScript is an interpreted programming language, that is, programs do not need

to be compiled to run. It is defined as object-oriented and despite its name, it is not directly

related to the Java programming language. It is generally a language that is used on the

client side although there are forms of JavaScript on the server side [18]. It appeared for

the first time in 1995 by Brendan Einch under the name of LiveScript and is mainly used to

create dynamic web pages [19].

28

6.1.3 Framework

Express has been used, a framework for the development of minimalist and

flexible web applications with Nodejs [20]. Among other features, it offers route

management (addressing), static files, use of a template engine, integration with

databases, etc. among other.

6.1.4 Markup language

The different pages of the web application have been created using HTML5 pages

and CSS style sheets.

A minimalist web design has been chosen, following the current trend of most web

pages, choosing two main color tones for the web and several simple icons to represent

the different functions.

The particularity for which the use of these CSS style sheets has been chosen is

another feature of recent years in web page design, which is none other than adaptive

design or “Responsive Design”, referring to the ability to adapt web content to the size of

the screen of the device where it is being viewed.

Handlebars, a simple Javascript template system based on Mustache Templates,

has been used as template engine. Handlebars is used to generate HTML from JSON

formatted data objects.

Today, Handlebars is considered one of the most widely used templating systems

in JavaScript. It allows you to create and format HTML code in a very simple way. Instead

of doing tedious operations in libraries like jQuery to touch the DOM by inserting elements

independently with "append" or "prepend", it allows you to create blocks of HTML code,

written directly with HTML that you will populate with data coming from a JSON. It is as

simple as writing HTML and so powerful that it allows you to perform structure traversal

operations found in other templating systems you may have used [21].

6.1.5 Database management system

In order to ensure that the application is as light as possible and minimize its costs,

it has been decided to choose a database management system that allows free use, both

commercial and private. Among all the available options, MariaDB has been chosen, due

to its ease of integration with Nodejs and its great data access speed.

29

6.1.6 Node.js

JavaScript, as a rule, has been a client-side programming language that runs in

the browser. Node.js now offers the ability to run JavaScript on the server side. It's built on

Chrome's V8 JavaScript engine, running your code at incredible speeds [22]. It is an

event-driven and therefore asynchronous I/O (input/output) library and execution

environment, and one of the many advantages it presents is sufficient consistency to

create a large number of connections simultaneously with the server.

6.1.7 Development environment

When implementing the application in JavaScript under node.js, it is not necessary

to use a specific IDE and a free text and source code editor has been used with support

for various programming languages such as Notepad++ and Visual Studio Code.

6.1.8 Google Cloud Platform

Google Cloud Platform (GCP) is a set of modular cloud-based services that allow

to create from simple websites to complex applications. In short, it is the solution offered

by Google to provide cloud computing services.

Within this platform, this project uses Google Compute Engine (GCE), which it can

be described as the platform on top of Google Cloud that allows users to launch virtual

machines on demand [23] and that has been used for the deployment of the system in a

cloud scenario (See Section 7.5).

6.2 WebRTC

WebRTC is becoming a very important standard since it allows videoconferences

and, in general, data transmission directly through a Javascript API, which is why its use

in web browsers is so important.

It is designed for real-time communications, as its name suggests: Web Real Time

Communications.

The protocol was primarily promoted by Google in the IETF.

The first implementation is from Ericsson in 2011. Although browsers have come a

long way in recent years, if the browser used by the end user is slightly recent, it will

include the necessary API to be able to run applications under WebRTC.

Thanks to its success in browsers, it has been added to other types of applications

such as WhatsApp, for example. The protocol is generic, so due to this success it is

expected that its use will be extended to applications in other areas [24].

30

6.2.1 API WebRTC

The idea is to be able to use the browser to exchange data in real time, and in

particular to do multimedia transmission. This transmission must be done between peers,

instead of client-server oriented, to avoid delay problems that can occur in a real-time

communication where you have to send the data to the server and wait for it to return it to

the user.

We need peer-to-peer communication; we must allow endpoints to communicate

with each other even though they are behind devices that are designed so that no one on

another network can communicate with them. For this reason, we have used PeerJS

library that simplifies WebRTC peer-to-peer data, video and audio calls. PeerJS wraps the

browser's WebRTC implementation to provide a complete, configurable, and easy-to-use

peer-to-peer connection API. Equipped with nothing but an ID, a peer can create a P2P

data or media stream connection to a remote peer.

In the same direction of communications, it should be noted that websockets have

been used to communicate between the clients and the signaling server. WebSockets is

an advanced technology that makes it possible to open an interactive communication

session between the user's browser and a server. With this API, you can send messages

to a server and receive event-driven responses without having to query the server for a

response [25].

On the other hand, the REST API, which relies on the Router middleware

explained in section 7.1.4, to establish web access to the various associated services of

the application.

Also, it includes security in order to avoid listening to the communication that is

being established by an unauthorized third party. For this it uses SRTP and DTSL.

Finally, it solves the problem of universality since the only thing that is needed is a

web browser.

6.3 WebRTC protocol stack

The function and characteristics of some of the main protocols used by WebRTC

are described below.

31

Figure 6-2. WebRTC protocol stack

Figure extracted from: https://hpbn.co/webrtc/

6.3.1 RTP

The Real Time Transport Protocol (RTP) is an application layer protocol designed

to transport audio and video over IP networks [26]. This protocol is widely used in the

communications and entertainment industry, some examples of use are multimedia

applications such as Voice over IP (VoIP), Audio over IP (AoIP), WebRTC and Internet

Protocol Television (IPTV).

Figure 6-3. RTP operation

Figure extracted from: https://www.pbxdom.com/blog/engineering/how-rtp-real-time-transport-protocol-works-in-voips.

It is encapsulated in UDP datagrams. Although TCP can also be used, it is not

recommended because this protocol prioritizes reliability over delivery time. It is used in

conjunction with the Real Time Control Protocol (RTCP), while RTP is used to transport

audio and video multimedia data, the second is responsible for tasks such as

synchronization, collection of statistics and quality of service during the session.

https://hpbn.co/webrtc/
https://www.pbxdom.com/blog/engineering/how-rtp-real-time-transport-protocol-works-in-voips

32

Both RTP and RTCP have a secure variant called Secure Real-Time Transport

Protocol (SRTP) and Secure Real-Time Control Protocol (SRTCP), which provide

encryption, authentication, message integrity, and protection against replay attacks.

6.3.2 SDP

Session Description Protocol (SDP) is a protocol that is responsible for describing

multimedia sessions in order to announce sessions, invite sessions and describe other

forms of multimedia session initiation [27].

It is widely used in VoIP multimedia applications and video conferencing. This

protocol does not deliver any multimedia data, rather it is used at the ends to negotiate

session profiles, which are a set of properties such as network metrics, media types, etc.

Figure 6-4. SDP operation

Figure extracted from: https://voip-sip-sdk.com/p_7233-session-description-protocol.html

This protocol is extensible so that new media formats can be included in it. It is a

protocol that can act independently to describe multimedia sessions or together with other

protocols such as RTP, RTSP or SIP.

6.3.3 ICE

The Interactive Connectivity Establishment (ICE) protocol is a protocol that allows

traversal of Network Address Translation (NAT) in UDP multimedia sessions [28].

This technique makes it possible to find a way for two computers to communicate

as directly as possible in a peer-to-peer (P2P) network. It is widely used in VoIP

applications, peer-to-peer communications, instant messaging, etc.

This protocol allows communication to be done without going through a server. Its

creation is a cause of the widespread use of network address translation, a technique that

makes communication difficult in P2P networks.

While it's true that network translations helped slow IPv4 address exhaustion, they

also added problems for certain use cases. An example of these drawbacks is that NAT

breaks many IP applications and makes it difficult to deploy new applications. Although

https://voip-sip-sdk.com/p_7233-session-description-protocol.html

33

rules have been created for the creation of "NAT friendly" protocols, in many cases these

rules cannot be applied, an example of these cases is multimedia applications or file

sharing.

ICE allows peers to discover your public IP address in order to make use of

protocols such as Session Initiation Protocol (SIP). In addition, it is in charge of choosing

the best mechanism so that the peers can communicate, either using the STUN or TURN

protocols.

6.3.4 STUN

Session Traversal Utilities for NAT (STUN) is a protocol that allows other protocols

to deal with network address translation (NAT) [29].

This protocol can be used to determine the IP address and port assigned by NAT

for a connection, determine the type of NAT it is in, check connectivity between 2

endpoints, and maintain associations established by NAT. It is often used as a

complement to other protocols such as SIP.

Figure 6-5. STUN operation

Figure extracted from: https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/

STUN supports three of the four types of NAT, Full cone, Restricted cone and Port

Restricted cone, however it does not support Symmetric NAT or bidirectional NAT. In a

Full cone type NAT any end can start the connection while in the rest both ends must start

the connection at the same time.

It should be noted that STUN does not provide a complete solution to go through

NAT, since it does not work in scenarios with bidirectional NAT and in order to have such

a solution it would be necessary for a client to be able to obtain an address from which it

could receive data from any end that sends data to Internet. This can only be achieved by

making use of servers that act as intermediaries, through which the data must pass. To

solve this deficiency, the TURN protocol was defined.

https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/

34

6.3.5 TURN

Traversal Using Relays around NAT (TURN) is a protocol that allows a client

located behind a NAT or a firewall to communicate directly with other clients using the

service of an intermediate node that acts as an intermediary [30].

This protocol allows the client to control the operation of the intermediary node and

the exchange of packets with the other end using its service. The main difference of this

protocol with respect to other protocols that use intermediaries is that it allows the client to

communicate with multiple ends using only one intermediary address (relay). It is

particularly useful in scenarios where Symmetric NAT or bidirectional NAT exists.

Customer data will travel from the issuer to the TURN intermediary node, which

will send it to the corresponding receiver. Although it is true that TURN is more robust

than STUN, the latter is only used to discover the public IP of the client, so the multimedia

communication does not go through any server, it is direct between the peers.

Figure 6-6. TURN operation

Figure extracted from: https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/

This protocol was designed to support the ICE protocol, but can also be used

without it.

6.4 Analysis and design

In the following sub-sections, an analysis of the designed web applications is

carried out. To do this, first, the actors that can somehow interact with the web application

are identified, the requirements that they must meet are defined, especially those related

to the behavior of the system and the different scenarios of its use. Next step is to

https://blog.ivrpowers.com/post/technologies/what-is-stun-turn-server/

35

implement a solution described in terms of source code, database structure and scheme

of the deployed infrastructure. Finally, the methodology used to carry out a test bench on

this infrastructure is reviewed.

6.4.1 User identification

Depending on who accesses the web application, the following system users can

be identified:

• End user (familiar member and robot), for whom the web application is

intended, in which they can connect to the web application and access to make

a video call.

• Administrator (specialist/doctor), whose role is to manage reservations in the

system and register users or residents.

6.4.2 Definition of requirements

This section specifies the requirements that the implemented applications must

meet, with respect to the services provided by the system (Functional Requirements), as

well as its emergent properties (non-functional requirements).

6.4.2.1 Functional requirements

• FR1. Possibility of making a multi-user video call.

• FR2. Possibility of making several independent video calls at the same time.

• FR3. Possibility of managing video calls, residents and users registered in the

system.

• FR4. Service that is capable of consulting the obligation or not to notify the

family member of an upcoming video call.

• FR5. Sending email with the connection information by the server to the family

member if necessary.

• FR6. Automatic disconnection closure of the last person left in the room once

the video call has been made.

• FR7. Service capable of closing all the connections in progress of a video call

and canceling it.

• FR8. Web application under JavaScript.

36

6.4.2.2 Non-Functional requirements

• NFR1. Whenever possible, free software should be used to minimize the costs

associated with the project.

• NFR2. The graphical interface should be as friendly as possible.

• NFR3. The application must be developed following the established rules and

standards in order to make it easier for future developers to understand.

6.4.3 Use cases

The different cases of use identified for the web application destined to carry out

this TFM are those that are listed below and are shown in the context diagram of Figure

6.6.

• Supervisor’s Management: Register new administrator users of the

platform (specialists or doctors) in order to access the system as well as

generate their own video call reservations for their patients with their family

members.

• Resident’s Management: Register new residents on the platform, in order

to have a personal record of them, and one of the most important aspects

of the application, to be able to link their familiar members through an email

address. This email address will be used to notify the specific link of the

room that will be used to make the video call a few minutes before it is

made. It also allows the editing and modification of some data that have

been saved.

• Reservation’s Management: Schedule a new video call between patients,

family members and specialists/doctors. It also allows the editing and

modification of some data that have been saved.

• Enter in a videocall: Enter the reserved room to make the video call.

Family members will receive the link by email and by clicking on the link

they will be redirected directly to the room.

The specialist or doctor can access in three different ways:

1. From the link sent by email

2. From the reservation link where you can see all the reservations

you have

3. From the text box that you have in your profile where you have

to indicate the token of the room.

An additional use case has been implemented, so that the web application

adapts as best as possible to the demands of this project. In this use case, a

37

service is required, in this case hidden in the interface, which allows the

general closure of any video call and its resources at a given time.

 Supervisors End User

 Database

Figure 6-7. Use case context diagram

The following sub-sections establish the flow of information that occurs when a

user/administrator uses the web application for the uses shown in the context diagram of

Figure 6.6.

6.4.3.1 Supervisor management

Flow of information that is presented when a supervisor uses the VideoConf web

application to register a new administrator user (member of the medical staff, nurse or

doctor).

Main Actor: Supervisor

Preconditions: Login

Basic Flow:

1. The supervisor accesses the application through the web interface.

2. The supervisor accesses the user registration section.

3. The system requests the data of the new administrator, which are

mandatory: username, password, name and email.

4. The web application returns the profile view of the administrator with a pop-

up on the screen indicating that the registration has been carried out

successfully.

 Web/Signaling Server

- supervisor management

- residents management

- reservation management

- enter in a videocall

38

Alternative Flow 1:

1. The supervisor accesses the application through the web interface.

2. The supervisor accesses the user registration section.

3. The system requests the data of the new administrator, which are

mandatory: username, password, name and email.

4. The web application returns the view of the administrator’s record indicating

that some data is missing to complete.

Alternative Flow 2:

1. The supervisor accesses the application through the web interface.

2. The supervisor accesses the user registration section.

3. The system requests the data of the new administrator, which are

mandatory: username, password, name and email.

4. The web application returns the view of the administrator’s record indicating

that username must be unique.

6.4.3.2 Residents management

Flow of information that is presented when an Administrator uses the VideoConf

web application to register a new resident at the system.

Main Actor: Administrator

Preconditions: Login

Basic Flow 1:

1. The user accesses the application through the web interface.

2. The user accesses the resident registration section.

3. The system requests the data of the new resident, which are mandatory:

name, room, age, password, familiar name, and familiar email.

4. The web application returns the view of the list with all the residents

together with the data that is stored in the database and a pop-up on the

screen indicating that the registration has been carried out correctly.

Basic Flow 2:

1. The user accesses the application through the web interface.

2. The user accesses the residents list section.

3. The web application returns the view of the list with all the residents

together with the data that is stored in the database.

Alternative Flow:

1. The user accesses the application through the web interface.

2. The user accesses the resident registration section.

39

3. The system requests the data of the new user, which are mandatory:

username, password, name and email.

4. The web application returns the view of the resident record indicating that

some data is missing to complete.

6.4.3.3 Reservations management

Flow of information that is presented when a user uses the VideoConf web

application to schedule a new videocall reservation.

Main Actor: Administrator

Preconditions: Login

Basic Flow 1:

1. The user accesses the application through the web interface.

2. The user accesses the videocall schedule section.

3. The system requests the data of the new reservation, which are mandatory:

Patient’s name, Familiar’s email (it’s completed automatically when

selecting the patient), Description and Date-Time.

4. The web application returns the view of the list with all the scheduled

videocalls together with the information of each of them and a pop-up on

the screen indicating that the videocall has been registered correctly.

Basic Flow 2:

1. The user accesses the application through the web interface.

2. The user accesses the videocall schedule section.

3. The web application returns the view of the list with all the scheduled

videocalls together with the information of each of them

Alternative Flow:

1. The user accesses the application through the web interface.

2. The user accesses the videocall schedule section.

3. The system requests the data of the new reservation, which are mandatory:

Patient’s name, Familiar’s email (it’s completed automatically when

selecting the patient), Description and Date-Time.

4. The web application returns the view of the videocall schedule section

indicating that some data is missing to complete.

40

Figure 6-8. Google Compute Engine

6.4.3.4 Enter in a videocall

Flow of information that is presented when a user uses the VideoConf web

application to enter in a videocall

Main Actor: End User

Preconditions: None

Basic Flow:

1. The user accesses the application through the web interface.

2. The user accesses the videocall section with the room created previously.

3. The system asks for access to the camera and microphone the first time

and the videocall is initiated.

4. The system automatically redirects to the home page.

Alternative Flow:

1. The user accesses the application through the web interface.

2. The user accesses the videocall section with the room created previously.

3. The system automatically redirects to the home page with a pop-up alert on

the screen indicating that the room ID is invalid.

6.5 Cloud server

As already mentioned in this work, Google Cloud Platform has been used for its

development and use in a realistic environment.

Within this platform, this project uses Google Compute Engine (GCE), specifically,

a VM (Virtual Machine) instance has been used. Virtual machines in Google Cloud

Platform are highly configurable to run workloads on Google's infrastructure.

41

The choice to use GCE is given by several advantages after analyzing the different

possibilities that were available to carry out and deploy this project.

These advantages are:

• More competitive prices compared to the competition. With a not very high cost

you can set up a server without physically depending on any type of hardware.

• High level of security and data protection.

• Real-Time Data migration to virtual machines.

• Platform dedicated to expansion and scalability.

Google defines GCE as “secure and customizable compute service that lets you

create and run virtual machines on Google’s infrastructure”.

New customers get $300 in free credits to spend on Google Cloud. All customers

get a general-purpose machine (e2-micro instance) per month for free, not charged

against your credits.

It comes with different types of options. It has the possibility of creating machines

with predefined parameters, it means, that there are ready-to-use machine models without

the need to configure any parameters or features. Therefore, it also has a custom

configuration parameter where the user can specify what type of resources they need,

which allows us to balance the costs of our project. In our case, it is the option that has

been used, mainly because the application to be developed does not require an excessive

amount of resources and also allows us to keep the cost insignificant.

These virtual machines are themselves very affordable compute instances, ideal

for batch tasks and fault-tolerant workloads.

Another important feature of these machines is what Google calls Confidential

Computing, that is, it encrypts your most sensitive data while it is being processed. As a

last point to note, these machines have an automatic resource tracking system, so if it

detects that the virtual machine needs a reconfiguration, it notifies the user with that

recommendation.

42

Table 6-1. Server basic information

6.5.1 Characteristics of the chosen server

43

Table 6-2. Server machine configuration

Tabla 6-4. Server firewalls

Table 6-3. Server networking

44

Tabla 6-5. Server storage

Tabla 6-6. Server management

45

7 DEVELOPMENT

This chapter describes the process of designing the scalability of the

videoconferencing service, its implementation and problems encountered throughout the

life cycle.

We start from an application that was used in the practices of the Advanced

Multimedia Services subject course developed in Javascript with React framework that

allow making a video call through a browser between just two users in a local network.

Summarizing, it was a peer-to-peer video and audio web application for a local network.

Using as a starting point this application, the final system was designed and

programmed to fulfill all the requirements described in section 6.4.2. However, new

requirements such as multiparty videoconference, the inclusion of chat capabilities, the

need of an administrator/supervisor portal for managing and scheduling sessions lead to

the development of a completely new application, thus by using the initial one just for

learning support.

List of features included in the application:

- User logging and user session maintenance.

- Registration of administrator users in the system

- Resident registration and listing of residents.

- Registration and validation of a video call and its management. Listing of all of

them.

- Mute/unmute audio in video calls.

- Turn on/off the camera in video calls.

Figure 7-1. Screenshot of the starting application

46

- Invite another user to the video call.

- Text chat

- Choice of audio and video source.

7.1 VideoConf web application design classes model

The VideoConf web application has been designed following the client-server

paradigm. The server will offer a Web Interface for access through a browser and consists

of two fundamental parts, the front-end and back-end, which integrate two functionalities:

the call manager/reservation manager, and the access view to the videoconferencing

system by creating a multipurpose room managed through communication with a

signaling server.

• Back-end: It refers to all the services on which the front-end is based. It is the

part in charge of everything working correctly and it uses the JavaScript

programming language and the MariaDB DBMS. This is the part that

implements access to services through a REST API interface.

• Front-end: Refers to the web interface and the different graphic components

that will be displayed visually. It is in this layer where HTML pages, CSS style

sheets, JavaScript functions and views based on HBS are used.

The video call is possible between the ends because this communication is done

by using the WebRTC Peer.js API, already described in section 6.2 and discussed in

more depth in this section. The establishment of this communication is done with the

signaling server. The server will be in charge of controlling the events that may occur in

the video call through the use of websockets: the start or close of the video call, the

incorporation or exit of users or the sending of messages through the chat.

The web application follows the MVC model and is made up of a series of

JavaScript files, JSON, and HBS/EJS views, and has been designed in such a way as to

maximize system flexibility and facilitate component reuse and replacement.

The structure of the project is the one shown in Figure 7-2. In the following

subsections, the different files and classes that compose it will be discussed.

47

Figure 7-2. Structure of the VideoConf web application

7.1.1 System files

To implement the web application, twelve JavaScript files, thirteen HBS views and

one EJS have been created. Next, each of these files is listed, the classes it contains and

the function of each of them are indicated.

7.1.2 Patient and call management system.

7.1.2.1 Front-End

The front-end of our application refers to the static part based on a single page

web application that uses the handlersbars framework to dynamically generate

information.

All this information that is generated about our main view (main.hbs) is inside the

folder that is called "views" in the project. This folder contains all the handlebar views that

make up the application. Handlebars, as mentioned in section 6.1.4.

These are the fundamental parts of each of the HBS files:

▪ auth/signin.hbs: HTML view file supported on HBS that contains several div

elements to give it a friendly visual format with the help of boostrap. In each

48

div element a different class defined in bootstrap is used. Contains a form

defined with the POST method that is used for user login.

▪ auth/signup.hbs: HTML view file supported on HBS that contains several div

elements to give it a friendly visual format with the help of boostrap. In each

div element a different class defined in bootstrap is used. Contains a form

defined with the POST method that is used for user registration.

▪ layouts/main.hbs: HTML view file supported on HBS that contains the main

view of the web application. It can be seen that it has a very basic HTML

code, this is due to the fact that handlebars allow us to modulate all the views

and index a fragment of HBS code that we want in parts. As we can see in the

figure 7-3, two types of partials and the body itself have been implemented.

Handlebars allows to reuse a template through partials. Partials are normal

Handlebars templates that may be called directly by other templates. Calling

the partial is done through the partial call syntax: “{{> myPartial }}”. For the

case of the body, since we need the use of pure HTML, we use the

expression of triple keys “{{{}}}”.

Figure 7-3. HBS partial call syntax

In addition, several functions have been implemented:

o enablePath(): Function that enables and disables the email text box

when scheduling a video call. This makes the system dependent on

the patient that is selected so as not to mislead. This function is

needed because if it is disabled in the select, the form does not send

the data of the disabled fields.

o getEmails(): Function that autocompletes the email in the text field of

the familiar member of patient.

o alertDelete(): Function to notify the user that a scheduled video call or

a resident is going to be deleted. This way we prevent any data from

being deleted by an erroneous click.

49

▪ partials/message.hbs: The versatility of handlebars allows us to execute

code sentences and, based on the result, display one HTML code or another.

Two types of pop-up have been defined in this file where, depending on the

type of message received, one type of notice or another is displayed (Figure

7-4).

The operation is as follows:

If it receives "message" it shows an alert pop-up and, in the expression,

{{message}} we index the message we want to report.If "success" is received,

it shows a success pop-up and in {{success}} we index the message we want

to report.

Figure 7-4. Conditionals at HBS file

50

▪ partials/navigation.hbs: It is the file in charge of displaying the navigation

bar. Following the same logic as the previous one, we make the navigation

bar show some options or others depending on whether the user is logged in

or not (Figure 7-5).

▪ reservations/add.hbs: HTML view file supported on HBS that contains

several divs to give it a friendly visual format with the help of boostrap. In each

div a different class defined in bootstrap is used. Contains a form defined with

the POST method that is used for schedule a video call.

▪ reservations/edit.hbs: HTML view file supported on HBS that contains

several divs to give it a friendly visual format with the help of boostrap. In each

div a different class defined in bootstrap is used. Contains a form defined with

the POST method that is used for edit a schedule video call.

▪ reservations/list.hbs: HBS compliant HTML view file containing several divs

to give it a friendly visual format with the help of boostrap. In each div a

different class defined in bootstrap is used. This view goes through all the

scheduled video calls and shows them on the screen to the user.

Figure 7-5. Conditionals at HBS file

51

Handlebars in this context makes the implementation much easier since

just by indicating {{#each list}} it goes through all the objects in the list and

shows them as indicated for each one of them (Figure 7.6).

▪ residents/add.hbs: HTML view file supported on HBS that contains several

divs to give it a friendly visual format with the help of boostrap. In each div a

different class defined in bootstrap is used. Contains a form defined with the

POST method that is used for resident registration.

▪ residents/edit.hbs: HTML view file supported on HBS that contains several

divs to give it a friendly visual format with the help of boostrap. In each div a

different class defined in bootstrap is used. Contains a form defined with the

POST method that is used for edit a resident registry.

▪ residents/list.hbs: HBS compliant HTML view file containing several divs to

give it a friendly visual format with the help of boostrap. In each div a different

class defined in bootstrap is used. This view loops through all the residents

and displays them on the screen to the user.

▪ index.hbs: Application home page. It only contains a title along with a button.

▪ profile.hbs: View showing the user profile page. It is made up of a first part

where it shows us the data of the logged in user and a second that has a form

that is executed through POST with which the user can access a video call by

filling in the form data (name and meeting ID).

Figure 7-6. “each” syntax at HBS file

52

▪ room.ejs: View where the video call is made. There is nothing to highlight

because the behavior of video calls is not defined here as has already been

seen. All the divs are defined and the placement of each of the parts of the

application such as buttons, chat, video... each button that appears calls the

functions described in section 7.2.7.

These views need a public folder to which they can access where the files are

hosted. In the public directoriy, we can find the css style sheet files that give the visual

appearance to the web application, the background used by the application and its web

logo.

7.1.2.2 Back-End

The back-end of the patient and call management system is mainly formed by the

controller and the communication templates with the database.

Four very similar .js files have been implemented that make use of the react-

router-dom module to do the controller function, therefore, they will process GET and

POST requests received by the web server.

In the following lines we will detail the requests they control and we will describe in

detail some of the most representative and important ones, commenting on their behavior

and connection with the DB.

• authentication.js

Contains functions to process the GET and POST requests for registration, login,

and logout.

• index.js

It contains the functions to process the requests:

- GET request to enter the homepage.

• reservations.js

It contains the functions to process the requests:

- GET request to delete a reservation and show the list of them.

- GET and POST to add or edit a scheduled reservation. It should be

noted that the form has a special field where a calendar with a clock is

displayed to select the date and time, for this reason, we cannot

configure this field as required in the view so that it is mandatory to fill it

out. To solve this a query before registering it in the database and if it

has not been filled in, it is redirected to the same view informing the

user that it is mandatory to select a date and time (Figure 7-7).

53

• residents.js

It contains the functions to process the requests:

- GET request to delete a resident and show the list of them.

- GET and POST requests to add or edit a resident.

In addition, several exportable functions have been implemented in the .js files in

the lib directory to support the front-end of the application:

• auth.js

File containing two exportable functions used to check if a user is logged into the

system or not. With this we achieve that a non-logged user cannot access certain parts of

the application.

• handlebars.js

File containing two exportable functions that can be used from .hbs files with the

idea of being able to format dates in two different ways:

▪ “32 seconds ago”, “5 hours ago”, “2 days ago”, “In 5 minutes”.

▪ “DD/MM/YYYY”

• helpers.js

Figure 7-7. POST request to add a scheduled reservation

54

File containing two exportable functions that are used to encrypt and decrypt login

passwords that are stored and read from the database.

• passport.js

It has four important functions. The first (local.signin) is responsible for verifying

that the login details entered by the user are correct, reporting if the user does not exist or

if the password is incorrect. The second (local.signup) receives the registration data of a

new administrator user and saves it in the database. And the last two are used to serialize

and deserialize the user data.

7.1.3 Video conference system

It has two parts:

1. The web interface for accessing the videoconferencing service, which is

accessed through the web server that is already providing the access

pages of the reservation system or through a link.

2. The signaling server.

7.1.3.1 Web server

The only page accessible through the management system or link, where the form

is located, which, once passed through the signaling server, allows access to room.ejs,

view that is controlled by main.js file. It is one of the most important part in the project

since main.js is in charge of controlling the behavior of the video call and the flow of

information exchanged among the endpoints and among them and the server. In general,

it is the JavaScript file that the web browser will execute and therefore will define the

behavior of each of the video calls that are made. In order not to make this part too long,

only the most important developed and deployed parts of this JavaScript file are going to

be commented.

The controller of this page we have it in the Routes folder index.js file. This file

contains the functions to control the GET and POST request to join a scheduled video

call. The POST method is used by doctors/specialists after logging in through their profile

form. It should be noted that when we receive the GET request to enter the video call, we

use the current time to enter the actual start time of the call in the database. As can be

seen in Figure 7-8, when a GET request is made to the address /join/"roomID" we obtain

this room ID from the request itself with the parameter “req.param.rooms” and the user

name (if specified) by “using req.query.name”. For example in the case of a GET request

to https://34.78.63.171:3030/join/aac37f-befb-d?name=Juan we obtain as

req.param.rooms the value “aac37f-befb-d” and as req.query.name “Juan”. In addition, at

55

this point it is validated, making a query to the database with the roomID obtained and

checking with the field "initiated" if it is a video call already finished since a value of this

parameter in true will indicate that the call has finished.

 Once the room has been created and the local peer associated with the user has

been created, communication through the signaling server takes place:

1. Communication between signaling server and first client (browser) by

redirection to room.ejs with websockets passing the info from the local

peer, and it stays waiting for remote peers.

2. With peer.js, once another client is connected and indicated by the

signaling server, communication at data level (the signaling is still done in

the signaling server), it looks for the way to connect at data level (this is

also part of the peer.js configuration – TURN / STUN, or directly if they are

in the same network), to send the audio/video/chat stream, in a transparent

way to the user.

3. Using WebRTC API and audio and video interfaces (hardware) are

accessed to send data and display what arrives from remote peers. As well

as the interface control, audio or video mute, device change…

The first one has created a participant’s variable with the aim of having the name of

each of the participants in the video call to be able to view them at any time.

The first major change comes with the construction of the peers. As can be seen in

figure 7-9, a dedicated STUN and TURN server has been created with COTURN with the

Figure 7-8. GET request to join a video call

56

aim of not depending on Google’s public servers, since on the one hand they are

sometimes saturated and do not work and on the other hand, the information exchanged

by the ends does not leave our own machine, providing more security and privacy to the

data exchanged.

Figure 7-9. “participants” variable and peer constructor

The creation of dedicated STUN and TURN servers will be covered in a later

section. In the peer constructor, we can specify the addresses of the STUN and TURN

servers, and even concatenate several of them. In our case we have set the server that

we have implemented with Coturn.

The next feature that has been implemented has to do with text chat. In this case, the

sendmessage function is implemented, which has a very basic operation: once the user

presses Enter and the text box is not empty, we send a message to the server

(websockets) "messagesend" together with the text that has been written for later make

the text box blank again. (Figure 7-10).

57

Figure 7-10. “sendmessage” function

The following functions also have an important role since the robot that will have the

system has several cameras and several microphones, so the user needs to be able to

select or predefine a camera and a microphone from which they obtain audio and video.

that is transmitted to the other participants of the video call. Besides, it incorporates more

flexibility when being used from a mobile phone or a computer with several audio and

video sources.

For this, the variables audioSelect and videoSelect have been defined along with a

function to get the media from the system in question. Then they are assigned the user's

choice and added to the stream that the user will share with the rest. It can be seen in the

figure 7-11.

Figure 7-11. Audio/video input device selection

In the following functions, related with the websockets communication among the

server and the end-users, we are waiting to be able to receive 3 types of messages

(Figure 7-12):

58

• user-connected, where we connect with the other user who started the

room, and we also send a message to the server indicating our name to be

able to be identified in the chat and in the list of participants.

• user-disconnected, upon receiving this message we delete the participant

from the list and also look for the peer to close their connection and delete

the div element where their camera is represented in the view.

• last-disconnected, is waiting to receive the message indicating that the

last user in the room has left so that they can automatically disconnect (this

is designed so that it is not necessary to physically touch the robot screen

when the video call ends).

Figure 7-12. Connection handler messages

This part concerns the call response, when it receives the call message it replies with

its stream to it.

In addition, a connection handler has also been added so that when a user closes the

video call, it is also closed at the other end (Figure 7-13).

59

Figure 7-13. Answer call function

The following two functions are relatively simple (Figure 7-14):

• peer.on(open). Send to the server that the first user has joined the room

• socket.on(createMessage). We get to format the message sent by a user.

Figure 7-14. Message creation function

60

• socket.on(AddName): This function is used on the one hand to save the user

name to write in the chat and on the other hand to save it in the list of

participants

• RemoveUnusedDivs: It has been necessary to implement this function

because once the user ends the call it is necessary to delete the camera from

the screen of the other users. Its operation is simple, it obtains all the div

elements that the users' cameras have and looks for the one we need to

delete it.

Figure 7-15. AddName and RemoveUnusedDivs functions

• connectToNewUser: function that provides the connection function with the

rest of the users. It is also necessary in this part to have a connection

manager to control the moment in which the users leave the video call and

can remove their audio/video from the screens (Figure 7-16).

61

Figure 7-16. “connectToNewUser” function

The last functions of the file that we will describe have a similar behavior among

them. They show/hide the different options of the video call application as well as are able

to mute/unmute or turn on/off the camera.

• invitebox: It shows us the modal that contains the meeting ID of the video call

to be able to copy or share it.

• showParticipants: It shows us the modal that contains the list of participants

in the video call.

Figure 7-17. “invitebox” and “showParticipants” functions

• muteUnmute: Controls the mute/unmute operation of the microphone.

• VideomuteUnmute: Controls the on/off operation of the camera.

62

Figure 7-18. “muteUnmute” and “VideomuteUnmute” functions

• showChat: Controls the chat button to show it on the screen or hide it (Figure

7.19).

Figure 7-19. “showchat” function

7.1.3.2 Signaling server

It has two parts:

1. It implements services associated with the patient and call management

system. The communication is indirect through the use of common data from

63

the DB (query reservations, users) or through REST API. Here it’s important to

control start of a call/access control to it/ and termination.

2. Allows communication through the use of websockets with the clients involved

in the communication not only to indicate the creation or destruction of the

room (beginning or end), but during the call the control part associated with the

connection of new participants or abandonment of the same.

This is the most part of the core of the developed web application together with the

main.js file already explained previously.

In this section we will start talking about the implementation of the services

associated with and the patient and call management system and in the last part of the

section will be dedicated to explain the functions related to the communication through

websockets.

The file has been divided to keep it as organized as possible through comments.

The initialization part refers to the call to the different node.js modules that the server will

need, as well as defining the two template engines that will be used: HBS and EJS.

The next thing that has been implemented is the definition of the session, flash

messages and login middleware together with the global variables (used for the pop-up

messages) and the indication of the routers that it should use.

And from here the important functions will be discussed:

• queryBBDD(): It is used to call the sendConsult() function every "x" time.

This value is in milliseconds. It has been set by default to 5 minutes

(300000 ms).

• sendConsult(): It's a bit of a lengthy function because several checks need

to be performed.

First of all, it obtains the time and date of the moment of execution

of the function. Once with this information, it queries the database to check

if there are video calls scheduled for the same date. If there are, it obtains

the data of each one of them and checks that there are less than 15

minutes left before the start of it and, furthermore, it has not been

previously notified (Figure 7.20). If it meets these conditions, it creates a

room ID and the video call link by adding it to the database. Then sends an

email to the family member indicating its link and, before exiting, changes

the boolean value of a variable that controls whether the familiar member

has been notified by email (Figure 7.21).

64

Figure 7-20. Video call check in the day

65

From here the signaling server implementation comes into play.

The last functions to be described are those related to communication through

websockets. A variable has been defined that will contain the string of objects of each of

the sessions to be carried out. This variable, called "stringObjects", is necessary in the

event that more than one call coexists at the same time and therefore the signaling server

knows how to differentiate the users of one from the users of another and thus treat them

independently.

First, it opens the socket connection, and now it waits for messages from the

different users that can connect.

Upon receiving the "join-room" message, the server queries the database to find

out if that session exists and is valid (it has not ended). If the conditions are not met, the

open connection is closed and the user is redirected to the application's home page. If you

meet them, you must now control three different cases (Figure 7-22):

▪ The object string is empty: It means that the video call has not started, in this

case we introduce the session in the “stringObjects” variable.

▪ The string is not empty and the session to which it is connected has already

been entered in the “stringObjects” variable: It means that a new user wants to

be added to a video call that has already started, therefore, we add the user's

Figure 7-21. Sending email to familiar member

66

nickname to the variable said session in the variable and we add the total

number of participants by one to control the number of users in the video call.

▪ The string is not empty, and also that the session is not among the sessions

that the stringObjects variable has: It means that a user is going to open a new

session that has nothing to do with the ones that the signaling server already

has. In this case, a new session is created inside the “stringObjects” variable.

The video call is started and control messages are now needed to control

the events that may occur.

When a user connects, it sends a broadcast message to all the other users

that are in the call. In addition, some control parameters are passed that are

needed in main.js in order to control the video call, such as the id, the name

and the list of participants that are currently in the video call. This broadcast

message is primarily responsible for the multi-user implementation of the web

application.

To complete the operation of the video call (except ending), there are two

more types of messages (Figure 7-23):

- messagesend: to send the message issued by the user to the chat.

Figure 7-22. Session in variable “stringObjects”

67

- tellName: warns by emitting a broadcast message when a user

connects to the other users of the video call so that they know the name

of the person who has entered.

The completion of calls is somewhat special since when the "disconnect" message

is received indicating that the user is going to be disconnected, the connection with the

rest of the users, the variable “stringObjects” and the number of participants in the call

must be managed. This is achieved in next steps:

- First, a disconnect message is broadcasted to the other users so that

they can close the connection at their end against us.

- Next, the video call object in the “stringObjects” variable is modified to

decrease the number of participants and delete our name from the list

of participants.

- Them, if the number of participants is one, it means that there is only

one person left in the video call (as a general rule it will be the robot) so

it emits a "last-disconnected" message to indicate that it will make the

automatic disconnection.

- When this happens, the server obtains the current date and time and

enters it in the database along with a boolean variable to indicate that

the video call has already ended, so from now on it does not appear as

a valid video call.

Figure 7-23. “mesagesend” and “tellName” functions

68

The last function that the server implements has to do with the FR7 discussed in

section 6.4.2.1.

A security function is implemented to be able to destroy a video call at any time

that is required. In this case, by means of a GET request, a broadcast message is issued

to all the users of the video call who will automatically close the existing connection

redirecting them to the home page and the administrator who made the request will be

informed that the room has been destroyed.

7.1.4 Node.js modules used

The folder called “node_modules” contains all the Node.js modules that have been

used for the development of this project and therefore for the operation of some functions

that the web application has.

Figure 7-24. Disconnection behavior

Figure 7-25. Security service for forced disconnection

69

A module is a set of JavaScript objects and functions that can be used by external

applications. The description of a piece of code as a module refers less to what the code

is than to what it does; Any Node.js file or collection of files can be considered a module if

its functions and data can be used in external programs [31].

The following modules have been used [32]:

▪ bcryptjs: It is a password hashing function designed by Niels Provos and

David Maxieres, based on the Blowfish cipher. Allows saving passwords

hashed instead of in plain text. In this case it has been used for the

registration and login of users in the application.

▪ connect-flash: Allows developers to send a message every time a user is

redirecting to a specific web page. It has been used to display information to

the user in pop-up mode.

▪ dotenv: It is used to read the key and value pair from the .env and add it to

the environment variable.

▪ ejs: It is a module that allows us to use the views in EJS format in our project.

▪ express: Allows the use of Express in the project. As described in section

6.1.3.

▪ express-handlebars: Allows the use of hbs views in our project. It is a

Javascript template system based on Mustache Templates. Keep the code

and the view separated. Allows generating HTML from objects with data in

JSON format.

▪ express-mysql-session: It is a MySQL session store for express.js, and it is

mainly used to upload session data to the MySQL database. This module

creates a database table to save session data.

▪ express-session: The express-session middleware stores session data on

the server; it only saves the session ID in the cookie itself, not the session

data.

▪ express-validator: Validation in node.js can be easily done using the module.

This module is popular for data validation.

▪ moment: It is a great help for managing dates in JavaScript.

▪ morgan: Morgan is an HTTP Request Layer Middleware. It's a great tool that

logs requests along with some other information depending on your

configuration and the default value used. It proves to be very useful while

debugging and also if you want to create log files.

▪ mysql: A node.js driver for mysql.

70

▪ nodemailer: Nodemailer is the Node.js npm module that makes it easy to

send emails. Used for sending emails to familiar members where the link of

the video call to be used is indicated.

▪ passport: It is a Node.js module that uses the middleware design pattern for

authentication requests.

▪ passport-local: It is used to implement a local authentication. This module

allows to authenticate with a username and password in Node. js.

▪ peer: It helps establishing connections between PeerJS clients as described

in Section 6.2.1. Data is not proxied through the server.

▪ react-router-dom: The react-router-dom package contains bindings for using

React Router in web applications.

▪ socket.io: Socket.IO provides the ability to create applications that

communicate in real time with a browser and mobile device, regardless of

different communication mechanisms. as described in Section 6.2.1.

▪ timeago.js: is a nano library (less than 2 kb) used to format datetime with ***

time ago statement. eg: '3 hours ago'.

▪ util: Provides utility functions for formatting strings, converting objects to

strings, checking the type of objects, and performing synchronous writing to

output streams, as well as some improvements to object inheritance.

▪ uuid: Used to generate a universally unique identifier. With this, unique and

unequivocal rooms are created.

▪ nodemon: nodemon is a command line interface (CLI) utility that wraps a

Node application, watches the file system, and automatically restarts the

process.

▪ react-error-overlay: react-error-overlay is an overlay which displays when

there is a runtime error.

7.1.5 Connection of the application with the database

We have two files to make the connection to our database:

• db.js

File for integration with the database. It includes a “connection” variable with the

connection to the web application's database and a function to capture possible errors.

• keys.js

Contains an export module that allows to connect to the database and to save user

sessions.

71

7.1.6 Certificates

Today's browsers, for security reasons, do not allow access to the camera and

microphone when the web server is running over HTTP and the use of HTTPS is

mandatory (except for the case of being the server at localhost).

Therefore, since our server is running at the cloud with a public IP address, for the

deployment of this application we need to use HTTPS, which entails having security

certificates for our website.

To obtain SSL certificates there are different options, in our case, zerossl.com has

been chosen since it provides free certificates for three months that can be also renewed

without cost.

Once a fixed public IP has been configured on virtual machine of Google Cloud

Platform where our server is located, zerossl.com website has been used to obtain the

certificates for our website after carrying out a series of steps and checks (a file generated

by the platform must be made accessible on your server in a specific route to check the

ownership of the server).

By this way three files are generated: ca_bundle.crt, certificate.crt, and private.key.

Using an account in zerossl.com in free mode, you need to renew these files every 3

months, because they validity expires after 90 days.

7.2 VideoConf application design

Based on the use case identified in section 6.4.3, seven views have been

designed.

For each of them, a wireframe or content diagram will be shown below:

• Administrator registration form

• Resident registration form

• Screen to show all residents of the system

• Screen to show the profile of the logged in user

• Form to schedule video calls

• Screen to show the different video calls of the specialist/doctor

As shown in Figure 7-26, the main page of the web application consistes of two

main sections as the typical single-page websites. The navigation bar to access to all the

functions implemented and the main window that adapts its view depending of the chosen

functionality.

The web application has four well-differentiated section as can be seen in Figure

7-26, each of which will allow the user to access a specific function.

72

Figure 7-26. VideoConf application

The SingUp item in the bar is linked with the view of the administrator registration

section (Figure 7-27), shows a form with fields associated to the administrator profile that

with the will be saved in the DB, once a new user is registered. At the end the supervisor

will be redirected to the view of his/her profile.

Figure 7-27. User form registration

73

Figure 7-29. Residents list

The section associated with the registration of a resident (Figure 7-28) and

accessed from Residents item in the navigation bar shows a form with the corresponding

data to include in the DB. Once registration is complete, the system redirects the user to a

view with all the residents registered in the system (Figure 7-29).

Figure 7-28. Resident form registration

The user profile view (Figure 7-30) has two sections. The first contains a box

where it shows the nickname and the name welcoming the specific administrator with a

button that allows making a new video call reservations. The second part is a form where

74

indicating the meeting ID of a session and our username allows the specialist to enter a

valid video call.

Figure 7-30. Profile view

The screen to schedule a video call (Figure 7-31), will show a form with the

necessary data of the video call to schedule, the email box appears in gray since it is

disabled as it is filled automatically when the patient is selected. Once the registration is

complete, the system redirects the user to a view with all the video calls registered by the

specialist or doctor (Figure 7-32).

75

Figure 7-31. Schedule form reservation

Figure 7-32. Videocalls list

The final view in which the video call can be made (Figure 7-33) consists of:

76

Figure 7-33. VideoCall view

• Main window where the different cameras of the participants of the video

call are shown.

• Text chat on the right side where participants can write.

• Mute/unmute button.

• Button to turn on/off the camera.

• Invite button where we will get the Room ID.

• Participants button where we can see the name of the participants of the

video call.

• Chat button to hide/show text chat.

• Audio source button where the user can select the audio source.

• Video source button where the user can select the video source.

77

7.3 Database structure

In the following sections, the structure of the database is described in terms of the

entities that comprise it, as well as their attributes and data types.

7.3.1 Entities

The logic applied to the management of the information generated during the

operation of the web application is resolved in a relational schema and is implemented on

a MariaDB database. This database is running in the same virtual machine of Google

Cloud Platform where the main server is located.

Figure 7-34 shows an entity diagram of the designed database.

• login: It is the entity where the information of the administrator users is represented.

• reservation: This entity stores all the information that has to do with video calls and

their life cycle: ID, Meeting ID, date-time, user who created it, start time, real start time,

real end time, link, email of the family member, if they have been informed by email, if the

video call has ended and description.

• residents: Represents patient information relating them to their relatives in the

system: ID, resident's name, room, age, relative's name, relative's email.

Figure 7-34. Entity diagram

78

7.3.2 Relational model

In the tables Table 7-1, Table 7-2 and Table 7-3 describe each of the above entities:

their attributes, data type and their description.

• reservation

Attribute Type Length Mandatory Description

ID INT 11 YES Primary key of the entity. Unique

identifier of each reservation.

TOKEN VARCHAR 250 NO Unique identifier of each of the

video calls.

TIMESTAMP DATETIME - YES Reservation date and time

USER VARCHAR 50 YES User who schedules the video call

DATE DATE - YES Video call date

TIME_START TIME - YES Video call time

REAL_TIME_START TIME - NO Real start time of the video call

REAL_TIME_END TIME - NO Real end time of the video call

LINK VARCHAR 200 NO Video call link

FAMILYEMAIL VARCHAR 250 YES Family emails

INFORMED TINYINT 1 YES 2 states: True or False

INITIATED TINYINT 1 YES 2 states: True or False

DESCRIPTION VARCHAR 250 YES Description of the video call

Table 7-1. Reservation entity

• residents

Attribute Type Length Mandatory Description

ID INT 11 YES Primary key of the entity. Unique

identifier of each resident.

RESIDENTS_NAME VARCHAR 250 YES Resident’s name.

ROOM INT 11 YES Room number.

AGE INT 11 YES Resident’s age.

FAMILIARS_NAME VARCHAR 250 YES Family Name.

FAMILIARS_EMAILS VARCHAR 500 YES Family Email.

Table 7-2. Residents entity

79

• login

Attribute Type Length Mandatory Description

ID INT 11 YES Primary key of the entity. Unique

identifier of each user.

USER VARCHAR 255 YES Username.

NAME VARCHAR 255 NO Name.

PASSWORD VARCHAR 255 YES Password.

EMAIL VARCHAR 250 YES Email.

Table 7-3. Login entity

7.4 STUN/TURN Private server

As explained in sections 6.3.4 and 6.3.5, the STUN protocol allows other protocols to

deal with NAT and TURN allows a client located behind a NAT or firewall to communicate

directly with other clients using the service of an intermediate node acting as an

intermediary.

These protocols are necessary to establish peer-to-peer communication in the video

call.

In the early deployment of the web application, we started using public STUN and

TURN servers:

To use the TURN server all we have to do is to create a user with his credentials on

the web page shown in the table above.

After a thorough analysis of the environment where the application was going to be

used and the data privacy policies that are normally in these places, it was decided that

we should create our own dedicated STUN/TURN servers. In addition, with the

implementation of our own STUN/TURN servers we avoid certain problems that may arise

in the future such as:

- In the event of a change of address of the servers or if the servers stop

working, the web application would stop working.

- If the web servers receive too many requests or receive a cyber-attack,

they can collapse and stop offering services.

REACT_APP_SIGNALING_SERVER = http://localhost:3030
REACT_APP_STUN_SERVERS = stun: stun4.l.google.com:19302
REACT_APP_TURN_SERVERS = turn: numb.viagenie.ca
You can create your turn account here: http://numb.viagenie.ca/cgi-bin/numbacct
REACT_APP_TURN_USERNAME = [email]
REACT_APP_TURN_CREDENCIAL = [password]

80

- Data privacy is not exposed as the traffic does not go to a third party.

To implement our own STUN / TURN server, we will rely on the Coturn project.

Coturn is a free and open-source implementation of a TURN and STUN server for VoIP

and WebRTC.

The installation of coturn on linux is quite simple. All we have to do is run this

command:

Be sure to stop the service after installing the package with the following command,

as it will start automatically once the installation is finished and we need to configure

Coturn.

After installation, edit the Coturn configuration file located in the path

"etc/default/coturn" and uncomment the "TURNSERVER_ENABLED" property and set it

to 1: TURNSERVER_ENABLED=1

A requirement of Coturn is that you must own some domain where the STUN / TURN

server will be hosted. You have to create 2 new "A" records using TURN and STUN as

host respectively pointing to the public IP of your server.

In our case we have used the free service offered by http://www.dot.tk/. From the

page we can check the availability of domains and offer some free ones as shown in

figure 7-35.

Figure 7-35. Availability of caresupport domain

sudo apt-get install coturn

systemctl stop coturn

http://www.dot.tk/

81

The domains caresupport.ml and caresupport.ga are not available because they are

registered by us for the use of this application.

In Figure 7-36 we can see the domain information and in Figure 7-37 the

configuration of the domain, the type and the IP address to which it points.

Figure 7-36. Information of caresupport domain

Figure 7-37. “caresupport” domain pointer

The last configuration step is the creation of a new configuration file in the path

"/etc/turnserver.conf". The main configuration parameters of the file can be seen in Figure

7-38.

We must specify the domain of our STUN and TURN server, the user and credentials

of TURN and the certificates.

82

Figure 7-38. “turnserver.conf” file

Finally, we must start the coturn service on the server with the following command:

To check the status of the coturn service we can run the following command:

There is an online tool that allows to verify the functionality of STUN / TURN servers.

This tool is Trickle ICE

(https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/), a WebRTC

project page that tests the ICE functionality on a regular WebRTC implementation. It

creates a PeerConnection with the specified ICEServers (which will contain the

information from our newly implemented server) and then starts collecting candidates for a

session with a single audio stream. As the candidates are collected, they are displayed in

the text box below, along with an indication when the candidate collection is complete

[33].

In figure 7-39, we can see the test that has been performed against the STUN/TURN

servers of the application of this project.

systemctl start coturn

systemctl status coturn

83

Figure 7-39. Verification of the Coturn server

7.5 Google Cloud Deployment

We have chosen to deploy this project in the Google cloud for all the reasons

previously mentioned in chapter 6.5.

In view of this, the most relevant aspects of the deployment of this application on

Google virtual machines will be described.

As a starting point we will have to create the virtual machine that will host our

application. We enter the Google Cloud Platform page and log in with our user. On this

screen we can directly see a button to create a virtual machine (Figure 7.40).

84

Figure 7-40. Google Cloud Platform homepage

We enter the part of selection of the characteristics of what is going to be the virtual

machine. After choosing the name of the instance, we must select the region where the

virtual machine will be located. It is advisable to locate it in the same country if possible, or

if not, in a nearby country for latency reasons.

In the machine configuration we must choose the processor. In our case, since the

application will not consume many resources, we are going to select the most basic one

(e2-micro) which will be more than enough for the use we are going to give it and also, as

you can see on the right side of the screen (Figure 7-41), it will reduce the cost of it.

85

Figure 7-41. Choice of VM features

Another important part of the configuration is to select in the firewall to allow HTTP

and HTTPS traffic (Figure 7-42).

Figure 7-42. VM firewall options

Once the characteristics of the virtual machine have been selected, we proceed to

click on the create button. This operation takes a couple of minutes (Figure 7-43).

Figure 7-43. Creation of the instance

When the created instance appears, click on it and then click on the edit button

(Figure 7-44) in the top bar to add the last configuration tips we need.

86

Figure 7-44. Edit button of the instance

We go down to the network options in order to set a fixed IP address. By default, the

IP address that the virtual machine has is dynamic and when the server is restarted it

changes. In the "External IPv4 address" box, select "CREATE IP ADDRESS" (Figure 7-

45).

Figure 7-45. Static IP configuration

We have to define a name for this IP configuration and click on "RESERVE" (Figure

7-46), when we return to the menu, we will have already been assigned an IP address

that we can see in brackets (Figure 7-47).

Figure 7-46. Name static IP configuration

87

Figure 7-47. Static IP address

Once we have a static IP address, the next thing to do is to configure the firewall rules

to allow traffic to our server on the ports we specify. The Coturn server, as seen in section

7.4, has been configured with ports 3478 and 5349, therefore, we have to configure a rule

for this one and another one for the web server for which we will use 3030. These rules

can be seen defined in figure 8-9.

Figure 7-48. Firewall rules panel

To create these rules, simply click on "CREATE FIREWALL RULE" (Figure 8.8).

Figure 7-49. Create firewall rule button

88

In the form that is displayed we must select (Figure 7-50):

- A name for the rule, which we will later use so that the server knows

which rules to use.

- Source addresses, which in this case will be all of them, since any user

should be able to access.

- Ports of the TCP/UDP protocols that we are going to need.

Select "CREATE" and we can see the rules in the table shown above in Figure 7-48.

Figure 7-50. Form to create a firewall rule

With the firewall rules defined, we have to activate them in the virtual machine, for this

we go down to the network options and in Network tags we write the name that we have

given to the rules that we have created previously. For this application they have been

called "coturn" and "tagfirewall" (Figure 7-51).

89

Figure 7-51. Firewall tags used

At this point most of the virtual machine configuration would be done. We proceed to

connect via SSH to access the system terminal (Figure 7-52).

Figure 7-52. SSH button

Once the command console opens, as a recommendation, we must upload our

project compressed, for example in .zip. For this we use the upload arrow located in the

upper right corner. With the uploaded file in the virtual machine, we unzip it creating all the

folders and files that conform the application, as we can see in figure 7-53.

Last point we need to install Node.js in our system, this point we will treat it in Annex I

not to make more extensive this section.

Figure 7-53. Files and upload button in SSH screen

To start the web and signaling server we are going to use the command "nohup node

server.js &" (Figure 7-54) which leaves the server running in the background, allowing us

to continue working with the command console elsewhere or close it without the process

being interrupted. When we run the server in the background, a log called "nohup.out" is

created that we can consult with any text editor (Figure 7-55).

90

Figure 7-54. Run in background command

Figure 7-55. Nohup log

91

8 ANALYSIS AND DISCUSSION

The following pages detail the results obtained in the different tests and analyzes

carried out on the deployed infrastructure with regard to traffic and load tests.

8.1 Traffic analysis

Situations of use of the web application will be defined. In this section, an analysis

of the traffic generated in these different situations and communication environments will

be carried out.

8.1.1 Test 1. Only three participants and everyone on the same network

In this situation, we proceed to analyze the traffic between three participants that

are in the same network.

When using HTTPS, in the exchanged traffic we will not be able to see much

information since everything will be encrypted (Figure 8-1). That is why the use of a

secure protocol for web browsing with certain characteristics is highly recommended.

In this capture obtained when using the application at the local network level, it can

be seen that it is using port 443 corresponding to HTTPS.

After this a series of messages follow with the aim of negotiating the key (Figure 8-

2):

Figure 8-1. HTTPS traffic

92

Figure 8-2. Negotiating key exchange

Figure 8-3. Establishing the connection

93

Once communication is established:

We see how the STUN protocol begins to work until it obtains confirmation of the

IP discovery from the other end (Figure 8-4):

And finally, we can see that all the traffic exchanged goes over UDP (Figure 8-5),

and being in local network, the connection is direct between the two ends. You are also

using the STUN server since it was configured in the development of the application.

Figure 8-5. Data traffic over UDP

Figure 8-4. STUN IP discovery

94

In this example, the peer.js constructor was configured with Google's STUN

server. It can be seen in the figure 8-3.

8.1.2 Test 1. Only three participants but one requires the use of the TURN server

In two different LANs the scenario changes, in this case, we have a computer

connected to a network with a restrictive policy, a computer connected to a router with

internet access at home and a mobile phone with a 5G network as t the WAN to provide

internet access.

The part of negotiating the key does not change:

But now, STUN cannot discover the IP address of the ends and the appearance of

TURN is necessary (Figure 8-7):

Figure 8-6. Negotiating key exchange

Figure 8-7. TURN operation

95

It is now when the TURN server creates a data channel with the user through

which all the communication data between the ends will be transmitted (Figure 8-8).

In Figure 8-9 it can be seen how the use of the bandwidth changes as a function of

time and the development of the communication, the highest point corresponds when the

three users are in the call and it is seen how it decreases depending on their

disconnection.

Figure 8-8. Data traveling through a data channel created by TURN

96

Figure 8-9. Bandwidth versus time throughout the video call

8.2 Network performance

To carry out this test, Iperf has been used. It is a tool used to test computer

networks. The usual operation is to create TCP and UDP data streams and measure

network performance.

97

Figure 8-10. LAN Network performance test

Figure 8-11. WAN Network performance test

98

In Figure 8-1, the test has been carried out on a local network with UDP traffic,

simulating what could be the implementation of all the servers in the hospital's own

network, while in Figure 8-2 the same test was simulated with the web application

deployed on the Google Cloud virtual machine.

As can be seen in the results obtained, very similar results are obtained whether

we deploy the server on a local machine and work from within the LAN network or if it is

deployed in the Google cloud.

In fact, as can be seen in Figure 8-1, in the LAN test some datagrams have been

lost while in the server hosted in the Google cloud they have not.

The jitter values obtained are also considered optimal since experts speak of 20

milliseconds as the ceiling for acceptable jitter.

To measure the bandwidth in a real way, another tool had to be used, in this case

called AppNetworkCounter, since it must be measured in a typical video call situation

where there are at least two participants.

In this case, a video call of three participants has been simulated obtaining the

results shown in Figure 8.3.

We get an average of 750 KB/Sec for each user. As there are three users, the

download traffic is divided between two (we are the third user who acts as upload traffic).

In this case, it also depends on the device from which the video is obtained, since,

for example, lower values have been obtained from a phone with more limited

characteristics, around 100 KB/Sec per user.

8.3 Load test

To carry out this load test, the Apache Bench tool has been used. In this test, a

total of 10,000 requests have been made, with 100 requests being made on a recurring

basis.

As a result of this test (Figure 8-4) the following report has been obtained:

Figure 8-12. Bandwidth test

99

Figure 8-13. Load test results

The most notable is the following:

• Requests per second: For every second, 99.33 requests are handled

on average.

• Time per request (mean): The average time that the server has taken to

attend to each block of 100 concurrent requests is 100.676 ms.

• Time per request (mean, across all concurrent requests): The time that

the server has taken to attend to an individual request has been 10,068

ms.

The graphic representation of these results is shown in Figure 8-5. This figure

shows how initially for the first requests as they are made, the response time increases

quite significantly, but when reaching a certain number (around 20), the average response

time of the server goes increasing almost linearly.

100

Figure 8-14. Load test tesults in graph

8.4 Stress test

8.4.1 Test 1. Stress tests with only one room open

Another stress test has been performed, regarding a massive case of users in a

videoconference. The web application performs well in a room with up to 5 users. From

this point on, it starts to present some problems such as video/audio freezes and

automatic disconnections.

8.4.2 Test 2. Stress tests with three users connected per room

In this case the results before the stress test have been similar. With three users

per room, the system is capable of keeping two simultaneous rooms running smoothly.

From the third, and with the intervention of a seventh/eighth participant, the system begins

to present some failures such as freezes in the audio/video, although in this case the

automatic disconnections of the users are increased and much more appreciated.

101

9 RESULTS AND CONCLUSIONS

The result of this project has been the design and implementation of an infrastructure

that consist of three servers (web / signaling / support) and a database that to provide

support to a web application that allows the use of a multi-user video call system in a

health environment.

It has been necessary to acquire a series of knowledge and skills to carry out the

execution of all the proposed objectives, including familiarization and in-depth study of

real-time communication protocols together with WebRTC technology.

Once the implementation phase of infrastructure has been completed, the system is

flexible enough to be deployed even when one of the end-points of the communication it’s

the browser of a specific robot. Indeed, this system will be deployed in a specific real use-

case where a robot is in charge of allowing remote communication among patients and

care specialist.

It has also been necessary to analyze the benefits of using an open technology

such as WebRTC to make your own videoconferencing system, and therefore, it can be

adapted to the specific needs of a scenario in which a system of this type may be

necessary, beyond the use of a proprietary video conferencing system. In this sense, the

main limitation has been the need from the end of the robot to allow fixed configurations

regarding the devices to use or how to initiate or accept a call without the intervention of a

person.

With the development of this work have been put into practice many theoretical

concepts acquired throughout both the degree of Telematics Engineering and the Master

of Telecommunications Engineering that ends with the writing of this document, ranging

from small theoretical, operation of different technologies and protocols, through

implementation of different servers, different modes of communication, functions

implemented under JavaScript, study and proposed solutions to the problem that arose in

the beginning, to the final development of a web application that provides the user

services that were intended to cover in the development of this project. To this end, it has

been necessary to acquire a multitude of knowledge and combine it with the knowledge

we already had in order to achieve the objectives set.

In this work we have explored a programming language for the development of

web applications: JavaScript. The author had some knowledge of JavaScript but had to go

much deeper in order to develop and address all the implementation requirements of this

project.

102

Among the objectives that were pursued with the achievement of this project, the

main one was the realization of a multi-user video call using WebRTC. This fundamental

objective has been achieved.

The main objective of this work has been accomplished. This objective was the

development of a system based on WebRTC technology that allows establishing a

videoconference for multiple users. In addition, it was necessary to provide this system

with different functionalities such as the existence of a text chat, the invitation of users via

email, the reservation of video calls, etc.

The objectives of dividing the application into two distinct sections, one for

specialists/doctors and the other for patients/families have also been achieved. In the

specialist section, all the services associated with the management of patient and user

video calls have been implemented, while the user section refers to the video call itself.

Two important problems arose that had to be solved while the project was being

rolled out. Once everything was implemented and working, some problems arose such as:

- The system had been prepared for multiuser but not for multisession, that is, in

the case of a hospital with two or more robots (due to the number of patients it

has, for example) this application did not work since the signaling server only

was able to hold a video call at a time without crossing the data. To solve this,

an object variable was created in which the different sessions were dynamically

saved and modified, thus allowing several simultaneous and multi-user video

calls.

- In a specific situation, if in a video call of more than two people the person who

entered the room before another, if he left the video call, the connection was

closed but the camera stayed frozen on the window and did not disappear. To

fix this, a disconnect handler had to be implemented at both ends of the video

call.

From a technical point of view, this work has provided me with a great deal of

depth and development in some technologies and protocols that have been studied

throughout my master.

To conclude this chapter, it is worth mentioning that the system has been tested in

a real scenario, behaving correctly and obtaining satisfactory results in different situations.

Finally, and leaving aside the purely implementation aspect, the aim has been to

produce a report as complete and faithful as possible in relation to the work carried out.

103

10 FUTURE LINES

Although the implemented infrastructure meets the requirements established at the

beginning of the work, several lines of work have been detected that could be developed

in the future:

• Incorporation of a tool for evaluating the quality of video calls. It could

collect statistics and data from WebRTC to store them and analyze the

different behaviors of the tool in different situations. In addition, if a

system is incorporated that is capable of self-assessing the quality of

these, functions can also be implemented that make it possible to self-

select an audio/video quality in these, typical of other systems such as

YouTube.

• Implement additional functionalities, such as an individual chat over the

general chat that exists, the possibility of sharing the screen in case of

using telemedicine by the doctor or specialist, recording of the sessions,

the implementation of a system of file transfer using the

RTCDatachannels API, option to minimize or hide the different video

windows or even the implementation of a virtual whiteboard.

• Develop the native application on Android and iOS pointing to our

services to integrate it with the web version of this project.

104

11 ANNEXES

This chapter is made up of a series of annexes in which different aspects

presented in previous chapters are developed. Thus, first of all, the reader is offered the

installation of Node.js.

Next, an annex has been incorporated with the user manual of the developed web

application.

11.1 Annex I. Installing Node.js

11.1.1 Node.js in windows

To download it, you only have to access the official website http://nodejs.org/es/

(Figure 11-1) and choose the desired download, generally the LTS (Long Term Support)

version.

Figure 11-1. Node.js official website

105

Once the version is selected, the installer will automatically download. To proceed

with its installation, it will open showing the following screen (Figure 11-2):

Figure 11-2. Node.js installer homepage

Click on next showing the terms and conditions of use (Figure 11-3) that must be

accepted to continue:

Figure 11-3. Node.js installer terms screen

106

The next window shown is the installation directory selection window (Figure 11-4):

Figure 11-4. Node.js installation directory selection screen

Next, the screen shows the installation options (Figure 11-5), among which it is

worth mentioning that in order to use the Node.js commands in the Windows terminal, the

“Add to PATH” option must be active.

Figure 11-5. Node.js installation options screen

107

Finally, click on “Install” to proceed with its installation (Figure 11-6):

Figure 11-6. Node.js installation screen

And after the installation, the final window is shown (Figure 11-7) where the

installation of Node.js would already have been carried out in a Windows OS (Operating

System).

Figure 11-7. Node.js installation completion screen

108

11.1.2 Node.js in linux

Before installing Node.js, you must have the curl command line utility installed on

your system. If not, you should run:

Figure 11-8. Curl install command

For example, here we will install Node.js v14.x. These are the installation

commands for Ubuntu:

Figure 11-9. Node.js download command

Figure 11-10. Node.js installation command

To check the version of Node.js installed we can execute the following command:

Figure 11-11. Node.js version check command

109

11.2 Annex II. VideoConf Web Application User Manual

This document describes the management of a system in a hospital environment

that allows for the booking of calls with relatives and/or doctors.

For security reasons, the system can only be accessed by hospital staff, who will be

responsible for discharging patients and managing bookings.

There are two user roles that can use the system. The main administrator who can

register other managers, e.g., nurses or healthcare professionals in the center and access

the rest of the functionalities. Users registered by the administrator will be able to use

these functionalities to register residents and make bookings for videoconferences with

relatives or other specialists.

11.2.1 Homepage

The home screen of the application welcomes the user to the system and offers

different alternatives. The available functionalities are defined in the following sections.

There are two main sections in the homepage:

- Navigation Bar: To do login, if you are an administrator user.

- Let’s get started button: Go to profile if you are logged in.

Figure 11-12. Screenshot of the home page

11.2.2 SignIn

This interface is for the exclusive use of the system administrator and the workers

registered in the system.

110

Figure 11-13. Access form

If the user has already been registered in the system, he/she will access this login

interface shown in Figure 11-13 which allows him/her to enter his/her credentials.

The first interface after logging in is the one shown in Figure 11-14, which is

associated with the user's profile. In addition, the navigation bar allows access, in the case

of the administrator, to the screens that allow him/her to create and view videoconference

reservations (Reservations), register residents and associate family and specialists' e-

mails (Residents) and register managers (SignUp).

Figure 11-14. User’s profile and box meeting

Also, in this part there is a box meeting where you can put a valid Room ID to

enter in a videocall.

111

This form allows you to enter a user identifier for the videoconferencing system

and the call identifier or token that will be automatically generated by the system and

which, once active, will be accessible to the family member or remote specialist through a

link sent by mail and to the manager/administrator through the corresponding reservation

information.

Once a valid session ID has been specified, the system will redirect to the video

conference part.

11.2.2.1 Reservations

This application part aims to be able to manage all the reservations to make a

videoconference that the administrator user in question has made.

If we click on “Save your reservations”, we access to a new page where we can create a

new reservation.

11.2.2.1.1 Add reservations

It is necessary to specify the fields associated with the videoconference

reservation.

Figure 11-15. Reservation box

The family email box will be filled automatically once the patient is selected. The

email field is associated with said patient when he is registered as a resident.

112

This part can also be accessed by clicking on the navigation bar: Reservations →

Show Reservations

Figure 11-16. Reservation menu

11.2.2.1.2 Show reservations

This page shows all reservations associated with the administrator user.

The user can edit the different reservations and delete the ones he needs.

Figure 11-17. Show menu

- With the edit button, we can edit all the fields associated with the reservation.

- With the delete button, we can delete the reservation of the database.

It’s necessary, for security, confirm the delete process on the alert message appear

when you click on the button.

Figure 11-18. Delete alert

11.2.2.2 Profile

From this page, as explained above, we can access our account data as well as

add a new reservation. See image 11-14.

113

11.2.2.3 Residents

In this part of the web application, hospital residents will be discharged.

It is the part in charge of managing the data associated with patients.

Figure 11-19. Residents menu

11.2.2.3.1 List residents

This page shows all residents registered in the hospital.

The user can edit the different residents and delete the ones he needs.

Figure 11-20. List residents

- With the edit button, we can edit all the fields associated with the resident.

- With the delete button, we can delete the resident of the database.

It’s necessary, for security, confirm the delete process on the alert message appear

when you click on the button.

11.2.2.3.2 Add residents

It is necessary to specify the fields associated with the resident registration.

114

Figure 11-21. Residents box

When you add a new resident, the app redirects you to the residents list page where

you can see all the residents.

11.2.2.4 SignUp

In this part it is possible to register new users for the administration of the system and

reservations.

Simply specify the different data of the new user that you want to register.

Figure 11-22. SignUp box

115

11.2.2.5 Logout

This button allows the user to log out of the application and automatically redirects

the user to the login screen.

11.2.3 Room meeting

Once you have entered the room either through the email link or through the box

meeting of a user logged, the system validates the session ID and redirect to the video

conference part.

The videoconference system has differents functionalities:

- Mute Button: Mute/Unmute device microphone.

- Stop Video: Turn off/on device video.

- Invite: Shows a full link of the video conference with the option to copy it.

- Participants: Shows the participants of the video conference.

- Chat: Hide/Show text chat.

- Audio Source: Select the audio source of the device.

- Video Source: Select the video source of the device.

- Leave Metting Button: Exit the video conference.

Figure 11-23. Videoconference system

116

11.2.4 Let’s Get Started Button

Figure 11-24. Let’s get started button

This button redirects to the login part of the application if the user is not logged in, or

to his profile if the user is logged in.

117

REFERENCES

[1]. Luque, J., n.d. Videoconferencia. Acta.es. [en línea], [sin fecha]. [Consulta 15 agosto

2022]. Disponible en:

https://www.acta.es/medios/articulos/comunicacion_e_informacion/057057.pdf

[2]. Weekly-geekly-es.imtqy.com. 2022. Una breve historia de la videoconferencia:

desde el comienzo hasta el uso comercial completo. [en línea], [sin fecha]. [Consulta 15

agosto 2022]. Disponible en: https://weekly-geekly-

es.imtqy.com/articles/465459/index.html

[3]. Baudot, O., 2018. Historia de la Videoconferencia. Linkedin.com. [en línea], [sin

fecha]. [Consulta 15 agosto 2022]. Disponible en: https://www.linkedin.com/pulse/historia-

de-la-videoconferencia-%C3%B3scar-b-

/?originalSubdomain=eshttps://www.linkedin.com/pulse/historia-de-la-videoconferencia-

%C3%B3scar-b-/?originalSubdomain=es

[4]. RDSI: Telefonía y Servicios Digitales. [en línea], [sin fecha]. [Consulta: 31 agosto

2022]. Disponible en: http://www.consulintel.es/Html/Tutoriales/Articulos/rdsi.html

[5]. Modo de transferencia asíncrona. [en línea], [sin fecha]. [Consulta: 31 agosto

2022]. Disponible en:

https://es.wikipedia.org/wiki/Modo_de_transferencia_as%C3%ADncrona

[6]. Henning Schulzrinne y Stephen L. Casner. RTP: A Transport Protocol for Real-

Time Applications. RFC 1889. 01-01-1996 [en línea]. [Consulta 31 agosto 2022].

Disponible en: https://www.rfc-editor.org/rfc/rfc1889

[7]. Mark Handley, Henning Schulzrinne, Eve Schooler y Jonathan Rosenberg. SIP:

Session Initiation Protocol. RFC 2543. 01-03-1999. [en línea]. [Consulta 31 agosto 2022].

Disponible en: https://www.rfc-editor.org/rfc/rfc2543

[8]. Qué es Asterisk. Software de código abierto para telefonía IP. [en línea], [sin

fecha]. [Consulta: 31 agosto 2022]. Disponible en: https://www.masip.es/blog/que-es-

asterisk/

[9]. Linphone: Conoce esta aplicaciónde Vo-IP multiplataforma. [en línea], [sin fecha].

[Consulta: 31 agosto 2022]. Disponible en:

https://www.redeszone.net/2012/09/01/linphone-conoce-esta-aplicacionde-vo-ip-

multiplataforma/

[10]. Skype: | internet & marketing. [en línea], [sin fecha]. [Consulta: 31 agosto 2022].

Disponible en: https://www.icesi.edu.co/blogs_estudiantes/alejume7/2011/07/31/skype/

[11]. La WebRTC y sus principales beneficios empresariales. [en línea], [sin fecha].

[Consulta: 31 agosto 2022]. Disponible en: https://www.fonvirtual.com/blog/la-webrtc/

https://www.acta.es/medios/articulos/comunicacion_e_informacion/057057.pdf
https://weekly-geekly-es.imtqy.com/articles/465459/index.html
https://weekly-geekly-es.imtqy.com/articles/465459/index.html
https://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=eshttps://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=es
https://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=eshttps://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=es
https://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=eshttps://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=es
https://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=eshttps://www.linkedin.com/pulse/historia-de-la-videoconferencia-%C3%B3scar-b-/?originalSubdomain=es
http://www.consulintel.es/Html/Tutoriales/Articulos/rdsi.html
https://es.wikipedia.org/wiki/Modo_de_transferencia_as%C3%ADncrona
https://www.rfc-editor.org/rfc/rfc1889
https://www.rfc-editor.org/rfc/rfc2543
https://www.masip.es/blog/que-es-asterisk/
https://www.masip.es/blog/que-es-asterisk/
https://www.redeszone.net/2012/09/01/linphone-conoce-esta-aplicacionde-vo-ip-multiplataforma/
https://www.redeszone.net/2012/09/01/linphone-conoce-esta-aplicacionde-vo-ip-multiplataforma/
https://www.icesi.edu.co/blogs_estudiantes/alejume7/2011/07/31/skype/
https://www.fonvirtual.com/blog/la-webrtc/

118

[12]. Historia de la telemedicina desde sus inicios hasta hoy. [en línea], [sin fecha].

[Consulta: 20 agosto 2022]. Disponible en: https://clinic-cloud.com/blog/historia-de-la-

telemedicina/.

[13]. Preguntas frecuentes sobre Google Meet, Google Chat y Hangouts. [en línea], [sin

fecha]. [Consulta: 21 agosto 2022]. Disponible en:

https://support.google.com/a/users/answer/9845199?hl=es

[14]. El Gobierno de Castilla-La Mancha pone en marcha un procedimiento para facilitar

la comunicación entre pacientes ingresados y sus familiares. [en línea], [sin fecha].

[Consulta: 21 agosto 2022]. Disponible en:

https://sanidad.castillalamancha.es/saladeprensa/notas-de-prensa/el-gobierno-de-castilla-

la-mancha-pone-en-marcha-un-procedimiento-para

[15]. COVID-19: Son Llàtzer pone en marcha el proyecto «Unidos» para comunicar a los

pacientes aislados con sus familiares [en línea], [sin fecha]. [Consulta: 21 agosto 2022].

Disponible en: https://www.caib.es/pidip2front/jsp/es/ficha-convocatoria/9433120

[16]. Videollamadas para esquivar el aislamiento de los pacientes ingresados: una

aplicación ofrece visitas virtuales a los familiares. [en línea], [sin fecha]. [Consulta: 21

agosto 2022]. Disponible en: https://www.elmundo.es/ciencia-y-

salud/salud/2020/03/18/5e722fae21efa0a1178b458f.html

[17]. CÉSAR FERNÁNDEZ, J., 2017. Patrones de diseño en software (III) : MVC |

Apple Coding. 19-01-2017 [en línea]. [Consulta: 27 agosto 2022]. Disponible en:

https://applecoding.com/guias/patrones-diseno-software-mvc.

[18]. JavaScript. [en línea], [sin fecha]. [Consulta: 20 agosto 2022]. Disponible en:

https://es.wikipedia.org/wiki/JavaScript.

[19]. 1.2. Breve historia (Introducción a JavaScript). [en línea], [sin fecha]. [Consulta:

20 agosto 2022]. Disponible en: https://uniwebsidad.com/libros/javascript/capitulo-

1/breve-historia.

[20]. LÓPEZ SOSA, A., [sin fecha]. Introducción a express js. 23/05/2019 [en línea].

[Consulta: 20 agosto 2022]. Disponible en:

https://medium.com/@aarnlpezsosa/introducción-a-express-js-a1ebe16dbcf4.

[21]. Comenzando con handlebars. Programación en Castellano. ICE [en línea].

[Consulta: 04 septiembre 2022]. Disponible en:

https://programacion.net/articulo/comenzando_con_handlebars_1376

[22]. Node.js: ¿Qué es y para que sirve NodeJS? [en línea], [sin fecha]. [Consulta: 20

agosto 2022]. Disponible en: https://www.netconsulting.es/blog/nodejs/.

[23]. Servicios de cloud computing | Google Cloud [en línea], [sin fecha]. [Consulta:

28/08/2022]. Disponible en: https://cloud.google.com/?hl=es

https://clinic-cloud.com/blog/historia-de-la-telemedicina/
https://clinic-cloud.com/blog/historia-de-la-telemedicina/
https://support.google.com/a/users/answer/9845199?hl=es
https://sanidad.castillalamancha.es/saladeprensa/notas-de-prensa/el-gobierno-de-castilla-la-mancha-pone-en-marcha-un-procedimiento-para
https://sanidad.castillalamancha.es/saladeprensa/notas-de-prensa/el-gobierno-de-castilla-la-mancha-pone-en-marcha-un-procedimiento-para
https://www.caib.es/pidip2front/jsp/es/ficha-convocatoria/9433120
https://www.elmundo.es/ciencia-y-salud/salud/2020/03/18/5e722fae21efa0a1178b458f.html
https://www.elmundo.es/ciencia-y-salud/salud/2020/03/18/5e722fae21efa0a1178b458f.html
https://applecoding.com/guias/patrones-diseno-software-mvc
https://es.wikipedia.org/wiki/JavaScript
https://uniwebsidad.com/libros/javascript/capitulo-1/breve-historia
https://uniwebsidad.com/libros/javascript/capitulo-1/breve-historia
https://medium.com/@aarnlpezsosa/introducción-a-express-js-a1ebe16dbcf4
https://programacion.net/articulo/comenzando_con_handlebars_1376
https://www.netconsulting.es/blog/nodejs/

119

[24]. ¿Qué es WebRTC? – Definición de TrueConf [en línea], [sin fecha]. [Consulta: 20

agosto 2022]. Disponible en: https://trueconf.com/es/webrtc.html.

[25]. WebSockets – Referencia de la API Web | WDM [en línea]. [Consulta: 04 septiembre

2022]. Disponible en: https://developer.mozilla.org/es/docs/Web/API/WebSockets_API

[26]. Henning Schulzrinne y col. RTP: A Transport Protocol for Real-Time Applications.

RFC 3550. 01-07-2003 [en línea]. [Consulta: 21 agosto 2022]. Disponible en: https://rfc-

editor.org/rfc/rfc3550.txt.

[27]. Ali C. Begen y col. SDP: Session Description Protocol. RFC 8866. 01-01-2021 [en

línea]. [Consulta: 21 agosto 2022]. Disponible en: https://rfc-editor.org/rfc/rfc8866.txt.

[28]. Ari Keränen, Christer Holmberg y Jonathan Rosenberg. Interactive Connectivity

Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal. RFC

8445. 01-07-2021 [en línea]. [Consulta 21 agosto 2022]. Disponible en: https://rfc-

editor.org/rfc/rfc8445.txt.

[29]. Marc Petit-Huguenin y col. Session Traversal Utilities for NAT (STUN). RFC 8489.

01-02-2020 [en línea]. [Consulta: 21 agosto 2022]. Disponible en: https://rfc-

editor.org/rfc/rfc8489.txt.

[30]. Tirumaleswar Reddy.K y col. Traversal Using Relays around NAT (TURN): Relay

Extensions to Session Traversal Utilities for NAT (STUN). RFC 8656. 01-02-2020 [en

línea]. [Consulta: 21 agosto 2022]. Disponible en: https://rfc-editor.org/rfc/rfc8656.txt.

[31]. Cómo crear un módulo Node.js [en línea]. [Consulta: 27 agosto 2022]. Disponible

en: https://www.digitalocean.com/community/tutorials/how-to-create-a-node-js-module-es

[32]. npm [en línea]. [Consulta: 27 agosto 2022]. Disponible en: https://www.npmjs.com/

[33]. Trickle ICE [en línea]. [Consulta: 12 agosto 2022]. Disponible en:

https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/

https://trueconf.com/es/webrtc.html
https://developer.mozilla.org/es/docs/Web/API/WebSockets_API
https://rfc-editor.org/rfc/rfc3550.txt
https://rfc-editor.org/rfc/rfc3550.txt
https://rfc-editor.org/rfc/rfc8866.txt
https://rfc-editor.org/rfc/rfc8445.txt
https://rfc-editor.org/rfc/rfc8445.txt
https://rfc-editor.org/rfc/rfc8489.txt
https://rfc-editor.org/rfc/rfc8489.txt
https://rfc-editor.org/rfc/rfc8656.txt
https://www.digitalocean.com/community/tutorials/how-to-create-a-node-js-module-es
https://www.npmjs.com/
https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/

		2022-09-07T19:17:01+0200
	PEREZ LORENZO JOSE MANUEL - 23807798S

		2022-09-07T19:42:17+0200
	VICIANA ABAD RAQUEL - 45595778A

